
Bluespec SystemVerilog Known Problems and Solutions

Revision: 17 January 2012

Copyright c© 2000 – 2012 Bluespec, Inc. All rights reserved

1

Contents

Table of Contents 2

Problem #001: Mutually-exclusive uses of port-limited resources may be allocated
inefficiently 4

Problem #002: Changing compiler switches does not force recompilation when
required 4

Problem #005: Methods are forced to be more urgent than rules 5

Problem #006: Bit selection out of range (with a large positive index) 5

Problem #007: Generation of C or Verilog from a Bluespec module hangs 6

Problem #008: Compiler expects the proviso Add#(a,b,TAdd#(a,b)) or Mul#(a,b,TMul#(a,b)) 7

Problem #009: Type-checking large case statements can take forever 7

Problem #011: Proviso errors when deriving a class for types whose subtypes do
not have instances of that class 8

Problem #014: Typechecking hangs 9

Problem #017: Module instantiation required immediately after interface instanti-
ation 9

Problem #020: Type error when applying unary bitwise operators on non-bit type
mentions strange function name 9

Problem #021: Wrong number of arguments to a type constructor manifests as
unbound type constructor error 10

Problem #023: Sub-vector assignment may take a long time to synthesize 10

Problem #024: VCD differences between Bluesim and Verilog simulation 11

Problem #025: C++ compiler bugs encountered while building a Bluesim model 12

Problem #026: Missing or unhelpful positions in error messages for rules or methods
with multiple clocks or resets. 12

Problem #027: Bluesim may produce a floating point exception in the case of
division-by zero 14

Problem #028: C++ compilation can take an unreasonably long time using g++
version 4.2 14

2

Problem #029: Rule uses methods which have a rule that executes between them 15

Problem #030: Two rules use methods which have a rule that executes between
them 17

Problem #031: Bluesim switches have been removed 20

Problem #032: Unexpected use of uninitialized value error (G0028) 23

Problem #033: Maximum number of function unfolding steps exceeded error (G0024) 24

Problem #034: BSV designs targeting block RAMs on Virtex devices 25

Index 28

3

Introduction

This document records known issues in the Bluespec SystemVerilog compiler and how they can be
worked around.

Problem #001: Mutually-exclusive uses of port-limited re-
sources may be allocated inefficiently

Example

Assume a ROM that supplies a single-ported read method that is used in the following rule (to
assign registers x and y):

rule broken (True);
if (p)
x <= rom.read(addr_a);

else
y <= rom.read(addr_b);

endrule

The compiler will not deduce that uses of the read method in separate if branches are mutually
exclusive and compilation will fail with a resource allocation error. It is also possible (when mutually
exclusive uses are in separate rules) for inefficient schedules to be generated, though this is less likely.

Solution

Replace the the mutually exclusive ROM uses with a single, conditionally controlled use as follows
(assuming the output of the read method has type Bit#(16)):

rule working (True);
Bit#(16) tmp = p ? rom.read(addr_a) : rom.read(addr_b);
if(p)
x <= tmp;

else
y <= tmp;

endrule

Common subexpression elimination should normally handle any repeated predicates (though it may
make the code simpler to factor that out into a local assignment as well).

Problem #002: Changing compiler switches does not force
recompilation when required

Example

When using the “-u” flag, the compiler only checks the dates of the generated files. However, the
source file is not the only source of input for generating an object file. The command-line compiler
flags also impact the generation. Recompilation should check not only whether the source file has

4

changed, but whether command-line generation flags have changed. Currently, this check is not
performed.

This command compiles the file Foo.bsv:

% bsc -u -verilog aggressive-conditions Foo.bsv

Changing the compilation flag ought to recompile Foo.bsv, but it does nothing, because the source
file has an earlier date than the object file:

% bsc -u -verilog -no-aggressive-conditions Foo.bsv

Solution

Removing the “-u” flag will force compilation regardless of the state of any existing files. However,
it won’t recompile any imported files.

Removing all the compiler-generated intermediate files will force recompilation of everything:

% rm *.bo
% bsc -u ...

See the Bluespec SystemVerilog User Guide sections on Importing other packages and Automatic
recompilation for more information about the -u flag.

Problem #005: Methods are forced to be more urgent than
rules

The scheduler considers methods to be the most urgent things in a module and allows them to
block rules whenever they are enabled (as part of implementing the standard interface contract - if a
method that is ready is enabled, it will be executed). Sometimes it is desirable to provide a method
that is less urgent than an internal rule.

Solution

Change the ready signal of the method so that it does not overlap with the enable condition of
the desired more urgent rule. This can usually be achieved by anding !p (where p is the explicit
condition of the relevant rule) with the rest of the method’s ready signal.

Problem #006: Bit selection out of range (with a large posi-
tive index)

In certain cases, the compiler ignores the sign of constants used in array and bit extraction. This
means that out-of-range errors related to negative constants can appear as out-of-range errors in-
volving large positive constants (the twos-complement representation of the negative number).

5

Solution

When an out-of-range error involving a large positive constant appears (particularly constants that
are close to 232), look for negative arguments to bit or array extraction (which might be caused by
negative literals or loops that execute beyond their safe boundaries).

One common way for loops to execute beyond their safe boundaries is if their termination condition
involves anything dynamic (e.g. a value read out of a register or a method parameter). This is
because the compiler must be able to statically evaluate a termination condition to True before it
can stop elaborating a loop. When a loop termination condition only involves static (i.e. compile-
time) values this is not a problem. When the termination condition involves a dynamic value,
however, the compiler must prove that the termination condition is irrelevant to the final result in
order to stop unrolling the loop (which is a more significant obligation that cannot always be met
when it is expected).

Problem #007: Generation of C or Verilog from a Bluespec
module hangs

This can be caused by a number of issues (including):

• an infinite loop in statically elaborated code (when the -steps options is used)

• an explosion in the number of rules that slows down the scheduler

• complex predicates which take a long time in disjointness testing

Solution

If a code generation is taking a long time and you suspect the compiler is hanging, the first thing
to do is to rerun the compiler with the -v and -show-stats options to see what phases are taking
a long time in the compiler and statistics about intermediate data (e.g. the number of rules and
internal definitions.

