
February 8, 2006 http://csg.csail.mit.edu/6.375/ L01-1

6.375 Complex Digital System
Spring 2006

Lecturer: Arvind
TAs: Chris Batten & Mike Pellauer
Assistant: Sally Lee

February 8, 2006 L01-2http://csg.csail.mit.edu/6.375/

Do we need more chips
(ASICs)?

ASIC=Application Specific IC

Some exciting possibilities
based on research @ CSAIL

February 8, 2006 L01-3http://csg.csail.mit.edu/6.375/

Content distribution and
customer service

Interactive, lifelike avatars as actors, news anchors,
and customer service representatives

Source: Computer Science and Artificial
Intelligence Laboratory at MIT (CSAIL)

February 8, 2006 L01-4http://csg.csail.mit.edu/6.375/

Ubiquitous, behind-the-scenes
computing

Computer interfaces woven
tightly into the environment

Source: Computer Science and Artificial
Intelligence Laboratory at MIT (CSAIL)

February 8, 2006 L01-5http://csg.csail.mit.edu/6.375/

Source: http://www.intel.com/technology/silicon/mooreslaw/index.htm

What’s required?
ICs with dramatically higher performance,
optimized for applications

and at a
size and power to deliver mobility;
cost to address mass consumer markets

February 8, 2006 L01-6http://csg.csail.mit.edu/6.375/

Current Cellphone Architecture

Comms.
Processing

Application
Processing

WLAN RFWLAN RF WLAN RFWCDMA/GSM RF
Two chips, each with an ARM
general-purpose processor
(GPP) and a DSP

TI OMAP 2420

COMPLEX

February 8, 2006 L01-7http://csg.csail.mit.edu/6.375/

Chip design has become too
risky a business

Ever increasing size and complexity
Microprocessors: 100M gates ⇒ 1000M gates
ASICs: 5M to 10M gates ⇒ 50M to 100M gates

Ever increasing costs and design team sizes
> $10M for a 10M gate ASIC
> $1M per re-spin in case of an error (does not
include the redesign costs, which can be substantial)

18 months to design but only an eight-month
selling opportunity in the market

Fewer new chip-starts every year
Looking for alternatives, e.g., FPGA’s

⇒
February 8, 2006 L01-8http://csg.csail.mit.edu/6.375/

Designer’s Dilemma

Sub-optimal implementations!

Designer must take shortcuts
Conservative design
No time for exploration
Educated guess & code
Gates are free mentality

Constants
10-30 person design team size
18 month design schedule
Design flow -- unchanged for

10+ years!

ASIC Complexity
2000: 1M+ logic gates
2005: 10M+ logic gates
2010: 100M+ logic gates

63.53.322,391Static (2)

99.9

99.9

63.5

Memory
Util (%)

3.608,898Static

4.7015,910Linear

3.678,170Circular

Speed
(ns)

Area
(gates)

LPM
Pipeline

What happens when a designer must implement a 1M gate block?

Alternatives?

[ICCAD’04]

LPM Pipeline example:
Which is best?

February 8, 2006 L01-9http://csg.csail.mit.edu/6.375/

One prevailing viewpoint:
A sea of general purpose processors
Advantages

Easier to scale hardware
design as complexity
is contained within processors
Easy to program and debug
complex applications

IBM/Sony Cell
Processor

Do we really
know how to

program these?

Disadvantages (as compared to an ASIC)
Power ~100-1000X worse
Performance up to ~100X worse
Area up to ~10-100X greater

February 8, 2006 L01-10http://csg.csail.mit.edu/6.375/

Another popular “platform” vision:
Field-Programmable Gate Arrays

Advantages
Dramatically reduce
the cost of errors
Remove the reticle
costs from each design

Disadvantages (as compared to an ASIC)
[Kuon & Rose, FPGA2006]

Switching power around ~12X worse
Performance up 3-4X worse
Area 20-40X greater

Still requires
tremendous design
effort at RTL level

February 8, 2006 L01-11http://csg.csail.mit.edu/6.375/

Future could be different if we became
10X more productive in design

This course is about new ways expressing
behavior to reduce design complexity

Decentralize complexity: Rule-based specifications
(Guarded Atomic Actions)

Let us think about one rule at a time
Formalize composition: Modules with guarded
interfaces

Automatically manage and ensure the correctness
of connectivity, i.e., correct-by-construction
methodology
Retain resilience to changes in design or layout,
e.g. compute latency ∆’s
Promote regularity of layout at macro level

February 8, 2006 L01-12http://csg.csail.mit.edu/6.375/

Let’s take a look at the
current CMOS technology...

