X
“"Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

/4

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-1

2-Stage Pipeline

p
\J
Fetch, Decode, RegisterFetch I Execute, Memory, WriteBack
c o o
S Register File
QO |e
A A A A A
redirect / \
nap
PC f~ |Decode R Execute
AN ;d2e
Inst — ! . Data
Memory scoreboard Memory

The use of magic memories (combinational reads)
makes such designs unrealistic
October 18, 2017 http://csg.csail.mit.edu/6.175 L14-2

Maglc Memory Model

/\

WriteEnable
Cllock l
Address ———
MAGIC |__, ReadData

WriteData ——— RAM

Reads and writes are always completed in one
cycle
= a Read can be done any time (i.e. combinational)

= If enabled, a Write is performed at the rising clock
edge (the write address and data must be stable at the clock edge)

In a real SRAM or DRAM the data will be
available several cycles after the address is

October 18, 2017

supplied

http://csg.csail.mit.edu/6.175 L14-3

Memory System

J@ View iMem as a

N

request/response system |epon
and split the fetch rule A
into two rules — one to
send a request and the “Ihap
other to receive the PCir f2d[— Decode
response A F12f2-1 A

insert a FIFO (f12f2) to €ng| Firstrdeq
hold the pc address of the -_- assume iMem
instructions being fetched IMem | pehaves like
= Can be the same as f2d a FIFO

Similar idea applies to
dMem

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-4

Connecting 2-Stage-pipeline to
req/res Memory dokxecute < doFetch

rule doFetch;
fZTCh -[let instF =[iMem.reqg(pc[1l]);

5 let ppcF = nap(pcll]);
— let dInst = decode (instF) ;

N

Magic memory

let stall = sb.searchl (dInst.srcl) || sb.search2(dInst.src2);
if(!stall) begin
decode ...fetch register values
I d2e.enqg (Decode2Execute{pc: pcl[l], ppc: ppck,
dIinst: dInst, epoch: epochl[l],
rVall: rVall, rVal2: rVal2});
- sb.insert (dInst.rDst); pc[l] <= ppcF; end
endrule

rule doExecute;
...the same as before ...

if (x.ppc !'= nextPC) begin pc[0] <= elnst.addr;
epoch[0] <= !epoch[0]; end
end d2e.deq; sb.remove;
endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-5

Connecting 2-Stage-pipeline to
Reg/Res memory dokxecute < doFetch

rule fe ;
iMem.enqg(pc[1l]): RZQ/RZS memory

let ppcF = nap(pc(l]); pcl[l] <= ppcF ;

N

f2d.eng(Fetch2Decode (pc:pc[l], ppc:ppcF, epoch:epoch([1]))

endrule What is the

rule decode; d + f :
let inst = iMem.first; let x = f2d.first; advan age 0 nap i
fetchl vs fetch2?

let dInst = decode(inst);

let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src?2);
if (!stall) begin We can also
...fetch register values dr'op the
d2e.enqg(Decode?2Execute{pc: .pc, C: .ppc, . . ;
al (pe: x.pc, PPC: X-PPC/ inatpuction if
dIinst: dInst, epoch: x.epoch,
epoch has
rVall: rVall, rVal2: rVal2}); h d
sb.insert (dInst.rDst); iMem.deqg; f2d.deqg end ¢ ange
endrule e
must be done only
if not stalling

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-6

Dropping instructions

rule decode;
let inst = iMem.first; let x = f2d.first;
if (epoch[?] != x.inEp) begin iMem.deqg; f2d.deq end

N

//dropping wrongpath instruction
else begin

let dInst = de
let stall = sb.se
if(!stall) begin
...fetch register valu
d2e.enqg(DecodeZ2Execute{pc: x.pc, ppc: X.ppc,

de (inst) ;
chl (dInst.srcl) || sb.search2 (dInst.src?2);

dIinst: dInst, epoch: x.epoch,
rvVall: rVall, rVal2:\rVal2?});
sb.insert (dInst.rDst); iMem.€eqg; f2d.deg end end

endrule
Are both O and 1 correct?

Yes, but 1 is better

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-7

Data access in the execute
stage

Execute rule has to be split too in order to
deal with multicycle memory system

How should the functions of execute be split
across rules
= call exec
= initiate memory ops, wait for load results
= redirection
m register update
s scoreboard updates

N

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-8

Transforming the Execute

rule — first attempt

-
b rule doExecute;
[let x = d2e.first;
\§@ let dInstE = x.dInst; let pcE = x.pc; let inEp = x.epoch;
*39 — let rVallE = x.rVall; let rVal2E = x.rValZ2z;
v if (epoch == inEp) begin
- let eInst = exec(dInstE, rVallE, rValZ2E, pcE);
p if (eInst.iType == Ld) elInst.data <-
*§\(§ﬂ’_ dMem.reqg (MemReg{op:Ld, addr:elnst.addr, data:7?});
@Qw& else if (eInst.iType == St) let d <-
< - dMem.reqg (MemReg{op:St, addr:elnst.addr, data:elInst.data})
if (isValid(eInst.dst))
é#- rf.wr (fromMaybe (?, elInst.dst), elnst.data);
.x§9—< let nextPC = elInst.brTaken ? elInst.addr : pcE + 4;
sﬁ‘ if (x.ppc !'= nextPC) begin pc[0] <= elInst.addr;
epoch[0] <= !epoch[0]; end
— end
d2e.deqg; sb.remove;
endrule