If the compiler is taking a long time in the ”typecheck” stage, this is probably being caused by
certain constructs (such as large, complex case statements) that are slow to typecheck.

If the number of rules or internal definitions is exploding that is the likely cause of the problem.
Large numbers of rules can be caused by generation constructs that create rules or by use of the
-expand-if flag when there are a large number independent if statements in a single rule. The
solution in this case is to change your program and/or your use of the -expand-if flag so the
number of rules does not explode.

If the number of internal definitions is exploding this can also be caused by the default inlining
of combinatorial functions. Complex combinatorial function (particularly functions that consist of
large case statements) can create many local definition if they are inlined and not simplified. In that
case, one possible solution is to mark any complex combinatorial functions with the “(* noinline
*)” attribute so they are compiled separately.

If the compiler is taking a long time in the scheduling phase and the number of rules is not large,
the compiler is probably taking a long time in disjointness testing. The easiest way to confirm this
is to rerun the compile with the -scheduler-effort flag to a low value (or 0 to disable disjointness
testing altogether). If the compile now gets through the scheduling phase, then the problem is in
disjointness testing. Making the predicates of your rules simpler might help that.

6

Problem #008: Compiler expects the proviso Add#(a,b,TAdd#(a,b))

or Mul#(a,b,TMul#(a,b))

Example

The compiler may infer that the proviso Add#(a,b,c) is needed (or similarly for Mul). If types
a and b are known (either because they are specific types or because they are variables bound in
the base type) but the type c is not known, then the compiler should know how to add the known
types together to determine the unknown, so the proviso should not be required. However, instead
of discarding the proviso, the compiler actually reports that Add#(a,b,TAdd#(a,b)) is needed (or
similar for Mul).

Solution

Make the compiler happy by adding a proviso. Either add Add#(a,b,TAdd#(a,b)), or add Add#(a,b,c)
where variable c is a fresh variable which is not named in the base type.

Problem #009: Type-checking large case statements can take
forever

Symptoms

If the compiler takes a long time in the typechecking phase, it may be due to a case statement with
many clauses (32+) that introduces provisos in each arm. Due to limitations in the way that case
statements are type checked, a case statement with 32 such clauses may take a minute or a few
minutes. A case statement with 64 such clauses may take several minutes to forever.

Workarounds

If you encounter this problem, try reducing the number of introduced provisos or reducing the number
of clauses in the case-statement. If the case-statement is implementing an algorithmic function or
procedure, try rewriting it as a function.

Provisos are typically introduced by using numbers (0, 1’b0, etc), using bit-concatenation, using
array indexing (arr[0]), and by calling functions which carry provisos. These provisos are typically
resolved by the context (e.g., the size of the number 0 is determined by the signal which is assigned
that value). Type checking of case statements is hindered if the proviso is not satisfied inside the
individual clauses. Thus, with many clauses, a large set of provisos is generated.

One way to resolve provisos inside clauses is to add more explicit types. These act as firewalls for
the typechecker by fixing down the types of values. For example, in this contrived example:

case (x)
4b0000: begin

x = {y,z};
end

endcase

the size of the concatenation can be fixed by introducing a type:

7

case (x)
4b0000: begin

Bit#(8) tmp = {y,z};
x = tmp;

end
endcase

Another way to remove provisos from the case arms is to declare variables of fixed size outside of
the case statement. For example, this code:

case (x)
4b0000: begin

x = f(arr[0]);
end

endcase

can be rewritten as:

Bit#(8) val0 = f(arr[0]);
case (x)
4b0000: begin

x = val0;
end

endcase

Problem #011: Proviso errors when deriving a class for types
whose subtypes do not have instances of that class

Example

The following example fails becase it attempts to derive the Bits class for a type whose subtypes
(here Integer) are not members of the Bits class:

typedef struct { Integer x; Integer y; } Coord deriving(Bits);

module mkTest (Empty);
Reg#(Coord) c();
mkRegU c_reg(c);

endmodule

The error message that results is:

"Test.bsv", line 3, column 8: (T0031) Error:
The provisos for this expression could not be resolved because there are no
instances of the form:
Prelude::Bits#(Test::Coord, _tctyvar1007)

The proviso was implied by expressions at the following positions:
"Test.bsv", line 5, column 3

Solution

If possible, add deriving to the subtype or define an instance of the class for the subtype.

This may not always be possible, however. The Integer type can never have an instance of the
Bits class. Thus, any data type which contains an Integer cannot have Bits derived for it.

8

Problem #014: Typechecking hangs

If typechecking hangs, it may be due to an infinite loop in the user’s code which the compiler
currently does not detect.

The SizeOf type function can be used inside a type to return the size of a type in bits. This function
only works if a bit-vector interpretation for the type exists. The function finds the size by looking
for an instance of the Bits class for the given type.

Thus, if the user calls SizeOf while defining an instance of Bits for that type, he has created a
circular dependency. The compiler will loop forever trying to determine the size.

Solution

Don’t use SizeOf(t) inside the Bits definition for type t.

Problem #017: Module instantiation required immediately
after interface instantiation

Symptoms

Code which instantiates a module separately from its interface instantiation causes errors; e.g.,

module foo();
Reg#(Bool) r_ifc();
int x;
mkRegU r_inst(r_ifc);
...

endmodule

The known error caused by this is a parse error (P0005), reported at the declaration following the
interface (e.g., above, ”int x;”).

Workarounds

Instantiate modules immediately after their interfaces; e.g., rewrite the code above as

module foo();
Reg#(Bool) r_ifc();
mkRegU r_inst(r_ifc);
int x;
...

endmodule

Problem #020: Type error when applying unary bitwise op-
erators on non-bit type mentions strange function name

Example

The unary bitwise operators &, |, ^, and their negated forms with ! are represented in the compiler as
functions with names reduceAnd, reduceOr, reduceXor, reduceNand, reduceNor, and reduceXnor.

9

If you observe a type error that refers to this name, it is referring to an incorrect application of the
associated unary operator.

