
Constructive Computer Architecture:

Data Hazards
in Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-1

Consider a different two-
stage pipeline

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

nap
f2d

Suppose we move the pipeline stage from Fetch to after Decode
and Register fetch for a better balance of work in two stages

Fetch Execute, Memory, WriteBack

InstiInsti+1

Pipeline will still have control hazards and we can use the
epoch-based solution as before

Decode,
RegisterFetch

Use the same epoch solution for
control hazards as before

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-2

Converting the old pipeline
into the new one
rule doFetch;

... let instF = iMem.req(pc);

f2d.enq(Fetch2Execute{... inst: instF ...}); ...

endrule

rule doExecute;

let x = f2e.first;

let instD=x.inst; let pcD=x.pc; let inEp=x.epoch;

... let dInst = decode(instD);

let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));

let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));

let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

...

endrule

instF

Not quite correct. Why?

Fetch is potentially reading stale values from rf

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-3

Data Hazards
fetch &
decode

execute

d2e

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD3 FD4 FD5

EXstage EX1 EX2 EX3 EX4 EX5

I1 R1 R2+R3

I2 R4 R1+R2

I2 must be stalled until I1 updates the register file

pc rf dMem

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD2 FD3 FD4 FD5

EXstage EX1 EX2 EX3 EX4 EX5

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-4

Dealing with data hazards
Keep track of instructions in the pipeline and
determine if the register values to be fetched
are stale, i.e., will be modified by some older
instruction still in the pipeline. This condition
is referred to as a read-after-write (RAW)
hazard

Stall the Fetch from dispatching the instruction
as long as RAW hazard prevails

RAW hazard will disappear as the pipeline
drains

Scoreboard: A data structure to keep
track of the instructions in the pipeline
beyond the Fetch stage

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-5

Data Hazard
Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

function Bool isFound

(Maybe#(RIndex) x, Maybe#(RIndex) y);

if(x matches Valid .xv &&& y matches Valid .yv

&&& yv == xv)

return True;

else return False;

endfunction

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-6

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

 method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

 method search1(src): searches the scoreboard for a
data hazard

 method search2(src): same as search1

 method remove: deletes the oldest entry when an
instruction commits

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-7

2-Stage-DH pipeline:
Scoreboard and Stall logic

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

e
p
o
c
h

nap

scoreboard

redirect

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-8

2-Stage-DH pipeline
module mkProc(Proc);

EHR#(2,Addr) pc <- mkEHR(U);

RFile rf <- mkRFile;

IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory;

Fifo#(Decode2Execute) d2e <- mkFifo;

Reg#(Bool) epoch <- mkReg(False);

Scoreboard#(n) sb <- mkScoreboard;

// n, the number of slots in the sb must be ≥

// the number of instructions in the Execute

// phse (including d2e)

rule doFetch …

rule doExecute …

Assume doFetch < doExecute

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-9

2-Stage-DH pipeline
doFetch rule
rule doFetch;

let instF = iMem.req(pc[0]);

let ppcF = nap(pc[0]); pc[0] <= ppcF;

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: epoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); end

endrule

What should happen to pc when Fetch stalls?

pc should change only
when the instruction
is enqueued in d2e

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-10

2-Stage-DH pipeline
doFetch rule corrected
rule doFetch;

let instF = iMem.req(pc[0]);

let ppcF = nap(pc[0]); pc[0] <= ppcF;

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: fEpoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); end

endrule

pc[0] <= ppcF; end

To avoid structural
hazards, scoreboard must
allow two search ports

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-11

2-Stage-DH pipeline
doExecute rule
rule doExecute;

let x = d2e.first;

let dInstE = x.dInst; let pcE = x.pc; let inEp = x.epoch;

let rVal1E = x.rVal1; let rVal2E = x.rVal2;

if(epoch == inEp) begin

let eInst = exec(dInstE, rVal1E, rVal2E, pcE);

if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

else if (eInst.iType == St) let d <-

dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);

let nextPC = eInst.brTaken ? eInst.addr : pcE + 4;

if (x.ppc != nextPC) begin pc[1] <= eInst.addr;

epoch <= !epoch; end

end

d2e.deq; sb.remove;

endrule
The same as before

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-12

A correctness issue

If the search by Decode does not see an
instruction in the scoreboard, then its effect must
have taken place. This means that any updates
to the register file by that instruction must be
visible to the subsequent register reads

 remove and wr should happen atomically

 search and rd1, rd2 should happen atomically

doFetch doExecute

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-13

Concurrency and Performance
doFetch < doExecute

For correctness:
 rf: rd < wr (normal rf)
 sb: {search, insert} < remove
 d2e: enq {<, CF} {deq, first} (CF Fifo)

performance ?
 Dead cycle after each misprediction
 Dead cycle after each RAW hazard

doFetch doExecute

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

Maybe we should consider doExecute < doFetch even
though the clock cycle may be a bit longer