February 8, 2006 L01-13http://csg.csail.mit.edu/6.375/

FET = Field-Effect Transistor
A four terminal device (gate, source, drain, bulk)

Eh

Inversion: A vertical field creates a channel between
the source and drain.

Conduction: If a channel exists, a horizontal field
causes a drift current from the drain to the source.

Ev

Source
diffusion

Drain
diffusion

gate

bulk

Surface of wafer

Reverse side of wafer

inversion
happens here

February 8, 2006 L01-14http://csg.csail.mit.edu/6.375/

Simplified FET Model

G
PFET connects
S and D when
G=“low”=0V

G
NFET connects
D and S when
G=“high”=VDD

S

D

S

D

G PFET only good
at pulling up

G NFET only good
at pulling down

Supply Voltage = VDD

Ground = GND = 0V

Binary logic values represented by voltages:

“High” = Supply Voltage, “Low” = Ground Voltage

February 8, 2006 L01-15http://csg.csail.mit.edu/6.375/

NAND Gate

A

B
(A.B)

When both A and B are high, output is low
When either A or B is low, output is high

B
A

(A.B)

February 8, 2006 L01-16http://csg.csail.mit.edu/6.375/

NAND Gate Layout

A

B
(A.B)

Series NMOS Transistors

Parallel PMOS Transistors

Metal 1-Diffusion
Contact

P-Diffusion
(in N-well)

N-DiffusionGND

VDD

A B

(A.B)
Poly wire connects

PMOS & NMOS gates Output on
Metal-1

February 8, 2006 L01-17http://csg.csail.mit.edu/6.375/

Design Rules
Extension
rules

Width
rules

Exclusion ruleSurround rule

Spacing rules

An abstraction of the fabrication process that specify various
geometric constraints on how different masks can be drawn

Design rules can be absolute measurements (e.g. in nm) or
scaled to an abstract unit, the lambda. The value of lambda
depends on the manufacturing process finally used.

February 8, 2006 L01-18http://csg.csail.mit.edu/6.375/

Exponential growth:
Moore’s Law

Intel 8080A, 1974
3Mhz, 6K transistors, 6u

Intel 8086, 1978, 33mm2

10Mhz, 29K transistors, 3u
Intel 80286, 1982, 47mm2

12.5Mhz, 134K transistors, 1.5u
Intel 386DX, 1985, 43mm2

33Mhz, 275K transistors, 1u

Intel 486, 1989, 81mm2

50Mhz, 1.2M transistors, .8u
Intel Pentium, 1993/1994/1996, 295/147/90mm2

66Mhz, 3.1M transistors, .8u/.6u/.35u
Intel Pentium II, 1997, 203mm2/104mm2

300/333Mhz, 7.5M transistors, .35u/.25u

http://www.intel.com/intel/intelis/museum/exhibit/hist_micro/hof/hof_main.htmShown with approximate relative sizesShown with approximate relative sizes

February 8, 2006 L01-19http://csg.csail.mit.edu/6.375/

IBM Power 5
130nm SOI CMOS with
Cu
389mm2

2GHz
276 million transistors
Dual processor cores
1.92 MB on-chip L2
cache
8-way superscalar
2-way simultaneous
multithreading

February 8, 2006 L01-20http://csg.csail.mit.edu/6.375/

Hardware Design Abstraction
Levels

Algorithm

Circuits

Application

Guarded Atomic Actions (Bluespec)

Register-Transfer Level (Verilog RTL)