For example, this message:

"Test.bsv", line 9, column 12: (T0020) Error:
Type error at:
Prelude::reduceOr

Expected type:
function Prelude::Bool f(c x1)

Inferred type:
function a#(1) f(a#(b) x1)

is informing the user that the operator | is being being used to produce a Boolean value, when in
fact it returns a single bit.

Problem #021: Wrong number of arguments to a type con-
structor manifests as unbound type constructor error

If an enumerated type or union tag is applied to two or more arguments, an error will be reported
about an unbound type constructor. The constructor name will be the type name followed by the
tag name, with a non-ASCII center-dot character separating the two. The position of the error
correctly points to the location where the constructor is applied to too many arguments.

Example

The following code:

typedef enum { Red, Blue, Green } Color;
Color c1 = Red;
Color c2 = Red(True,False);

produces this error:

"EnumTwo.bsv", line 5, column 12: (T0007) Error:
Unbound type constructor ‘EnumOne.Color\uffffRed’

Problem #023: Sub-vector assignment may take a long time
to synthesize

Example

The following code:

Reg#(bit[511:0]) r <- mkRegU;

...

r[255:0] <= 256’hdeadbeef;

10

takes a long time to synthesize. BSC eventually stops, producing an error message similar to

"Prelude.bs", line 794, column 0: (G0024) Error:
The number of function unfolding steps has been exceeded when unfolding
‘Prelude.map1’. Use flag ‘‘-steps N’’ to set the number of steps. Current
value is 50000.

This applies to assignments to bit vectors as well as to vectors of other types, but is insignificant
when the size of the vector (512 in the example above) is small.

Solution

Employ concatenation instead of sub-vector updates:

r <= {r[511:256], 256’hdeadbeef};

Problem #024: VCD differences between Bluesim and Verilog
simulation

Bluesim is a Bluespec-level cycle-based simulator that is architecturally different than an event-based
RTL-level simulator. Some of these differences lead differences in VCD output when simulating the
same design. Architectural differences that lead to different VCD output include:

• Bluesim transfers no information when a method is not called. This means the argument
values dumped by Bluesim for method calls may not match the argument values dumped by
a Verilog simulation. In particular, no value changes will be dumped for the arguments of an
Action or ActionValue method, when the enable signal for that method is 0. For the same
reason, the data bits of an RWire output (and any values or value changes that depend on
those data bits) may differ between Bluesim and Verilog simulations for any cycle where that
RWire’s output is not valid.

• Bluesim does not evaluate local temporaries that are not required to compute the next cycle’s
state. This means Bluesim will not dump value changes for such local temporaries, even though
the value of those local temporaries might have changed (had they been computed).

Bluesim and Verilog VCDs and behavior also may differ when using unguarded (UG) FIFOs incor-
rectly. Since unguarded FIFOs do not enforce implicit conditions on the enq and deq methods, it is
possible to deq from an empty FIFO or enq onto a full FIFO. If either of those events occurs, the
subsequent behavior of a Bluesim or Verilog simulation is undefined (and the subsequent behavior,
including dumped value changes, is unlikely to match). This is not an issue with standard Bluespec
FIFOs because they enforce implicit conditions on enq and deq.

There are also some open bugs related to Bluesim VCD output:

• A bug in the Bluesim exit sequence can cause differences between Bluesim and Verilog VCD
output at the end of a simulation. This includes Bluesim dumping value changes for times
that are after the end of the simulation.

Workarounds

Work with the signals that will be the same between the two simulators. These include register
values, registered state-element outputs, method enables and CAN FIRE and WILL FIRE signals.

Do not rely Bluesim VCD output in the last cycle of a simulation (and ignore any value changes
dumped for times after the simulation ends).

11

Problem #025: C++ compiler bugs encountered while build-
ing a Bluesim model

Bluesim compilation generates C++ code for a BSV design and then uses the host system’s installed
C++ compiler to build the Bluesim executable. Bugs in the C++ compiler can trigger failures while
building the Bluesim executable or incorrect simulation results while running the generated Bluesim
model.

Bluespec recommends using a well-tested version of a mainstream C++ compiler, such as GNU
C++, and avoiding beta releases and compilers with known problems.

Known C++ Compiler Bugs

• GNU g++ compilers in the 3.3.x series generate an incorrect instruction sequence for some code
involving static inline functions when compiled with optimization level -O2 or greater. In rare
instances, this can lead to incorrect simulation results with Bluesim. Bluespec recommends
using GNU g++ 3.2.x or eariler, or upgrading to GNU g++ 3.4.6 or later to avoid this
problem. If GNU g++ 3.3.x must be used, Bluespec recommends using the environment
variable CXXFLAGS=-O1 to avoid triggering the bug in g++, though this may degrade
Bluesim simulation performance.

Workarounds

When a bug in the C++ compiler is encountered, the preferred remedy is to upgrade the compiler
to a version which does not exhibit the bug. If that is not possible for some reason, other techniques
may be useful:

• If the bug is triggered by a particular optimization or feature, it can be disabled using the
CXXFLAGS environment variable to pass options to the c++ compiler.

Problem #026: Missing or unhelpful positions in error mes-
sages for rules or methods with multiple clocks or resets.

BSC checks that each rule and method of a module is in a single clock domain. It is an illegal clock
crossing (error G0007) when a rule or method contains expressions from different clock domains.
Method calls on submodules are the only expressions which have associated clocks, so the error
message lists the method calls of the rule (or method), grouped by clock domain.

Similarly, BSC checks that a rule or method has at most one associated reset. If it calls methods
which are affected by multiple resets, then a warning is reported (G0043), and the method calls are
listed, grouped by their reset.

The messages try to be helpful by printing a position for the method calls. Unfortunately, the
positions are not always present or, when they are present, they point to the interface type declaration
where the method was declared. This is not a helpful position for debugging the clock crossing
problem.

Solution

Turn on the -cross-info flag when compiling to get more useful position information. The flag
causes the positions to generally point to the place in the offending rule or method where the method

12

was called. Sometimes it defaults to pointing to the instantiation of the module which provides the
method. In either case, these positions are an improvement.

