
Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-1

2-Stage Pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

e
p
o
c
h

nap

scoreboard

redirect

The use of magic memories (combinational reads)
makes such designs unrealistic

Execute, Memory, WriteBackFetch, Decode, RegisterFetch

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-2

Magic Memory Model

Reads and writes are always completed in one
cycle

 a Read can be done any time (i.e. combinational)

 If enabled, a Write is performed at the rising clock
edge (the write address and data must be stable at the clock edge)

MAGIC

RAM
ReadData

WriteData

Address

WriteEnable

Clock

In a real SRAM or DRAM the data will be
available several cycles after the address is
supplied

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-3

Memory System
View iMem as a
request/response system
and split the fetch rule
into two rules – one to
send a request and the
other to receive the
response

insert a FIFO (f12f2) to
hold the pc address of the
instructions being fetched

 Can be the same as f2d

Similar idea applies to
dMem

PC

iMem

Decodef2d

Epoch

nap

f12f2

first,deqenq

assume iMem
behaves like
a FIFO

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-4

Connecting 2-Stage-pipeline to
req/res memory doExecute < doFetch

rule doFetch;

let instF = iMem.req(pc[1]);

let ppcF = nap(pc[1]);

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: pc[1], ppc: ppcF,

dIinst: dInst, epoch: epoch[1],

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); pc[1] <= ppcF; end

endrule

rule doExecute;

...the same as before …

if (x.ppc != nextPC) begin pc[0] <= eInst.addr;

epoch[0] <= !epoch[0]; end

end d2e.deq; sb.remove;

endrule

Magic memory?

decode

fetch

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-5

Connecting 2-Stage-pipeline to
Req/Res memory doExecute < doFetch

rule fetch;

iMem.enq(pc[1]);

let ppcF = nap(pc[1]); pc[1] <= ppcF ;

f2d.enq(Fetch2Decode(pc:pc[1], ppc:ppcF, epoch:epoch[1]))

endrule

rule decode;

let inst = iMem.first; let x = f2d.first;

let dInst = decode(inst);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: x.pc, ppc: x.ppc,

dIinst: dInst, epoch: x.epoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); iMem.deq; f2d.deq end

endrule

Req/Res memory

must be done only
if not stalling

What is the
advantage of nap in
fetch1 vs fetch2?

We can also
drop the
instruction if
epoch has
changed

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-6

Dropping instructions
rule decode;

let inst = iMem.first; let x = f2d.first;

if (epoch[?] != x.inEp) begin iMem.deq; f2d.deq end

//dropping wrongpath instruction

else begin

let dInst = decode(inst);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin

…fetch register values
d2e.enq(Decode2Execute{pc: x.pc, ppc: x.ppc,

dIinst: dInst, epoch: x.epoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); iMem.deq; f2d.deq end end

endrule
Are both 0 and 1 correct?

Yes, but 1 is better

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-7

Data access in the execute
stage

Execute rule has to be split too in order to
deal with multicycle memory system

How should the functions of execute be split
across rules

 call exec

 initiate memory ops, wait for load results

 redirection

 register update

 scoreboard updates

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-8

Transforming the Execute
rule – first attempt
rule doExecute;

let x = d2e.first;

let dInstE = x.dInst; let pcE = x.pc; let inEp = x.epoch;

let rVal1E = x.rVal1; let rVal2E = x.rVal2;

if(epoch == inEp) begin

let eInst = exec(dInstE, rVal1E, rVal2E, pcE);

if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

else if (eInst.iType == St) let d <-

dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);

let nextPC = eInst.brTaken ? eInst.addr : pcE + 4;

if (x.ppc != nextPC) begin pc[0] <= eInst.addr;

epoch[0] <= !epoch[0]; end

end

d2e.deq; sb.remove;

endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-9

Execute rule: first attempt

rule execute;

let x = d2e.first;

let dInstE = x.dInst; let pcE = x.pc; let inEp = x.epoch;

let rVal1E = x.rVal1; let rVal2E = x.rVal2;

if (epoch[1] != inEp) begin sb.remove; end

else begin

let eInst = exec(dInstE, rVal1E, rVal2E, pcE);

e2w.enq(Exec2WB(eInst:eInst,pc:pcE,epoch:inEp));

if(eInst.iType == Ld)

dMem.enq(MemReq{op:Ld, addr:eInst.addr, data:?});

else if (eInst.iType == St) begin

dMem.enq(MemReq{op:St, addr:eInst.addr,

data:eInst.data}); end

end

d2e.deq;

endrule

why?

