X
“"Constructive Computer Architecture

Tutorial 2

Debugging BSV and
Typeclasses.

/4

10/8/2017 http://csg.csail.mit.edu/6.175 TO1-1

Outline

N

#Debugging BSV code
#®#Typeclasses and functional style.

And maybe conflict-Freeness

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-2

Software Debugging

Print Statements

L

N

See a bug, not sure what causes it
Add print statements

Recompile

Run

Still see bug, but you have narrowed it down
to a smaller portion of code

Repeat with more print statements...

Find bug, fix bug, and remove print
statements

10/8/2017 http://csg.csail.mit.edu/6.175

LO3-3

BSV Debugging
Display Statements

N

See a bug, not sure what causes it
Add display statements

Recompile

Run

Still see bug, but you have narrowed it down
to a smaller portion of code

Repeat with more display statements...

Find bug, fix bug, and remove display
statements

10/8/2017 http://csg.csail.mit.edu/6.175

LO3-4

BSV Display Statements

N

#®The $display() command is an
action that prints statements to
the simulation console

®Examples:
m Sdisplay(“Hello World!”);

m Sdisplay (“"The value of x is %d”, Xx);

\

m Sdisplay (“"The value of y is V%,
fshow(y)) s

10/8/2017 http://csg.csail.mit.edu/6.175

LO3-5

Ways to Display Values

Format Specifiers

L

N

#%d - decimal
#®#9%0Db — binary

#%0 - octal

#9%h - hexadecimal

#9%00d, %0b, %00, %0h

» Show value without extra whitespace
padding

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-6

Ways to Display Values

fshow

L

A
\

fshow is a function in the FShow typeclass

[t can be derived for enumerations and
structures

Example:

typedef emun {Red, Blue} Colors deriwving (FShow) ;
Color ¢ = Red;

Sdisplay (“c is “, fshow(c));
Prints “c is Red”

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-7

Two big families of bugs

N

Functional bug

s E.g "a*d+b*c” instead of "a*d-b*c”
Liveness bug

s Scheduling issue

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-8

Functional bug

N

module mkTest (Det) ;

method ActionValue# (Data) det (Data a,Data
b,Data c¢,Data c¢);

let res = a*d + b*c;
$display (“%d %d %d %d %$d”, a,b,c,d, res);
return res;
endmethod
Endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-9

Method for debugging
liveness

N

#Add $display("*Name rule”) in
every rule and method of your
design.
= YOou get to see what is firing.

* There are probably not firing when they
should:

s Think about the implicit and explicit guards
that would prevent a rule/method to fire.

s If thinking is not enough?

10/8/2017 http://csg.csail.mit.edu/6.175 L03-10

Method for debugging
liveness

N

#If thinking is not enough:

= YOu can add an extra rules that just
print the explicit guards of all the
methods

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-11

Method for debugging
liveness

N

module mkTest (Det) ;
[...]

rule problematic (complexExpression);

Sdisplay (“"Problematic fire”);
[..] //Other stuff (methods called etc..)

endrule

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 LO03-12

Method for debugging
liveness

N

module mkTest (Det) ;

[...]
rule debugRule;

$display (“Guard is %$b”,complexExpression);

endrule;

rule problematic (complexExpression);
Sdisplay (“Problematic fire”);
endrule

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 L03-13

Liveness

N

#If the guard is false when you
expected it to be true:

= Well you just found your problem

#If the guard is true:

s Check the implicit guards with the
same technique:

10/8/2017 http://csg.csail.mit.edu/6.175 L03-14

Method for debugging
liveness

N

module mkTest (Det) ;

[...]
rule debugRule;

$display (“Guard is %$b”,complexExpression);

endrule;

rule problematic (complexExpression);
Sdisplay (“"Problematic fire”);
[...]
submodulel . .methl () ;

endrule

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 L03-15

Method for debugging
liveness

N

module mkSubmodulel (Submodulel) ;
rule debugRule;

Sdisplay (“Guard is %b”,complexExpression);
endrule;

method Action methl ()if (complexExpression);
[...]

endmethod

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 L03-16

Method for debugging
liveness

N

#Repeat until you are confident that
the problem does not come from a
false guard:

s Reminder: registers can always be
written and read so they don't pose
problem for guards.

= Usually you don't have to do that
recursively because you already know
that your submodules are corrects.

10/8/2017 http://csg.csail.mit.edu/6.175 LO3-17

All my guards are good,
still it does not work

10/8/2017

® 0O

http://csg.csail.mit.edu/6.175

LO3-18

All my guards are good,
still it does not work

#Scheduling problem: an other rule
is preventing the one I want to
fire.