With the -cross-info flag not enabled, the positions may not be helpful:

Error: "OCP_IFC.bsv", line 571, column 12: (G0007)
Reference across clock domain in rule ‘slaveToMaster’.
Method calls by clock domain:
Clock domain 1:
master.masterResp_putResponse at "OCP_IFC.bsv", line 248, column 23,

Clock domain 2:
slave.slaveResp_sThreadID at "OCP_IFC.bsv", line 342, column 52,
slave.slaveResp_sData at "OCP_IFC.bsv", line 340, column 51,
slave.slaveResp_sResp at "OCP_IFC.bsv", line 338, column 51,

By enabling the -cross-info flag, more meaningful positions may be provided:

Error: "OCP_IFC.bsv", line 571, column 12: (G0007)
Reference across clock domain in rule ‘slaveToMaster’.
Method calls by clock domain:
Clock domain 1:
master.masterResp_putResponse at "OCP_IFC.bsv", line 572, column 10,

Clock domain 2:
slave.slaveResp_sThreadID at "OCP_IFC.bsv", line 575, column 45,
slave.slaveResp_sData at "OCP_IFC.bsv", line 574, column 45,
slave.slaveResp_sResp at "OCP_IFC.bsv", line 71, column 6,

In some cases, no position is reported when -cross-info is not enabled:

Error: "Design.bsv", line 32, column 7: (G0007)
Reference across clock domain in rule ‘always_fire’.
Method calls by clock domain:
Clock domain 1:
t_out_data_reg.write

Clock domain 2:
t_in_data1.wget t_in_data1.whas

But the position is reported with -cross-info enabled:

Error: "Design.bsv", line 32, column 7: (G0007)
Reference across clock domain in rule ‘always_fire’.
Method calls by clock domain:
Clock domain 1:
t_out_data_reg.write at "Design.bsv", line 33, column 9,

Clock domain 2:
t_in_data1.wget at "Design.bsv", line 33, column 56,
t_in_data1.whas at "Design.bsv", line 23, column 9,

Positions may not be reported with error G0043, when there is more than one associated reset and
the -cross-info flag is not enabled:

Warning: "ResetCheckRule.bsv", line 8, column 6: (G0043)
Multiple reset signals influence rule ‘test’.

13

This can lead to inconsistent, non-atomic results when not all of these
signals are asserted.
Method calls by reset:
Reset 1:
r.read

Reset 2:
the_s.read

but with the -cross-info flag enabled more meaningful output is produced:

Warning: "ResetCheckRule.bsv", line 8, column 6: (G0043)
Multiple reset signals influence rule ‘test’.
This can lead to inconsistent, non-atomic results when not all of these
signals are asserted.
Method calls by reset:
Reset 1:
r.read at "ResetCheckRule.bsv", line 9, column 12,

Reset 2:
the_s.read at "ResetCheckRule.bsv", line 9, column 16,

Problem #027: Bluesim may produce a floating point excep-
tion in the case of a division-by zero

Bluesim may produce a floating-point exception in the case of a division-by-zero, even if the result
of that division is not used in the computation.

For example:

if (i == 0)
...

else
res <= 17 / i;

Can produce a floating-point exception when i is 0, even though no division result is being written
to res in that case.

Workaround

The workaround for now is to use a redundant test to prevent the divisor from being 0. Example:

if (i == 0)
...

else
res <= 17 / (i == 0 ? 1 : i);

This results in a division by 1 when i == 0. It prevents the exception in Bluesim and does not
change the model behavior, since the result of the division is not used when i == 0.

Problem #028: C++ compilation can take an unreasonably
long time using g++ version 4.2

In rare circumstances the C++ compilation stage of a Bluesim build can take an unreasonably long
time using g++ version 4.2.

14

Workaround

A workaround is to specify C++ compilation flags that lower the optimization level. This can be
done by setting the CXXFLAGS environment variable to:

-Wall -Wno-unused -O0 -g -D_FILE_OFFSET_BITS=64

This will result in a slower Bluesim simulation than when the normal optimization level is used.

Problem #029: Rule uses methods which have a rule that
executes between them

Sometimes the user may encounter an error which looks like this:

Error: "Test.bsv", line 7, column 9: (G0096)
The rule ‘RL_top_rule’ requires dynamic scheduling, which is not supported
by Bluesim. This is because the rule uses methods which have a rule that
executes between them in the static execution order of the separately
synthesized submodule. See entry #29 in the KPNS document for more
information and possible solutions.
The methods and the rules between them are as follows:
(sub.method1, sub.method2)
RL_sub_rule

This occurs when a design is taking advantage of the fact that separately-synthesized modules have
separate schedules. In an individual schedule, BSC insists that there be a static execution order of
all rules and methods. By static, we mean that if rule A and rule B fire together in the same clock
cycle, they will always fire in the same order.

When BSC generates separate Verilog modules, each module has its own schedule. There is no
longer one static ordering of rules, but two static orders. This opens up the possibility that rule A
from a parent module and rule B from a child module will execute in different orders in different
clock cycles, because there is no global scheduler which is enforcing the order.

Consider the following rule in a parent module:

rule top_rule;
if (p)

sub.method1;
else

sub.method2;
endrule

If inside the submodule sub, there is a rule sub rule which must execute after method1 but must
execute before method2, then the order of execution of that rule sub rule and the parent rule
top rule will change, depending on the dynamic value p. In some clock cycles top rule will
execute first and in some clock cycles sub rule will execute first.

Note that this feature only happens when the submodule is separately synthesized. If the synthesis
boundary is removed, then top rule and sub rule will conflict, because a static execution order
does not exist and BSC is forced to make the rules conflict.

15

This feature, of separately-synthesized modules, is supported by the Verilog which BSC generates.
However, since the behavior changes when the synthesis boundary is removed, it is recommended
that designers not rely on it.

Furthermore, Bluesim does not support this feature. So designs which are written this way cannot
be simulated with Bluesim.

When a design like this is compiled for the Verilog backend, a warning is issued and Verilog is
generated, but it is recommended that the user change his design. When the design is compiled for
Bluesim, BSC exits with an error.

