ASIC Implementation of a Two-Stage SMIPSv2 Processor

6.375 Laboratory 2
February 28, 2006

In the first lab assignment, you built and tested an RTL model of a two-stage pipelined SMIPSv2
processor. In the second lab assignment, you will be using various commercial EDA tools to
synthesize, place, and route your design. After producing a preliminary ASIC implementation, you
will attempt to optimize your design to increase performance and/or decrease area. The primary
objective of this lab is to introduce you to the tools you will be using in your final projects, as
well as to give you some intuition into how high-level hardware descriptions are transformed into
layout.

The deliverables for this lab are (a) your optimized Verilog source and all of the scripts necessary
to completely generate your ASIC implementation checked into CVS, and (b) written answers to
the critical questions given at the end of this document. The lab assignment is due at the start
of class on Friday, March 6. You may submit your written answers by hand at the beginning of
class or electronically by adding a directory titled writeup to your lab project directory. Electronic
submissions must be in plain text or pdf format.

Before starting this lab, it is recommended that you revisit the Verilog model you wrote in the
first lab. Take some time to clean up your code, add comments, and enforce a consistent naming
scheme. You will find as you work through this lab assignment that having a more extensive module
hierarchy can be very advantageous; initially we will be preserving module boundaries throughout
the toolflow which means that you will be able to obtain performance and area results for each
module. It will be much more difficult to gain any intuition about the performance or area of
a specific assign statement or always block within a module. Thus you might want to consider
breaking your design into smaller pieces. For example, if your entire ALU datapath is in one
module, you might want to create separate submodules for the adder /subtracter unit, shifter unit,
and the logic unit. Unfortunately, preserving the module hierarchy throughout the toolflow means
that the CAD tools will not be able to optimize across module boundaries. If you are concerned
about this you can explicitly instruct the CAD tools to flatten a portion of the module hierarchy
during the synthesis process. Flattening during synthesis is a much better approach than lumping
large amounts of Verilog into a single module yourself.

Figure 1 illustrates the 6.375 ASIC toolflow we will be using for the second lab. You should already
be familiar with the simulation path from the first lab. We will use Synopsys Design Compiler
to synthesize the design. Synthesis is the process of transforming an RTL model into a gate-
level model. For this lab assignment, Design Compiler will take your RTL model of the SMIPSv2
processor as input along with a description of the standard cell library, and it will produce a Verilog
netlist of standard cell gates. Although the gate-level netlist is at a low-level functionally, it is still
relatively abstract in terms of the spatial placement and physical connectivity between the gates.
We will use Cadence Encounter to place and route the design. Placement is the process by which
each standard cell is positioned on the chip, while routing involves wiring the cells together using
the various metal layers. Notice that you will be receiving feedback on the performance and area of
your design after both synthesis and place+route - the results from synthesis are less realistic but
are generated relatively rapidly, while the results from place+route are more realistic but require
much more time to generate. Place+route for your two-stage SMIPSv2 processor will take on the

6.375 Laboratory 2, Spring 2006 2

order of 15 minutes, but for your projects it could take up to an hour. After place4route, we will
generate and simulate a final gate-level netlist using VCS. We can use this gate-level simulation as
a final test for correctness and to generate transition counts for every net in the design. Encounter
can take these transition counts as input and correlate them with the capacitance values in the
final layout to produce dynamic power measurements.

Each piece of the toolflow has its own build directory and its own makefile. Please consult the
following tutorials for more information on using the various parts of the toolflow.

e Tutorial 4: RTL-to-Gates Synthesis using Synopsys Design Compiler
e Tutorial 5: Automatic Placement and Routing using Cadence Encounter

e Tutorial 6: Power Analysis using Synopsys VCS and Cadence Encounter

For this lab we will be using a dummy memory to model the combinational delay through the
instruction and data memories. The dummy memory combinationally connects the memory request
bus to the memory response bus with a series of standard-cell buffers. Obviously, this is not
functionally correct, but it should help you analyze more reasonable critical paths in your design.
In the next lab we will start using memory generators which will create synchronous on-chip SRAMs
for your processor. These SRAMs have synchronous read ports and thus they would force our two
stage pipeline to be a four stage pipeline. For now we will limit our selves to a dummy memory
and a simpler two stage pipeline.