10/8/2017 http://csg.csail.mit.edu/6.175 L03-19

All my guards are good,
still it does not work

N

module mkTest () ;
[...]

rule rl;

[...]
myfifo.eng(l);

endrule
rule r2;
[...]
myfifo.eng(2);
endrule

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 L03-20

N

module mkTest () ;
[...]

rule rl;

[...]
X <=y

endrule

rule r2;

[...]

Final note;

be careful

Don’t display value within a
rule that are not already read
by that rule

Sdisplay (“x 1s” ,x);

y <=2;
endrule

endmodule

10/8/2017

http://csg.csail.mit.edu/6.175

LO3-21

Typeclasses

N

10/8/2017 http://csg.csail.mit.edu/6.175 LO03-22

Typeclasses

#® A typeclass is a group of functions that can be defined
on multiple types

#® Examples:

N

typeclass Arith# (type t);
function t \+(t x, t y);
function t \-(t x, t y);
// ... more arithmetic functions
endtypeclass

typeclass Literal# (type t);
function t fromInteger (Integer x);
function Bool inliteralRange (t target,

Integer literal);
endtypeclass

10/8/2017 http://csg.csail.mit.edu/6.175 T02-23

Instances

N

Types are added to typeclasses by creating
instances of that typeclass

instance Arith# (Bit# (n)) ;
function Bit# (n) \+(Bit#(n) a, Bit#(n) b);
return truncate(csa(a,b));
endfunction
function Bit# (n) \-(Bit#(n) a, Bit#(n) b);
return truncate(csa(a, -b));

endfunction
// more functions...
endinstance
10/8/2017 http://csg.csail.mit.edu/6.175

T02-24

Provisos

N

Provisos restrict type variables used in
functions and modules through typeclasses

If a function or module doesn’t have the
necessary provisos, the compiler will throw an
error along with the required provisos to add

The addl1 function with the proper provisos is
shown below:

function t addl (t x) provisos (Arith#(t), Literal#(t));
return x + 1;
endfunction

10/8/2017 http://csg.csail.mit.edu/6.175 T02-25

Special Typeclasses for
Provisos

N

There are some Typeclasses defined on
numeric types that are only for provisos:

#® Add# (nl, n2, n3)
s asserts that nl + n2 = n3

Mul#(nl, n2, n3)
m asserts that nl1 * n2 = n3

An inequality constraint can be constructed

using free type variables since all type
variables are non-negative
s Add#(nl, a, n2)

+ asserts that nl + _a = n2

+ equivalent to nl1 <= n2 if _a is a free type variable

10/8/2017 http://csg.csail.mit.edu/6.175 T02-26

The Bits Typeclasses

N

The Bits typeclass is defined below

function Bit# (tSz) pack(t x);
function t unpack (Bit# (tSz) x);
endtypeclass

This typeclass contains functions to go
between t and Bit#(tSz)

mkReg(Reg#(t)) requires t to have an
instance of Bits#(t, tSz)

10/8/2017 http://csg.csail.mit.edu/6.175

typeclass Bits# (type t, numeric type tSz);

T02-27

Custom Bits#(a,n) instance

N

typedef enum { red, green, blue } Color deriving (Eq); // not bits

instance Bits#(Color, 2);
function Bit#(2) pack(a x);

if(x == red) return ©;
else if(x == green) return 1;
else return 2;

endfunction

function Color unpack(Bit#(2) y)
if(x == @) return red;
else if(x == 1) return green;
else return blue;

endfunction

endinstance

10/8/2017 http://csg.csail.mit.edu/6.175

T02-28

Typeclasses Summary

N

Typeclasses allow polymorphism across
types

= Provisos restrict modules type parameters
to specified type classes

Typeclass Examples:

s EQ: contains == and !=

= Ord: contains <, >, <=, >=, etc.

s Bits: contains pack and unpack

= Arith: contains arithmetic functions
= Bitwise: contains bitwise logic
|

FShow: contains the fshow function to
format values nicely as strings

10/8/2017 http://csg.csail.mit.edu/6.175 T02-29

Conflict-freeness.