Solutions

Removing the synthesis boundary is one way to avoid the problem, but it is unlikely to be satisfactory,
since the user likely does not want the rules to conflict. (And the user probably wants to retain the
boundary.)

Two real solutions exist. One is to split the parent rule. The other is to change the child module so
that there are no rules which must execute between the methods.

Splitting the parent rule

The parent rule can be split into two parts, one which calls method1 and one which calls method2.
This can be done automatically with the (*split*) attribute or it can be done manually by rewriting
the rule.

For example, automatically splitting would look like this:

rule top_rule;
(* split *)
if (p)

sub.method1;
else

sub.method2;
endrule

Manual splitting might look like this:

rule top_rule_p (p);
sub.method1;

endrule
rule top_rule_notp (!p);

sub.method2;
endrule

Removing the rule dependency in the child

The other option is to remove the execution order dependency of the rule (or rules) in the child
module. This can be done in two ways: either you force the rule to conflict entirely with one of
the methods (and thus it can never fire in the same cycle) or you remove the execution ordering so
that they can fire in a different order. This requires analyzing the schedule of the child module and
understanding why the rule has to execute after method1 and before method2.

For instance, the rule could be reading and writing state which is used by both methods. Removing
some method calls from the rule could prevent the execution order requirement. Another possibility

16

is that the rule can be split into two rules: one which shares state with method1 and one which
shares method2. However, this is not always possible.

The correct solution will depend on the specific design.

Problem #030: Two rules use methods which have a rule that
executes between them

This KPNS entry is similar to entry #029, except that instead of the method calls being inside one
rule they are in two rules.

The user may encounter any of the three following errors:

Error: "Test.bsv", line 30, column 9: (G0100)
The rules ‘RL_top_rule_1’ and ‘RL_top_rule_3’ require dynamic scheduling,
which is not supported by Bluesim. This is because the rules use methods
which have a rule that executes between them in the static execution order
of the separately synthesized submodule, but the rules must execute in the
opposite order according to the current module’s schedule. See entry #30 in
the KPNS document for more information and possible solutions.
The methods and the rules between them are as follows:
(sub.method2, sub.method1)
RL_sub_rule

The execution order path is as follows:
‘RL_top_rule_1’ -> ‘RL_top_rule_2’ -> ‘RL_top_rule_3’

The relationships were introduced for the following reasons:
(RL_top_rule_1, RL_top_rule_2)
execution order because of calls to rg12.write vs. rg12.read
(RL_top_rule_2, RL_top_rule_3)
execution order because of calls to rg23.write vs. rg23.read

Error: "Test.bsv", line 13, column 9: (G0101)
The rules ‘RL_top_rule_B’ and ‘RL_top_rule_A’ require dynamic scheduling,
which is not supported by Bluesim. This is because the rules use methods
which have a rule that executes between them in the static execution order
of the separately synthesized submodule, but some pairs must execute in one
order and some pairs must execute in the opposite order. See entry #30 in
the KPNS document for more information and possible solutions.
The methods and the rules between them which must execute in the forward
direction are as follows:
(sub1.method2, sub1.method1)
RL_sub_rule

The methods and the rules between them which must execute in the reverse
direction are as follows:
(sub2.method1, sub2.method2)
RL_sub_rule

Error: "Test.bsv", line 2, column 8: (G0116)
This module requires dynamic scheduling, which is not supported by Bluesim.
This is because there are two or more pairs of rules which use methods which
have a rule that executes between them in the static execution order of the
separately synthesized submodule, but, when these orderings are taken into

17

account, a loop results in the current module’s schedule. See entry #30 in
the KPNS document for more information and possible solutions.
The ordering loop is as follows:
‘RL_r4’ -> ‘RL_r1’ -> ‘RL_r2’ -> ‘RL_r3’ -> ‘RL_r4’

The relationships were introduced for the following reasons:
(RL_r4, RL_r1) execution order because of calls to rg2.write vs. rg2.read
(RL_r1, RL_r2)
execution order because of calls to methods with rules between them:
sub1.b vs. sub1.a

(RL_r2, RL_r3) execution order because of calls to rg1.write vs. rg1.read
(RL_r3, RL_r4)
execution order because of calls to methods with rules between them:
sub2.b vs. sub2.a

This occurs when a design is taking advantage of the fact that separately-synthesized modules have
separate schedules. In an individual schedule, BSC insists that there be a static execution order of
all rules and methods. By static, we mean that if rule A and rule B fire together in the same clock
cycle, they will always fire in the same order.

When BSC generates separate Verilog modules, each module has its own schedule. There is no
longer one static ordering of rules, but two static orders. This opens up the possibility that rule A
from a parent module and rule B from a child module will execute in different orders in different
clock cycles, because there is no global scheduler which is enforcing the order.

In KPNS entry #029, we explain that this can happen when a submodule has two methods between
which a rule must be executed. For example, inside the submodule sub, there is a rule sub rule
which must execute after method1 and must execute before method2. This normally enforces an
execution order that any rule in the parent module which calls method1 must execute before any
rule which calls method2. However, when two rules conflict or when the two rules have mutually
exclusive predicates, then the scheduler ignores any execution order between them, because it is
irrelevant — the two rules can never execute in the same cycle.

For example, consider these two rules:

rule top_rule_1 (!p);
sub.method2;
// other actions
$display(rg12);

endrule

rule top_rule_3 (p);
sub.method1;
// other actions
reg23 <= True;

endrule

These rules have mutually exclusive predicates, so the scheduler for the module is free to ignore any
execution order requirements between them, because they will never execute in the same cycle.

However, if we add a third rule into the mix, which can execute sometimes with rule top rule 1
and sometimes with top rule 3, then an execution order is enforced by transitivity. For example:

rule top_rule_2;
reg12 <= rg23;

endrule

18

This rule enforces an execution order (top rule 1 before top rule 2 before top rule 3) which is in
the opposite direction of the order enforced by calls to method1 and method2. Dynamic scheduling
occurs as a result: When top rule 1 executes, rule sub rule (in the submodule) has to execute
before it. But when rule top rule 3 executes, then rule sub rule executes after it. Thus, the
location of sub rule in the execution order is not static.