The solution for the first lab is now available in CVS as examples/smipsv2-2stage-v. Feel free to
reference the smipsv2-2stage-v code when completing this lab. You are particularly encouraged
to copy the provided branch predictor and integrate it into your design.

Getting Started

All of the 6.375 laboratory assignments should be completed on an Athena/Linux workstation.
Please see the course website for more information on the computing resources available for 6.375
students. Once you have logged into an Athena/Linux workstation you will need to setup the 6.375
toolflow with the following commands.

% add 6.375
% source /mit/6.375/setup.csh

You will be using CVS to manage your 6.375 laboratory assignments. Please see Tutorial 2: Using
CVS to Manage Source Code for more information on how to use CVS. Every student has their
own directory in the repository which is not accessible to other students. Assuming your Athena
username is cbatten, you can checkout your personal CVS directory using the following command.

% cvs checkout 2006s/students/cbatten

6.375 Laboratory 2, Spring 2006

Std
Cell
Lib

[Encounter (FP)]

[Design Compiler }

l

Floor
Plan

I

I

Gate
Level
Netlist

Timing
Area

N

Verilog
Source

ASM
Source
Code

l

VCS } [Assembler Flow }

l

VMH
Prog

T

[Encounter(PAR)} [Design Vision J [

VirSim

J [Execute Sim }

Gate
Level
Netlist

Timing
Area

Layout

i

] [Encouter GUI]

I

Test
Outputs

Bmark
Stats

Figure 1: 6.375 Toolflow for Lab 2

6.375 Laboratory 2, Spring 2006 4

To begin the lab you will need to make use of the lab harness located in /mit/6.375/1lab-harnesses.
The lab harness provides makefiles, scripts, and the Verilog test harness required to complete the
lab. The following commands extract the lab harness into your CVS directory and adds the new
project to CVS.

% cd 2006s/students/cbatten

% tar -xzvf /mit/6.375/lab-harnesses/lab2-harness.tgz
% find lab2 | xargs cvs add

% cvs commit -m "Initial checkin"

The resulting 1ab2 project directory contains the following primary subdirectories: src contains
your source Verilog; tests contains local assembly tests; bmarks contains local benchmarks; and
build contains makefiles and scripts for building your processor. The src directory contains the
Verilog test harness and other Verilog modules you will need in this lab assignment. Your first
step is to copy over your source files from the first lab into the 1ab2 project directory. Please be
aware that the toplevel test harness structure has changed a bit. The build directory contains the
following subdirectories which you will use when building your chip.

e vcs-sim-rtl - RTL simulation suing Synopsys VCS

e dc-synth - Synthesis using Synopsys Design Compiler

e enc-fp - Floorplanning using Cadence Encounter

e enc-par - Automatic placement and routing using Cadence Encounter
e vcs-sim-gl - Gate-level simulation using Synopsys VCS

e enc-power - Power analysis using Cadence Encounter

Each subdirectory includes its own makefile and additional script files. You will have to make
modifications to these script files as you push your design through the physical toolflow.
Once you have all the tools working you can use the toplevel makefile in the build directory to
run multiple tools at once. For example, once all the scripts are properly setup you should be able
to use the following command to synthesize, floorplan, and place+route your design.

% pwd
2006s/students/cbatten/lab2/build

% make enc-par

Automatic placement and routing is a very computationally intensive task. On your simple two-
stage project placedroute can take anywhere from 10 minutes to 20 minutes. Budget your time
accordingly.

Lab Hints and Tips

This section contains several hints and tips which should help you in completing the lab assignment.

Tip 1: Always Test Your Processor After Making Modifications

When pushing your processor through the physical toolflow, it is common to make some changes
to your RTL and then evaluate their impact on area, power, and performance. Always retest

6.375 Laboratory 2, Spring 2006 5

Clk Period (10ns) Clk Period (10ns)

Clko Cclko
IM Clk1 § Clk1 3

A A
Endpoint T Endpoint I
Clko Clk1 of Path A] BN of Path A —/ — X
: ' ' ! | Skew(:_ﬁ))“
Worst Case Delay Slack Setup Skew | .]
ForPath A (5.75) (1.5) (2.75) (1.5) ' mﬁ)
Slack (-4.75) |
Worst Case Delay For Path A (13.5)
(a) Example Circuit (b) Effective Clock Period is 8.5ns (c) Effective Clock Period is 14.75ns

Figure 2: Determining your hardware’s effective clock period

your processor after making changes and before starting the physical toolflow. You can use the
run-asm-tests make target to quickly verify that your processor is still functionally correct. Keep
in mind, that a fast or small processor which is functionally incorrect is worse than a slow or large
processor which works!