Devices

Unit-Transaction Level (UTL) Model

Gates

Physics

February 8, 2006 http://csg.csail.mit.edu/6.375/ L01-21

Tools play a crucial role
in our ability to design
economically

February 8, 2006 L01-22http://csg.csail.mit.edu/6.375/

ASIC Design Styles
Full-Custom (every transistor hand-drawn)

Best performance: as used by Intel µPs
Semi-Custom (Some custom + some cell-based design)

Reduced design effort: AMD µPs plus recent Intel µPs
Cell-Based ASICs (Only use cells in standard library)

This is what we’ll use in 6.375
Mask Programmed Gate Arrays

Popular for medium-volume, moderate performance
applications

Field Programmable Gate Arrays
Popular for low-volume, low-moderate performance
applications

Comparing styles:
how much freedom to develop own circuits?
how many design-specific mask layers per ASIC?

February 8, 2006 L01-23http://csg.csail.mit.edu/6.375/

Custom and Semi-Custom
Usually, in-house design team develops own libraries of
cells for commonly used components:

memories
register files
datapath cells
random logic cells
repeaters
clock buffers
I/O pads

In extreme cases, every transistor instance can be
individually sized ($$$$)

approach used in Alpha microprocessor development
The trend is towards greater use of semi-custom design
style

use a few great circuit designers to create cells
redirect most effort at microarchitecture and cell
placement to keep wires short

February 8, 2006 L01-24http://csg.csail.mit.edu/6.375/

Standard Cell ASICs
aka Cell-Based ICs (CBICs)

Fixed library of cells + memory generators
Cells can be synthesized from HDL, or entered in
schematics
Cells placed and routed automatically
Requires complete set of custom masks for each design
Currently most popular hard-wired ASIC type (6.375 will
use this)

Cells arranged
in rows

Mem 1
Mem 2

Generated memory
arrays

February 8, 2006 L01-25http://csg.csail.mit.edu/6.375/

Standard Cell Design

Cells have standard height but vary in width
Designed to connect power, ground, and wells by
abutment

VDD Rail

GND Rail

Clock Rail

Cell I/O
on M2Power

Rails in
M1

Clock Rail
(not typical)

NAND2 Flip-flop

Well Contact
under Power Rail

February 8, 2006 L01-26http://csg.csail.mit.edu/6.375/

Standard Cell Design Examples

Channel routing for
1.0mm 2-metal stdcells

Over cell routing for
0.18mm 6-metal stdcells

February 8, 2006 L01-27http://csg.csail.mit.edu/6.375/

Gate Arrays
Can cut mask costs by prefabricating arrays of fixed size
transistors on wafers
Only customize metal layer for each design

Two kinds:
Channeled Gate Arrays
– Leave space between rows

of transistors for routing
Sea-of-Gates
– Route over the top of

unused transistors

[OCEAN Sea-of-Gates Base Pattern]

VDD

GND

PMOS

NMOS

PMOS

NMOS

GND

February 8, 2006 L01-28http://csg.csail.mit.edu/6.375/

Gate Array Personalization

Isolating transistors by
shared GND contact

Isolating transistors
with “off” gate

GND

February 8, 2006 L01-29http://csg.csail.mit.edu/6.375/

Gate Array Pros and Cons
Cheaper and quicker since less masks to make

Can stockpile wafers with diffusion and poly finished

Memory inefficient when made from gate
array

Embedded gate arrays add multiple fixed memory
blocks to improve density (=>Structured ASICs)
Cell-based array designed to provide efficient
memory cell (6 transistors in basic cell)

Logic slow and big due to fixed transistors and
wiring overhead

Advanced cell-based arrays hardwire logic functions
(NANDs/NORs/LUTs) which are personalized with
metal

February 8, 2006 L01-30http://csg.csail.mit.edu/6.375/

Field-Programmable Gate
Arrays

Each cell in array contains a
programmable logic function
Array has programmable interconnect
between logic functions
Arrays mass-produced and
programmed by customer after
fabrication