Note that this feature only happens when the submodule is separately synthesized. If the synthesis
boundary is removed, then an execution order cycle is detected between all four rules: top rule 1
before top rule 2 before top rule 3 before sub rule before top rule 1. In that case, the compiler
will break the cycle by forcing two consecutive rules to conflict.

This feature, of separately-synthesized modules, is supported by the Verilog which BSC generates.
However, since the behavior changes when the synthesis boundary is removed, it is recommended
that designers not rely on it.

Furthermore, Bluesim does not support this feature. So designs which are written this way cannot
be simulated with Bluesim.

When a design like this is compiled for the Verilog backend, a warning is issued and Verilog is
generated, but it is recommended that the user change his design. When the design is compiled for
Bluesim, BSC exits with an error.

Solutions

Removing the synthesis boundary is one way to avoid the problem, but it is unlikely to be satisfactory,
since the user likely does not want any rules to conflict. (And the user probably wants to retain the
boundary.)

Two real solutions exist. One is to remove the execution order dependency between the parent rules,
which can be done by splitting the rules or changing the actions inside them. The other solution is
to change the child module so that there are no rules which must execute between the methods.

Adjusting the parent rules

There are many way to remove the execution order in the parent module, depending on what is
causing the order. It requires analyzing the schedule of the module to understand why the order
is created. See the section below (on removing the execution order in the child module) for more
guidance.

One way to remove the execution order dependency is to remove unnecessary shared state from
some rules. In the given example, this might mean removing the $display statement from rule
top rule 1, so that it is not sharing register rg12 with top rule 2.

Another possibility is to split the rule into two pieces, one which calls the submodule method and
one which performs the other actions which are the cause of the execution order dependency. For
example, it may be possible to split rule top rule 3 into two pieces:

rule top_rule_3a;
sub.method1;

endrule
rule top_rule_3b;

rg23 <= True;
endrule

This option is only possible if the two actions are not required to execute atomically.

19

Removing the rule dependency in the child

The other option is to remove the execution order dependency of the rule (or rules) in the child
module. This can be done in two ways: either you force the rule to conflict entirely with one of
the methods (and thus it can never fire in the same cycle) or you remove the execution ordering so
that they can fire in a different order. This requires analyzing the schedule of the child module and
understanding why the rule has to execute after method1 and before method2.

For instance, the rule could be reading and writing state which is used by both methods. Removing
some method calls from the rule could prevent the execution order requirement. Another possibility
is that the rule can be split into two rules: one which shares state with method1 and one which
shares method2. However, this is not always possible.

The correct solution will depend on the specific design.

Problem #031: Bluesim switches (-cc, -ss, etc.) have been
removed

Bluesim used to support debugging switches for dumping clock, state and rule traces during simu-
lation. In recent versions of Bluesim, the -cc, -s and other similar options have been removed.

Solutions

The functionality of the deprecated options is provided in a more flexible form using the new Bluesim
scripting functionality (see Bluesim back end/Interative simulation section in the User Guide).

Typically, the user would execute their Bluesim model using the -f debug.cmd option and refine
the contents of the debug.cmd script to focus on just the information relevant to them.

This script-based methodology is much more flexible than a small set of fixed functions controlled
by command-line switches:

• The user can focus debugging output to a particular region of simulation time.

• Debugging output can be displayed differently under different conditions.

• State dumps can be limited to only the values relevant to the current debugging task.

Controlling Simulation

Simulation is controlled via the Bluesim::sim command. The command is part of the Bluesim tcl
package, provided by Bluespec, see the User Guide for more detail. Tcl packages are loaded with the
tcl package command, and then (optionally) commands are imported from the package’s namespace
using the namespace command. The following examples assume that these tcl commands have been
executed either in a script or during a command session.

package require Bluesim
namespace import ::Bluesim::*

Simulation can be controlled using the Bluesim sim run, sim runto, sim step and sim nextedge
commands.

To run a simulation to completion and then print the elapsed simulation time, one could use the
following script:

20

sim run
puts [sim time]

To do something on each tick of a clock, a simple while loop suffices:

while {true} {
puts "CLOCK EDGE: [sim clock]"
if [catch {sim step}] {break}

}

Debugging actions can be targeted at a specific simulation period:

dump VCD waveforms for 1000 cycles starting at time 4207
sim runto 4207
sim vcd on
sim step 1000
sim vcd off

It is also simple to run the simulation until a particular time or condition with a debugging action
at each step:

while {[sim time] < 1000} {
puts "CLOCK EDGE: [sim clock]"
if [catch {sim step}] {break}

}

Displaying State Values

Bluesim interactive commands allow simulation values to be looked up dynamically. The first step
is to obtain a handle for the value using the sim lookup command. Then the handle can be used
(repeatedly) to retrieve the simulation value using the sim get command.

To trace the state and method values in the canonical GCD example, one could use this script:

sim cd gcd

get handles for signals we’re interested in
foreach name [list EN_start start_num1 start_num2 RDY_result result the_x the_y] {
set hdl_of($name) [sim lookup $name]

}

step and watch values
while {true} {
if [catch {sim step}] {break}
puts "---- State at [sim time] ----"
foreach name [array names hdl_of] {
set label "$name:"
set value [sim get $hdl_of($name)]
puts [format "%-15s %s" $label $value]

}
puts "--------------------"

}

21

Scripts can also be used to collect debugging information targeted at specific simulation conditions.
Again using the canonical GCD example, one could trace the sequence of start method calls using
this script:

sim cd gcd

get handles for start method enable and arguments
set hdl_of(EN_start) [sim lookup EN_start]
set hdl_of(num1) [sim lookup start_num1]
set hdl_of(num2) [sim lookup start_num2]

log start method calls
while {true} {
if [catch {sim step}] {break}
if {[sim get $hdl_of(EN_start)] == "1’h1"} {

set num1 [sim get $hdl_of(num1)]
set num2 [sim get $hdl_of(num2)]
puts "[sim time]: start($num1,$num2)"