Tip 2: Replace Non-Synthesizable Verilog

Not all Verilog is synthesizable, so you may receive errors when you first push your processor through
Design Compiler. For example, the smipsInst.v code which was supplied as part of the first lab
included a useful unpackInst module. Unfortunately, hierarchical references are not supported
by Design Compiler. Instead of using unpackInst you can use the ‘define macros provided in
smipsInst.v. To retrieve the rs specifier from an 32 bit instruction wire named inst you can use
inst [INSTRS]. Another common mistake is to use the Verilog reduction nor operator (~1) to
implement a two operand nor. VCS will accept (a ~| b) but Design Compiler will not. You can
change (a ~| b) into (~(alb)). Don’t forget to retest your design after making any changes!

Tip 3: Reporting Clock Period

As discussed in the tutorials, you need to specify a clock period constraint during both synthesis
and place+route. The tools will try and meet this constraint the best they can. If your constraint is
too aggressive, the tools will take a very long time to finish. They may not even be able to correctly
place+route your design. If your constraint is too conservative, the resulting implementation will
be suboptimal.

Even if your design does not meet the clock period constraint it is still a valid piece of hardware
which will operate correctly at some clock period (it is just slower than the desired clock period).
If your design does not meet timing the tools will report a negative slack. Similarly, a design which
makes the timing constraint but does so with a positive slack can run faster than the constrained
clock period. For this lab we are more concerned about the effective clock period of your design as
opposed to the clock constraint you set before synthesis. The effective clock period is simply the
clock period constraint minus the worst slack (Te — Tsiaer)- The synthesis and place+route timing
reports are all sorted by slack so that the path with the worst slack is listed first. To determine
the effective clock period for your design simply choose the smaller of the rising and falling edge

6.375 Laboratory 2, Spring 2006 6

slacks. Figure 2 illustrates two examples: one with positive slack and one with negative slack. In
this example, our clock period constraint is 10ns. In Figure 2(b), the post-place+route reports
indicate a positive slack value of 1.5ns and thus the effective clock period is 8.5ns. In Figure 2(c),
the post-place4route reports indicate a negative slack value of 4.75 ns and thus the effective clock
period is 14.75ns. Notice that the effective clock period in Figure 2(c) is not equal to the worst
case combinational critical path (i.e. 13.5ns). This is because we must also factor in setup time
and clock skew.

Determining the effective clock period when your design does not meet timing can be more tricky
when we include latches (as opposed to flip-flops) in our design. Latches impose additional half-
cycle constraints. For this lab it is adequate to ignore any half-cycle constraints and focus instead
on the full cycle constraints.

Critical Thinking Questions

The primary deliverable for this lab assignment is your optimized Verilog source and all of the
scripts necessary to completely generate your ASIC implementation checked into CVS. In addition,
you should prepare written answers to the following questions and turn them in at the beginning
of class on March 3.

Question 1: Evaluate Your Baseline Processor

Push your baseline processor through the physical toolflow and report the following numbers.
Initially push your design through without any floorplanning and then try floorplanning the register
file, the dummy memory, and any other modules you wish. For the remaining questions in this lab
you can choose to either use floorplanning or not.

e Post-synthesis area of the register file, datapath (excluding register file), and control unit
in “abstract units” from synth_area.rpt

e Post-synthesis total area of processor (excluding dummy memory) in “abstract units”
from synth_area.rpt

e Post-synthesis critical path and corresponding effective clock period in nanoseconds from
synth_timing.rpt

e Post-place+route area of the register file, datapath (excluding register file), and control
unit in square micron from postroute_area.rpt (no floorplanning)

e Post-place+route total area of the processor (excluding dummy memory) in square micron
from postroute_area.rpt (no floorplanning)

e Post-place+route total area of the processor (including dummy memory and power ring)
in square micron from the Encounter GUI (no floorplanning)

e Post-place+route critical path (and just the critical path) and corresponding effective
clock period in nanoseconds from postroute_setup_timing.rpt (no floorplanning)

e Post-place+route critical path and corresponding effective clock period from
postroute_setup_timing.rpt (with floorplanning)