October 18, 2017

http://csg.csail.mit.edu/6.175

.
4

L14-9

Execute rule: first attempt

rule execute;
let x = d2e.first;

let dInstE = x.dInst; let pcE = x.pc; let inEp = x.epoch;
let rVallE = x.rVall; let rVal2E = x.éiiiaL///fwhy?

if (epoch[l] != inEp) begin sb.remove; end

N

else begin
let eInst = exec(dInstE, rVallE, rVal2E, pcE);
e2w.enqg (Exec2WB(eInst:elnst,pc:pcE, epoch:inkEp));

i1f (eInst.iType == Ld)

dMem.eng (MemReg{op:Ld, addr:elnst.addr, data:?});
else if (eInst.1Type == St) begin

dMem.eng (MemReg{op:St, addr:elnst.addr,
data:eInst.data}); end
end
d2e.deq;

endrule
October 18, 2017 http://csg.csail.mit.edu/6.175 L14-10

Writeback rule first attempt

rule writeback;
let x = e2d.first; let pcE=x.pc;
let eInst=x.elInst; let inEp = x.epoch;
if (epoch[0] = inEp) begin
if (isValid(eInst.dst)) begin
let data = eInst.iType==Ld ? dMem.first: elInst.data;
rf.wr (fromMaybe (?, elInst.dst), data);

N

end

if (eInst.iType == Ld) dMem.deq;

let nextPC = elInst.brTaken\ ? elInst.addr : pcE + 4;

if (x.ppc != nextPC) begin pc[0] <= elnst.addr;

epoch[0] <= lepoch[0]; end

end

sb.remove; notice, we have assumed that

e2w.deq St does not get a response
endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-11

Problems with the first
attempt

L/
sb.remove is being called from both execute
and writeback
= out of order removals - correctness
= Simultaneous removals — concurrency —

St that was initiated in execute could be
invalidated in writeback (wrong path
instruction); consider a branch followed by a

N

store ?
= 3 store, once it is sent to the memory, cannot I°
recalled =t

Let us move redirection from writeback to
execute and sb.remove from execute to
writeback

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-12

Dropping vs poisoning an
iInstruction

j@ Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned

Drop: If the wrong path instruction has not
modified any book keeping structures (e.qg.,
Scoreboard) then it is simply removed

Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)

Subsequent stages know not to update any
architectural state for a poisoned instruction

N

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-13

Execute rule: second attempt

N

L

epoch[1] would create a
rule execute;

1 = | combinational cycle and make
et x - dzeM the rule invalid
if(!= inEp) begin e2w.eng(Invalid) wq; end

else begin pOiSOhihg!
let eInst = exec(dInstE, rVallE, rValZ2E, pcE);
if (eInst.iType == Ld)

dMem.enqg (MemReg{op:Ld, addr:elInst.addr, data:?});
else if (eInst.iType == St) begin

dMem.enqg (MemReg{op:St, addr:elInst.addr,
data:eInst.data}); end
let nextPC = elInst.brTaken ? elnst.addr : pcE + 4;
if (x.ppc !'= nextPC) begin pc[0] <= elInst.addr;

epoch[0] <= !epoch[0]; end
e2w.enq(Valid Execl2Exec?2 (eInst:elnst, pc:pcE));

d2e.deqg;
end
endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-14

Writeback rule second attempt

rule writeback;
let vx = e2w.first;
if (vx matches tagged Valid .x) begin
let pcE=x.pc; let elInst=x.elnst;
if (isValid(eInst.dst)) begin
let data = eInst.iType==Ld ? dMem.first: elInst.data;
rf.wr (fromMaybe (?, elInst.dst), data);

N

end
if (eInst.iType == 1Ld) dMem.deq;
end
sb.remove; e2w.deq;
endrule

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-15

Observations

L/
sb.remove is called only from exec2 ==> no
concurrency issues

Redirection is done from execl ==> better for
performance

St was initiated in execl and cannot be
squashed by any older instruction in exec2 or
the execl2exec?2 fifo

stall will work correctly in fetch2 because the
scoreboard is not updated until the reg-file is
also updated

N

)

Q)

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-16

Memory Hierarchy

Small,
CPU Big, Slow Memory
Fast Memory l—+ !
RegFi/e<::> SRAM y DRAM

holds frequently used data

N

size: RegFile << SRAM << DRAM 5
latency: RegFile << SRAM << DRAM why:
bandwidth: on-chip >> off-chip

On a data access:
hit (data e fast memory) = low latency access
miss (data ¢ fast memory) = long latency access (DRAM)

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-17

Managing of fast storage

j@ User managed Scratchpad memory

= ISA is aware of the storage hierarchy; separate
instructions are needed to access different storage
levels

Automatically managed Cache memory:

= programmer has little control over how data moves
between fast and slow memory

= Historically very successful (painless for the
programmer)

N

October 18, 2017 http://csg.csail.mit.edu/6.175

L14-18

Why do caches work

J@ Temporal locality

= if @ memory location is referenced at time t then there
is very high probability that it will be referenced again
in the near future, say, in the next several thousand
instructions (frequently observed behavior)
* working set of locations for an instruction window

Spatial locality

= if address x is referenced then addresses x+1, x+2
etc. are very likely to be referenced in the near future
+ consider instruction streams, array and record accesses

N

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-19

Inside a Cache

p
N2 cache line

tag data

Data| Data i
| 100 lealacal | | ------- . Data from locations
valid— Syie Byl 100, 101, ...
bit 304 0 | | I |
6848

A cache line usually holds more than one word to
= exploit spatial locality
= transport large data sets more efficiently

= reduce the number of tag bits needed to identify a
cache line

October 18, 2017 http://csg.csail.mit.edu/6.175 L14-20