Or be careful for what you
wish

/4

10/8/2017 http://csg.csail.mit.edu/6.175 L03-30

Up/Down Counter
Conflicting design

N

module mkCounter (Counter);

Reg# (Bit# (8)) count <- mkReg(0);

method Bit# (8) read;
return count;
endmethod

method Action increment;

count <= count + 1;
endmethod $\\\\\\\\\\\\\ e e s
Can't fire in the

method Action decrement;
same cycle

count <= count - 1, °~
endmethod
endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 T02-31

Concurrent Design
A general technique

L

N

Replace conflicting registers with EHRs
Choose an order for the methods

Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

Method described in paper that
introduces EHRs: “The Ephemeral History
Register: Flexible Scheduling for Rule-
Based Designs” by Daniel Rosenband

10/8/2017 http://csg.csail.mit.edu/6.175 T02-32

Up/Down Counter

Concurrent design: read < inc < dec

L

N

module mkCounter (Counter);
Ehr# (3, Bit#(8)) count <- mkEhr (0);

method Bit# (8) read;

return count|[0];

endmethod
method Action increment; These two methods

count[1] <= count[1] + 1: «—— €an use the same
endmethod port

method Action decrement;
count[2] <= count[2] - 1;
endmethod
endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 T02-33

Up/Down Counter

Concurrent design: read < inc < dec

N

L

module mkCounter (Counter);

Ehr# (2, Bit#(8)) count <- mkEhr (0);

2 EHR ports now

return count|[0];
endmethod
method Action increment;
count[0] <= count[0] + 1;
endmethod

method Action decrement;

count[1l] <= count|[l] - 1;
endmethod
endmodule
10/8/2017 http://csg.csail.mit.edu/6.175

method Bit#(8) read; This design only needs

T02-34

Conflict-Free Design
A more or less general technique

L

N

Replace conflicting Action and ActionValue
methods with writes to EHRs representing method
call requests

= If there are no arguments for the method call, the
EHR should hold a value of Bool

= If there are arguments for the method call, the EHR
should hold a value of
Maybe# (Tuple2# (TypeArgl, TypeArg2)) Or
something similar
Create a canonicalize rule to handle all of the
method call requests at the same time

¢ Reset all the method call requests to False or
tagged invalid at the end of the canonicalize rule

#® Guard method calls with method call requests

= If there is an outstanding request, don’t allow a
second one to happen

10/8/2017 http://csg.csail.mit.edu/6.175 T02-35

Up/Down Counter

Conflict-Free design — methods

L

N

module mkCounter (Counter);
Reg# (Bit# (8)) count <- mkReg(O0);
Ehr# (2, Bool) inc req <- mkEhr (False);
Ehr# (2, Bool) dec req <- mkEhr (False);
// canonicalize rule on next slide
method Bit# (8) read = count;

method Action increment if(!inc reqgl[O0]);

inc req[0] <= True;
endmethod
method Action decrement if (!dec req[0]);
dec req[0] <= True;
endmethod
endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 T02-36

Up/Down Counter

Conflict-Free design — canonicalize rule

N

L

module mkCounter (Counter);

// Reg and EHR definitions on previous slide
rule canonicalize;
if (inc reqg[l] && !dec reqg[l]) begin

count <= count+1l;

end else if (dec reg[l] && !inc reqg[l]) begin
count <= count-1;

end
inc-regll]. <= False;
dec reqg[l] <= False;

endrule

// methods on previous slide

endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 T02-37

Well it's morally broken

N

module mkTest () ;
Reg# (Bit# (8)) r <- mkReg(0);

let myCounter <- mkCounter();

rule rl; We can schedule read
$display (“r”); after increment, but read
myCounter.increment () ; will always see old Values
endrule because it is scheduled
rule r2: before canonicalize.

r <= myCounter.read() ;
endrule
rule display;
Sdisplay(r);
endrule
endmodule

10/8/2017 http://csg.csail.mit.edu/6.175 L0O3-38

N

Fix: but read< {inc,dec}.

module mkCounter (Counter);
Reg# (Bit# (8)) count <- mkReg(0);
Ehr# (2, Bool) inc req <- mkEhr (False);
Ehr# (2, Bool) dec reqg <- mkEhr (False);

// canonicalize rule on next slide

method Bit#(8) read if(!inc reql[0] &&
ldec reql0O]) = count;

method Action increment 1f(!inc req([0]);

inc req[0] <= True;
endmethod
method Action decrement 1f(!dec req[0]);

dec req[0] <= True;
endmethod

10/8/2017 http://csg.csail.mit.edu/6.175

Interesting questions

N

Is it possible to write a CF counter?

Is it possible to give an algorithm
that will always make a module
conflict free, but a non broken one.

10/8/2017 http://csg.csail.mit.edu/6.175 L03-40