}
}

Displaying Clock Boundaries

Displaying clock boundaries interspersed with display output from a model is very simple when there
is only a single clock domain:

while {true} {
if [catch {sim step}] {break}
puts "/CLK at [sim time]"

}

In an MCD design, the sim step command steps in cycles of the current clock domain. To advance
to the next edge without regard to its domain, use the sim nextedge command:

while {true} {
if [catch {sim nextedge}] {break}
puts "---- [sim time] ----"

}

The data returned by the sim clock command can be parsed and used to print a more readable
display of the clock activity, similar to the output of the old -cc option:

show the clock edges at the current simulation time
proc showclk {} {
set t [sim time]
set clks [sim clock]
foreach clk $clks {
set name [lindex $clk 2]
set cycles [lindex $clk 7]
set val [lindex $clk 8]
set edge_at [lindex $clk 9]
if {$edge_at == $t} {

if {$val == 1} then {

22

puts "/$name ($cycles) at $edge_at"
} else {

puts "\\$name ($cycles) at $edge_at"
}

}
}

}

while {true} {
if [catch {sim nextedge}] {break}
showclk

}

Problem #032: Unexpected use of uninitialized value error
(G0028)

The compiler unexpectedly complains about a use of an uninitialized value. There are two common
reasons this complaint might be unexpected:

1. The code in question worked in a previous compiler release. (The compiler’s handling of
uninitialized values changed between the 2008.06.E and 2008.11 releases.)

2. The value seems to be initialized along all possible execution paths.

Solutions

The reason for the compiler change was to improve the detection of uses of uninitialized values in
compound types (e.g. vectors, structures, Bit#(n), etc.). Previous compiler releases would (silently)
initialize a compound type to an undefined value whenever any of its parts were assigned, incorrectly
hiding the existence of uninitialized parts of the value. The compiler now tracks initialization
component-by-component, so it can detect problems that were hidden in past.

Consider the following code:

Bit#(2) x;
x[0] = 0;

rule test;
$display(x)

endrule

In older Bluespec releases, the compiler merely saw that the variable x was assigned to before it
was used and filled out the unassigned components of x with undefined values. Now the compiler
correctly sees that while x[0] has been assigned, x[1] is initialized and (correctly) complains about
that use. The solution, in this case, is to initialize the components of a variable before using them.
Similar considerations apply to Vectors, structures and other compound types.

The second reason the compiler might complain about a use of an uninitialized value is that it does
not attempt to prove that all dynamic execution paths correctly initialize a variable.

Consider the following code:

23

Reg#(Int#(32)) r <- mkRegU;

Maybe#(Int#(32)) x;

if(r > 0) x = tagged Valid r;
if(r <= 0) x = Invalid;

The compiler doesn’t attempt to prove that the two predicates r > 0 and r <= 0 cover all possible
values of r (and, hence, guarantee that x is always safely initialized). That means it will (incorrectly)
complain about an uninitialized value when x is used. The recommended workaround in this case
is to initialize the variable to a sensible default (Invalid might work in the example above) before
changing that default with conditional assignments. Please note that this limitation also existed in
releases before 2008.11, but was often masked by the previous issue (not tracking the initialization
of parts of compound data).

Below is another example in which the compiler complains of an uninitialized value. Like the previous
example, the compiler does not attempt to prove that x is set in all branches of the case statement.
Again, the compiler will (incorrectly) complain about an uninitialized value when x is used. The
recommended workaround in this case is to initialize the variable x when it is declared, or to add a
default clause in the case expression.

Reg#(Maybe#(Int#(32))) mx <- mkRegU;

Int#(32) x ;
case (mx) matches

tagged Valid .v: x = v;
tagged Invalid: x = 0;

endcase

Problem #033: Maximum number of function unfolding steps
exceeded error (G0024)

The compiler returns a message that the function unfolding steps interval has been exceeded.

Example:

Error: "Prelude.bs", line 2792, column 0: (G0024)
The maximum number of function unfolding steps has been exceeded when
unfolding ‘Prelude.primFix’. You can use the flags "-steps N",
"-steps-warn-interval N", and "-steps-max-intervals N" to set the maximum
number of steps. The current maximum is 1000000.

This message occurs because some iteration in the static elaboration phase of the compiler (such as
a while-loop, for-loop, or a recursive function call) is taking a long time. A message indicating that
the compiler is out of stack may also occur in similar situations.

The position provided in the error message is the point at which the compiler ran out of steps. Often
this position is inside a library function that was being used (such as Prelude in the above example)
and is not helpful in identifying the real location, where the function was called. In that case, the
position information should be ignored.

24

Solutions

This might not be an error at all – you might simply have written a design that takes a long time
to unfold. First you should try increasing the size limits of the compile:

• If you received an interval exceeded when unfolding error, it is possible that the design
just needs a slightly higher function unfolding limit. In this case you can allow it to go on for
longer, by using the steps-max-intervals flag. Note that the argument of this flag is the
number of intervals, not the number of steps. The current maximum given in the error report
is the product of the number of steps in each interval (set by the steps-warn-interval flag)
and the number of intervals (set by the steps-max-intervals flag). These flags are described
in the Miscellaneous flags section of the User Guide.

• If you received an out of stack error, you can increase the stack size, as described in the
User Guide under Run-time system flags, hoping the design will finish elaborating if it is given
more stack space.

On the other hand, the error report might indicate that you have written an iteration that does not
terminate. It could be that no matter how big you make the stack or how high you set the unfolding
limit, the design will run out of stack or hit that limit. So you should check all the iterations in your
design to make sure they all terminate.

One way this might occur is if the termination condition of a loop depends on a value which isn’t
available until the hardware is actually running (e.g. the contents of a register). This isn’t allowed
because these loops are unfolded at compile time, before the hardware exists. The compiler tries to
check for this (and report an error) but doesn’t catch all cases.

Another possibility is that you have defined a recursive function but forgot the termination condition
or left out the increment step so that it never reaches the termination condition.

#034: BSV designs targeting block RAMs on Virtex devices

Description

Xilinx has a design advisory, AR #34858, that should be considered for specific uses of block RAMs
on Virtex 6 devices. BSV designers targeting these devices should be aware of this advisory so
that they can design accordingly. (Note that there are similar design recommendations for 7 Series
devices).