6.375 Laboratory 2, Spring 2006 7

Your post-place4route numbers will probably be significantly worse than your post-synthesis num-
bers. Explain why the place+route tool is reporting more area and a longer clock period than the
synthesis tool. In Question 2 of the first lab you made some predictions concerning the critical
paths and the area of your design. Were these predictions correct? If they differ how has your
intuition changed after pushing your processor through the physical toolflow?

Question 2: Use Logical Effort to Design an Optimal Branch Comparator

In this question, you will be using logical effort to implement the branch equality comparator in
your SMIPSv2 processor. If you eliminated the branch comparator in your design, then use the
examples/smipsvi-1stage-v project to complete this question. Before answering this question
you should read the first chapter of “Logical Effort: Designing Fast CMOS Clircuits” by Sutherland,
Sproull, and Harris. It is available in the course locker at /mit/6.375/doc/logical-effort-chl.pdf.
You should make use of the tables contained in that chapter when answering this question.

For our process, the unit-less delay scaling factor (7) is 10.5 ps and the unit-less parasitic delay of
an inverter (P;,,) is approximately one. You may assume that we are using gates with balanced
rise/fall times. Your branch equality comparator should take two 32-bit inputs and produce a 1-bit
output. If the output is one then the two inputs are equal, and if the output is zero then the two
inputs are not equal. The input capacitance of your comparator should be around 5 fF. The output
must drive a capacitive load of 5fF. You should limit yourself to the logical gates in the Tower
0.18 pym Standard Cell Library. The databook for the standard cell library is located in the course
locker at /mit/6.375/doc/tsl-180nm-sc-databook.pdf. Although you should limit yourself to
the standard cell logical gates (for example, a two-input XOR gate), do not limit yourself to the
standard cell physical gates (for example, a two-input XOR gate with 2X drive). In other words,
you can choose the size of each gate to be whatever you wish; you are not limited to the sizes in
the standard cell library.

Your goal is to design the optimal gate topology for the branch comparator and to identify the
optimal input capacitance for each gate in that topology. You do not need to convert the input
capacitances into transistor widths. You should identify at least three likely candidate gate topolo-
gies (preferably with different numbers of stages) and calculate the path effort, optimal stage effort,
and optimal path delay for each. How much difference is there between the optimal delay of the
various topologies? For the topology with the minimum delay, work backwards from the output
capacitance to calculate the optimal input capacitance in femtofarads for each stage.

Once you have completed your calculations, examine the topology chosen by Design Compiler and
include it in your answer. You may need to isolate your branch comparator in its own module so
that it is synthesized separately. What is the load capacitance that Design Compiler is using for
the output of the branch comparator? You can determine this using the following command from
the Design Vision prompt after synthesis. You will need to use the hierarchical net name which is
appropriate for your design.

design_vision-xg-t> report_net proc/dpath/branch_cond_gen/out \
-significant_digits 5

Now examine the gate-level netlist for the branch comparator after place+route and include it in
your answer. You can get a feel for this using the Design Browser window in the Encounter GUI.
What cells did Encounter decide to use? Did it resize the gates? Did it add any new cells? Why do

6.375 Laboratory 2, Spring 2006 8

you think Encounter might change the design? What is the actual load capacitance for the output
of the branch comparator according to Encounter? You can find this through the Encounter GUI.
You will need to execute the extractRC command first, and then locate the branch comparator
output net in the Encounter Design Browser. Choose the Tool — Attribute Editor menu option to
display various properties (including the capacitance) of the net.

You can use Design Vision to visualize the final post-place+route netlist. After finishing place+route,
move into your current dc-synth build directory and use the read file command to read in the
par.v file located in the place+route build directory. The following commands illustrate how to
load the post-place+route netlist into Design Vision.