Can be programmed by blowing fuses,
loading SRAM bits, or loading FLASH
memory

Overhead of programmability makes
arrays expensive and slow but startup
costs are low, so much cheaper than
ASIC for small volumes

February 8, 2006 L01-31http://csg.csail.mit.edu/6.375/

Xilinx Configurable Logic Block

February 8, 2006 L01-32http://csg.csail.mit.edu/6.375/

6.375 ASIC/FPGA Design Flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluespec C sim Cycle
Accurate

Blueview

February 8, 2006 L01-33http://csg.csail.mit.edu/6.375/

6.375 Course Philosophy
Design is central focus

Architectural design has biggest impact on
development cost and final quality
Good tools support design space exploration

e.g., Bluespec

Good design discipline avoids bad design
points

Unit-Transaction Level design to decompose
upper levels of design hierarchy
“Best-Practice” microarchitectural techniques
within units

February 8, 2006 L01-34http://csg.csail.mit.edu/6.375/

6.375 Objectives
By end of term, you should be able to:

Select appropriate implementation technology and
tool flow:

custom, cell or structured ASIC, ASSP, or FPGA

Decompose system requirements into a hierarchy
of sub-units that are easy to specify, implement,
and verify
Develop efficient verification and test plans
Select appropriate microarchitectures for a unit
and perform microarchitectural exploration to
meet price, performance, and power goals
Use industry-standard tool flows
Complete a working million gate chip design!
plan making millions at a new chip startup

(Don’t forget your alma mater!)

February 8, 2006 L01-35http://csg.csail.mit.edu/6.375/

6.375 Prerequisites
You must be familiar with undergraduate
(6.004) logic design :

Combinational and sequential logic design
Dynamic Discipline (clocking, setup and hold)
Finite State Machine design
Binary arithmetic and other encodings
Simple pipelining
ROMs/RAMs/register files

Additional circuit knowledge (6.002, 6.374)
useful but not vital
Architecture knowledge (6.823) helpful for
projects

February 8, 2006 L01-36http://csg.csail.mit.edu/6.375/

6.375 Structure
First half of term (before Spring Break)

Lecture or tutorial MWF, 2:30pm to 4:00pm in 32-124
Four labs (on Athena, lab machines in 38-301)
Form project teams (2-3 students); prepare project proposal
Closed-book 90 minute quiz (Friday before Spring Break)

Second half of term (after Spring Break)
Weekly project milestones, with 1-2 page report
Weekly project meeting with the instructor and TAs
Final project presentations in last week of classes
Final project report (~15-20 pages) due May 17 (no
extensions)

Afterwards (summer+fall commitment):
Possibility of fabricating best projects in 180nm technology
Possibility of implementing designs in FPGAs

February 8, 2006 L01-37http://csg.csail.mit.edu/6.375/

6.375 Project
(see course web page)

Two standard projects with fixed interfaces and
testbenches:

MIPS microprocessor, team selects a design point:
High performance (e.g., speculative out-of-order superscalar)
Low power (e.g., aggressive clock gating, power-efficient L0 caches)
Minimal area (e.g., heavily multiplexed byte-wide datapath,
compressed instruction stream)

Memory system, team selects a design point
Cache-coherent multiprocessor
Power-optimized memory system
Streaming non-blocking cache memory system

Custom or non standard project:
Group submits two-page proposal by March 17
C/C++/... reference implementation running by March 22
Examples: MP3 player, H.264 encoder, Graphics pipeline,
Network processor
Must work in teams of 2 or 3 students February 8, 2006 L01-38http://csg.csail.mit.edu/6.375/

6.375 Grade Breakdown

Four Labs 30%
Quiz 20%
Five Project milestones 25%
Final project report 25%

February 8, 2006 L01-39http://csg.csail.mit.edu/6.375/

6.375 Collaboration Policy
We strongly encourage students to
collaborate on understanding the course
material, BUT:

Each student must turn in individual
solutions to labs
Students must not discuss quiz contents
with students who have not yet taken the
quiz
If you’re inadvertently exposed to quiz
contents before the exam, by whatever
means, you must immediately inform the
instructors or TA