Solution

Issue Description

Xilinx AR #34859 outlines design considerations with their Block RAM implementation on Virtex6
chips. Not following these design considerations can lead to corruption of memory contents when
a Block RAM is used in True Dual Port mode with WRITE MODE=READ FIRST and for Sim-
ple Dual Port mode using ECC. Please refer to Xilinx’s full AR here: http://www.xilinx.com/
support/answers/34859.htm

Note that Xilinx outlines similar design considerations with their 7 Series parts in their 7 Series
FPGAs Memory Resources User Guide. Please refer to this guide if you are using 7 Series Xilinx
FPGAs.

25

http://www.xilinx.com/support/answers/34859.htm
http://www.xilinx.com/support/answers/34859.htm

Affected IP/Design Implications

Bluespec users could be affected by this if they instantiate a dual-port RAM and use different clocks
on each port, or if they use Xilinx tools or IP prior to version 12.1.

Only Bluespec library elements that use the imported BRAM2 and BRAM2Load Verilog model will
be affected. Note that versions of these with byte enables are not affected because they do not use
READ FIRST mode. Only library elements that use two different clocks will be susceptible. The
library elements that are possibly affected, depending on specific usage, are:

• BRAMCore::mkSyncBRAMCore2

• BRAMCore::mkSyncBRAMCore2Load

• BRAM::mkSyncBRAM2Server

• BRAMFIFO::mkSyncBRAMFIFO

• AlignedFIFOs package (if used with BRAM store)

Whether or not these should be avoided depends on the circumstances. If the user is not using them
with 2 different clocks or if he has an invariant that guarantees the address overlap condition will
not occur, then there is no reason not to use them. Often there is no practical alternative, and the
user should then upgrade to the latest Xilinx tools, look carefully at the synthesis logs, and do a full
timing simulation with the Xilinx RAM models.

Workaround

Bluespec users who build for Xilinx FPGAs should read the relevant AR and scrutinize their synthesis
logs to see if the tool has inferred Block RAM primitives in a mode that is affected. Software
simulation using the Xilinx RAM models from version 12.1 or greater will indicate if the corrupting
behavior is triggered.

At this point the workarounds are to:

1. Not use these models

2. Use them but take precautions to detect possible corruption during synthesis or simulation

3. Upgrade to a Bluespec release that includes work-arounds in our library when that becomes
available

Fix

No fix to our libraries is currently available, but will be provided in our library when it is.

Applies to

May apply to following library elements:

• BRAMCore::mkSyncBRAMCore2

• BRAMCore::mkSyncBRAMCore2Load

• BRAM::mkSyncBRAM2Server

26

• BRAMFIFO::mkSyncBRAMFIFO

• AlignedFIFOs package (if used with BRAM store)

• Designs that use or infer block RAM as described in Xilinx AR #34859: http://www.xilinx.
com/support/answers/34859.htm

27

http://www.xilinx.com/support/answers/34859.htm
http://www.xilinx.com/support/answers/34859.htm

Index

-u, 3

bit selection
out of range, 4

Bluesim, 13, 14, 16, 19
BRAM, 24

case statements
typechecking takes too long, 6

clock domain crossing, 11
code generation

hangs, 5
compiler

hangs, 5, 6

deriving, 7

G0007, 11
G0024, 9, 23
G0028, 22
G0043, 11
G0083, 11
G0096, 14
G0100, 16
G0101, 16
G0116, 16

interface
instantiation, 8
methods more urgent than rules, 4

methods
more urgent than rules, 4

module
instantiation, 8

non-ASCII characters, 9

P0005, 8
provisos, 7

Bits, 8
TAdd, 6
TMul, 6

recompilation, 3
reduceAnd, 8
reduceNand, 8
reduceNor, 8
reduceOr, 8
reduceXnor, 8
reduceXor, 8
reset, 11
resource allocation, 3

rules
less urgent than methods, 4
reference across clock domain, 11
urgency, 4

SizeOf, 8
stack, 23

T0007, 9
T0020, 8
T0031, 7
type

constructors
unbound, 9

type checking
hangs, 8
too long for case-statements, 6

unfolding, 23
uninitialized, 22

vector assignment, 9
Virtex, 24

Xilinx, 24

28

	Table of Contents
	Problem #001: Mutually-exclusive uses of port-limited resources may be allocated inefficiently
	Problem #002: Changing compiler switches does not force recompilation when required
	Problem #005: Methods are forced to be more urgent than rules
	Problem #006: Bit selection out of range (with a large positive index)
	Problem #007: Generation of C or Verilog from a Bluespec module hangs
	Problem #008: Compiler expects the proviso Add#(a,b,TAdd#(a,b)) or Mul#(a,b,TMul#(a,b))
	Problem #009: Type-checking large case statements can take forever
	Problem #011: Proviso errors when deriving a class for types whose subtypes do not have instances of that class
	Problem #014: Typechecking hangs
	Problem #017: Module instantiation required immediately after interface instantiation
	Problem #020: Type error when applying unary bitwise operators on non-bit type mentions strange function name
	Problem #021: Wrong number of arguments to a type constructor manifests as unbound type constructor error
	Problem #023: Sub-vector assignment may take a long time to synthesize
	Problem #024: VCD differences between Bluesim and Verilog simulation
	Problem #025: C++ compiler bugs encountered while building a Bluesim model
	Problem #026: Missing or unhelpful positions in error messages for rules or methods with multiple clocks or resets.
	Problem #027: Bluesim may produce a floating point exception in the case of division-by zero
	Problem #028: C++ compilation can take an unreasonably long time using g++ version 4.2
	Problem #029: Rule uses methods which have a rule that executes between them
	Problem #030: Two rules use methods which have a rule that executes between them
	Problem #031: Bluesim switches have been removed
	Problem #032: Unexpected use of uninitialized value error (G0028)
	Problem #033: Maximum number of function unfolding steps exceeded error (G0024)
	Problem #034: BSV designs targeting block RAMs on Virtex devices
	Index