% pwd

2006s/students/cbatten/lab2/build

% cd dc-synth/current

% design_vision-xg-t

design_vision-xg-t> source libs.tcl

design_vision-xg-t> read_file -format verlog ../../enc-par/current/par.v
design_vision-xg-t> current_design smipsCore_synth

We need to use the current _design command, because otherwise Design Vision will set the current
design to a module lower down in the design hierarchy. You can now use Design Vision to view a
schematic of the post-place+route branch comparator.

Compare and contrast the three gate topologies: the topology you designed using logical effort,
the topology synthesized by Design Compiler, and the final topology after Encounter finishes
place+route. How do you think these results would change if the branch comparator output had
to drive a load of 5000 fF instead of 5 fF?

Question 3: Use RC Modeling to Design a Register-File Write Bit-line Driver

In this question you will be designing a simple buffer for a write bit-line in a register file. The
write bit-line (i.e. the write data) must drive the D input port of 32 flip-flops. The combined gate
capacitance of these flip-flops can be a significant load on the write bit-line. The load on the write
bit-line is further increased by wire capacitance, since flip-flops are usually large and thus often
spread apart.

To witness the problem first hand, use Encounter to isolate the portion of your critical path which
is contained in the register write bit-line. If the write bit-line is not on your critical path then
browse through the paths in postroute_setup_timing.rpt until you find a path which includes
the write bit-line. Figure 3 shows a fragment of an Encounter timing report. You can see the
critical path going through the writeback mux and into the write data port of the register file.
Notice the very large capacitive loads on the nets along this path. More specifically, the load on
the final inverter is a portion of the capacitive load of the write bit-line (0.136 pF). You can see
how the physical toolflow has inserted two buffers to help drive this large load. The par.cap file
contains a breakdown between wire and gate capacitance for each net in the design. Searching for
the dpath/rfile/n255 net reveals that this final inverter is driving 12 other gates; so the tools
have created a tree of inverters to help drive all 32-bits of the write-bit line. The wire capacitance
is 96 fF and the gate capacitance is 40 fF for a total load of 136 fF. In your answer to this question,
you should include a similar analysis of the impact the write bit-line has on your critical path.

6.375 Laboratory 2, Spring 2006

Object name Delta r/f (ns) Sum r/f (ns) Slew (ns) Load (pF)

dpath/wb_mux/U212 I0->Z (mx02d1)

0.164r/0.208f 6.064r/5.624f 0.110r/0.102f 0.009
dpath/wb_mux/n148 0.001r/0.001f 6.064r/5.625f
dpath/wb_mux/U24 I1->Z (mx02d4) 0.372r/0.419f 6.436r/6.043f 0.143r/0.122f 0.186
dpath/rf_wdata_Xnp[7] 0.128r/0.124f 6.564r/6.167f
dpath/rfile/U545 I->ZN (invbd2) 0.219f/0.164r 6.783f/6.332r 0.685r/0.447f 0.054
dpath/rfile/n254 0.003f/0.003r 6.786f/6.335r
dpath/rfile/U198 I->ZN (inv0d7) 0.104r/0.065f 6.890r/6.399f 0.274f/0.227r 0.136
dpath/rfile/n255 0.030r/0.028f 6.920r/6.427f

dpath/rfile/registers_reg[19] [7] CP~"D (denrqg4)
0.189r/0.131f 7.109r/6.558f 0.227r/0.175f

Figure 3: Example fragment from the postroute setup timing.rpt

Write Bit-Line Input (D) Port

0
0
0
M

Po-Po{>o :

o000
Multi-Stage Driver N

Bit—Cell

Figure 4: Multi-Stage Driver for a Register File Write Bit-Line

Transistor Process Parameters ‘ Value

Desired ratio of PMOS/NMOS widths 2
PMOS gate capacitance per um of transistor width | 1.5fF/um

NMOS gate capacitance per um of transistor width | 1.5fF/um

PMOS drain capacitance per ym of transistor width | 0.3 fF/um
NMPS drain capacitance per pm of transistor width | 0.3 fF/um

PMOS effective on resistance 6.7kQum
NMOS effective on resistance 3.3kQum
Parameters for Metal 2 Wire ‘ Value

Wire resistance per unit length 0.4Q/pm
Wire capacitance per unit length 0.2fF/pm