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-10

Writeback rule first attempt

rule writeback;

let x = e2d.first; let pcE=x.pc;

let eInst=x.eInst; let inEp = x.epoch;

if(epoch[0] = inEp) begin

if (isValid(eInst.dst)) begin

let data = eInst.iType==Ld ? dMem.first: eInst.data;

rf.wr(fromMaybe(?, eInst.dst), data);

end

if(eInst.iType == Ld) dMem.deq;

let nextPC = eInst.brTaken ? eInst.addr : pcE + 4;

if (x.ppc != nextPC) begin pc[0] <= eInst.addr;

epoch[0] <= !epoch[0]; end

end

sb.remove;

e2w.deq

endrule

notice, we have assumed that
St does not get a response

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-11

Problems with the first
attempt

sb.remove is being called from both execute
and writeback

 out of order removals – correctness

 simultaneous removals – concurrency

St that was initiated in execute could be
invalidated in writeback (wrong path
instruction); consider a branch followed by a
store

 a store, once it is sent to the memory, cannot be
recalled

Let us move redirection from writeback to
execute and sb.remove from execute to
writeback

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-12

Dropping vs poisoning an
instruction

Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned

Drop: If the wrong path instruction has not
modified any book keeping structures (e.g.,
Scoreboard) then it is simply removed

Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)

Subsequent stages know not to update any
architectural state for a poisoned instruction

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-13

Execute rule: second attempt

rule execute;

let x = d2e.first; ...

if(epoch[0] != inEp) begin e2w.enq(Invalid); d2e.deq; end

else begin

let eInst = exec(dInstE, rVal1E, rVal2E, pcE);

if(eInst.iType == Ld)

dMem.enq(MemReq{op:Ld, addr:eInst.addr, data:?});

else if (eInst.iType == St) begin

dMem.enq(MemReq{op:St, addr:eInst.addr,

data:eInst.data}); end

let nextPC = eInst.brTaken ? eInst.addr : pcE + 4;

if (x.ppc != nextPC) begin pc[0] <= eInst.addr;

epoch[0] <= !epoch[0]; end

e2w.enq(Valid Exec12Exec2(eInst:eInst, pc:pcE));

d2e.deq;

end

endrule

poisoning!

epoch[1] would create a
combinational cycle and make
the rule invalid

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-14

Writeback rule second attempt

rule writeback;

let vx = e2w.first;

if (vx matches tagged Valid .x) begin

let pcE=x.pc; let eInst=x.eInst;

if (isValid(eInst.dst)) begin

let data = eInst.iType==Ld ? dMem.first: eInst.data;

rf.wr(fromMaybe(?, eInst.dst), data);

end

if(eInst.iType == Ld) dMem.deq;

end

sb.remove; e2w.deq;

endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-15

Observations
sb.remove is called only from exec2 ==> no
concurrency issues

Redirection is done from exec1 ==> better for
performance

St was initiated in exec1 and cannot be
squashed by any older instruction in exec2 or
the exec12exec2 fifo

stall will work correctly in fetch2 because the
scoreboard is not updated until the reg-file is
also updated

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-16

Memory Hierarchy

size: RegFile << SRAM << DRAM

latency: RegFile << SRAM << DRAM

bandwidth: on-chip >> off-chip

On a data access:

hit (data fast memory) low latency access

miss (data fast memory) long latency access (DRAM)

Small,

Fast Memory

SRAM

CPU

RegFile

Big, Slow Memory

DRAM

holds frequently used data

why?

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-17

Managing of fast storage
User managed Scratchpad memory

 ISA is aware of the storage hierarchy; separate
instructions are needed to access different storage
levels

Automatically managed Cache memory:

 programmer has little control over how data moves
between fast and slow memory

 Historically very successful (painless for the
programmer)

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-18

Why do caches work
Temporal locality

 if a memory location is referenced at time t then there
is very high probability that it will be referenced again
in the near future, say, in the next several thousand
instructions (frequently observed behavior)
 working set of locations for an instruction window

Spatial locality

 if address x is referenced then addresses x+1, x+2
etc. are very likely to be referenced in the near future
 consider instruction streams, array and record accesses

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-19

Inside a Cache

A cache line usually holds more than one word to

 exploit spatial locality

 transport large data sets more efficiently

 reduce the number of tag bits needed to identify a
cache line

cache line
tag data

Data from locations
100, 101, ...

Data
Byte

Data
Byte100

304

6848

valid
bit

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-20