Bypass FIFO
does not make
sense here

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-14

2-Stage-DH pipeline
doExecute < doFetch
rule doFetch;

let instF = iMem.req(pc[1]);

let ppcF = nap(pc[1]);;

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: pc[1], ppc: ppcF,

dIinst: dInst, epoch: fEpoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); pc[1] <= ppcF end

endrule

rule doExecute;

the same as before …

if (x.ppc != nextPC) begin pc[0] <= eInst.addr;

epoch <= !epoch; end

end d2e.deq; sb.remove;

endrule

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-15

Concurrency and Performance
doFetch < doExecute

For correctness;
 rf: wr < rd (bypass rf)
 sb: remove < {search, insert}
 d2e: {first, deq} {<, CF} enq (pipelined or CF Fifo)

Also no dead cycle after a misprediction

doFetch doExecute

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

To avoid a stall due to a RAW hazard between successive
instructions
 sb: remove ? search
 rf: wr ? rd

<

< (bypass rf)

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-16

WAW hazards
Can a destination register name appear more
than once in the scoreboard ?

If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions

This is not a problem in our design because

 instructions are committed in order

 the RAW hazard for the instruction at the decode
stage will remain as long as the any instruction with
the required destination is present in sb

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-17

An alternative design for sb

Insert: increment the counter for register rd

Remove: decrement the counter for register rd

Search: If the counter for the source register is >0,
return True

This design takes less hardware for deep
pipelines and is more efficient because it
avoids associative searches

One slot to hold
rd for each
instruction in
the pipeline

One counter for
each register in
rf (Initially 0)

vs

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-18

Summary
Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears

Performance issues are subtle

 For instance, the value of having a bypass network
depends on how frequently it is exercised by programs

 Bypassing necessarily increases combinational path
lengths which can slow down the clock

The rest of the slides will be discussed in the Recitation

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-19

Normal Register File
module mkRFile(RFile);

Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

method Action wr(RIndx rindx, Data data);

if(rindx!=0) rfile[rindx] <= data;

endmethod

method Data rd1(RIndx rindx) = rfile[rindx];

method Data rd2(RIndx rindx) = rfile[rindx];

endmodule

{rd1, rd2} < wr

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-20

Bypass Register File using EHR
module mkBypassRFile(RFile);

Vector#(32,Ehr#(2, Data)) rfile <-

replicateM(mkEhr(0));

method Action wr(RIndx rindx, Data data);

if(rindex!=0) (rfile[rindex])[0] <= data;

endmethod

method Data rd1(RIndx rindx) = (rfile[rindx])[1];

method Data rd2(RIndx rindx) = (rfile[rindx])[1];

endmodule

wr < {rd1, rd2}

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-21

Bypass Register File
with external bypassing
module mkBypassRFile(BypassRFile);

RFile rf <- mkRFile;

Fifo#(1, Tuple2#(RIndx, Data))

bypass <- mkBypassSFifo;

rule move;

begin rf.wr(bypass.first); bypass.deq end;

endrule

method Action wr(RIndx rindx, Data data);

if(rindex!=0) bypass.enq(tuple2(rindx, data));

endmethod

method Data rd1(RIndx rindx) =

return (!bypass.search1(rindx)) ? rf.rd1(rindx)

: bypass.read1(rindx);

method Data rd2(RIndx rindx) =

return (!bypass.search2(rindx)) ? rf.rd2(rindx)

: bypass.read2(rindx);

endmodule
wr < {rd1, rd2}

rf

move

rd

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-22

Scoreboard implementation
using searchable Fifos

function Bool isFound

(Maybe#(RIndx) dst, Maybe#(RIndx) src);

return isValid(dst) && isValid(src) &&

(fromMaybe(?,dst)==fromMaybe(?,src));

endfunction

module mkCFScoreboard(Scoreboard#(size));

SFifo#(size, Maybe#(RIndx), Maybe#(RIndx))

f <- mkCFSFifo(isFound);

method insert = f.enq;

method remove = f.deq;

method search1 = f.search1;

method search2 = f.search2;

endmodule

October 16, 2017 http://csg.csail.mit.edu/6.175 L13-23