Table 1: Process Parameters

6.375 Laboratory 2, Spring 2006 10

We will now use a simple RC model to design a similar driver for a write bit-line. We will
use process parameters from a 0.18 ym TSMC process, but they should be similar to the Tower
0.18 um process. Table 1 shows the various parameters. Your first task is to model the write
bit-line. Assume that the register file is using DENRQ1 standard cells for the register file bit-
cells. Use the standard cell databook to determine the input capacitance for the D input in
picofarads and to determine the size of the bit-cell. The databook is located in the course locker
at /mit/6.375/doc/ts1-180nm-sc-databook.pdf. All of the Tower standard cells are 5.6 um tall
and the width of each standard cell is listed in “Gate Equivalents”. One “Gate Equivalent” is
2.24 ym. Assume that the bit-cells are arranged as shown in Figure 4 and that the D input is
located directly in the middle of each bit-cell. We will not be designing a tree; instead we will
design a series of drivers which drive the design from one end of the bitline. The write bit-line will
use metal 2 wire. Create a distributed RC model of the bit line which includes the bit-cell gate
capacitance, the wire capacitance, and the wire resistance.

Now we will try and design a multi-stage driver suitable for driving the bit-line. You do not need
to use standard cell inverters for the driver; assume we can use custom inverters that are whatever
size we wish. Assume that it is okay to invert the signal (we can just add another inverter at
the read port). The input capacitance of your driver should be a minimum sized inverter. Use a
lumped model of the bit-line capacitance to estimate how many inverter stages we need. What
should be the size of each stage? Use a simple RC model to estimate the worst case delay (in RC
time constants) to drive the very last bit on the bit-line. You can use a 7 model for the bitline and
assume that after one RC time constant the next inverter turns on.

Question 4: Optimize Your ALU

In lab one you used a semi-behavioral ALU. Although synthesizable, your ALU is probably much
larger than what one would design by hand. Use the post-synthesis synth _area.rpt and

synth resources.rpt reports to identify how your ALU is being synthesized. How many Synopsys
DesignWare components are being inferred? Ideally we should be able to implement the SMIPSv2
ALU with just an adder, a left shifter, a right shifter, and a logic unit. The logic unit would
contain bit-wise and, or, nor, and xor. Optimize your ALU for area and push it through the
physical toolflow. Report the change in post-place+route area (use postroute_area.rpt) and
performance. Don’t forget to retest your design with your optimized ALU! Feel free to use your
optimized ALU in Questions 5 and 6.

Question 5: Evaluate a Latch Based Register-File

The register file is probably the largest component of your design. Identify what standard cell is
used for the majority of the register file bit-cells. The lab harness includes a Verilog latch based
register file (smipsProcDpathRegfile latch). Push your design through the physical toolflow with
the latch based register file. Report the change in post-place+route area (use postroute area.rpt)
and performance. Identify what standard cell is used for the majority of the latch based bit-cells.
Give a high-level reasoning why latch based register files should be smaller than flip-flop based
register files. (Hint: How do the master/slave parts of a standard flip-flop relate to the latches in a
latch based register file?) Don’t forget to retest your design with the latch based register file! Feel
free to use the latch based register file in Questions 6.

6.375 Laboratory 2, Spring 2006 11

This question assumes you used a flip-flop based register file. If you implemented a more optimized
latch based register file in the first lab then use the smipsProcDpathRegfile flipflop register file
for this question. Evaluate the difference between your latch based register file and the provided
flip-flop based register file.

Question 6: Evaluate a Simple Branch-Predictor

In lab one you implemented a simple branch predictor to help increase the IPC of your processor.
Although the predictor increases the IPC, it may negatively impact the area, power, or performance
of your processor. In this question we want to evaluate whether or not the branch predictor is a
beneficial addition to the processor. If you did not have a chance to finish the predictor, feel free to
copy the predictor from examples/smipsv2-2stage-v and integrate it into your processor. Make
sure that your processor passes all of the assembly tests with the new predictor. If you have trouble
with the integration you can also complete this question using the examples/smipsv2-2stage-v
project instead of your own. Report the change in post-place+route area (use postroute area.rpt)
and performance after adding the branch predictor. Factoring in the advantages of the predictor
(increased IPC) and the possible disadvantages (increased area and clock period), do you think
adding the predictor is a good idea?

