VLSI CAD Flow: Logic Synthesis, Placement and Routing

6.375 Lecture 5

Guest Lecture by Srini Devadas

RTL Design Flow

Two-Level Logic Minimization

Can realize an arbitrary logic function in sum-of-products or two-level form

$$
\begin{aligned}
F 1 & =\bar{A} \bar{B}+\bar{A} B D+\bar{A} B \bar{C} \bar{D} \\
& +A B C \bar{D}+A \bar{B}+A B D \\
F 1 & =\bar{B}+D+\bar{A} \bar{C}+A C
\end{aligned}
$$

Of great interest to find a minimum sum-of-products representation

- Solved problem even for functions with 100's of inputs (variants of Quine-McCluskey)

Two-Level versus Multilevel

2-Level:
$f_{1}=A B+A C+A D$
$f_{2}=\bar{A} B+\bar{A} C+\bar{A} E$
6 product terms which cannot be shared.
24 transistors in static CMOS

Multi-level:

Note that $B+C$ is a common term in f_{1} and f_{2}

$$
\begin{array}{ll}
K=B+C & \\
f_{1}=A \text { Levels } \\
f_{2}=\bar{A} K+\overline{A D E} & \\
\mathbf{2 0} \text { transistors in static CMOS } \\
\text { not counting inverters }
\end{array}
$$

Technologies

"Closed book":
"Open book":
gate-array standard-cell

CMOS Domino,
complex gate static CMOS

Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.
Factored versus Disjunctive forms

$$
f=a c+a d+b c+b d+a \bar{e}
$$

sum-of-products or disjunctive form

$$
f=(a+b)(c+d)+a \bar{e}
$$

factored form
multi-level or complex gate

Optimizations

$$
F=\left\{\begin{array}{l}
f_{1}=A B+A C+A D+A E+\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \\
f_{2}=\bar{A} B+\bar{A} C+\bar{A} D+\bar{A} F+\bar{A} \bar{B} \bar{C} \bar{D} \bar{F}
\end{array}\right.
$$

Factor F

$$
F=\left\{\begin{array}{l}
f_{1}=A(B+C+D+E)+\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \\
f_{2}=\bar{A}(B+C+D+F)+\bar{A} \bar{B} \bar{C} \bar{D} \bar{F}
\end{array}\right.
$$

Extract common expression

$$
G=\left\{\begin{array}{l}
g_{1}=B+C+D \\
f_{1}=A\left(g_{1}+E\right)+\bar{A} \bar{E} \overline{g_{1}} \\
f_{2}=\bar{A}\left(g_{1}+F\right)+\bar{A} \bar{F} \overline{g_{1}}
\end{array}\right.
$$

What Does "Best" Mean?

> Transistor count \longrightarrow AREA
> Number of circuits \longrightarrow POWER
> Number of levels \longrightarrow DELAY (Speed)

Need quick estimators of area, delay and power which are also accurate

Algebraic vs. Boolean Methods

Algebraic techniques view equations as polynomials and attempt to factor equations or "divide" them
Do not exploit Boolean identities e.g., $a \bar{a}=0$

In algebraic substitution (or division) if a function
$f=f(a, b, c)$ is divided by $g=g(a, b), a$ and b
will not appear in f / g

Algebraic division: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
Boolean division: 2-level minimization required

Comparison

$$
f=a \bar{b}+a \bar{c}+b \bar{a}+b \bar{c}+c \bar{a}+c \bar{b}
$$

Algebraic factorization procedures

$$
f=a(\bar{b}+\bar{c})+\bar{a}(b+c)+b \bar{c}+c \bar{b}
$$

Boolean factorization produces

$$
\begin{aligned}
f & =(a+b+c)(\bar{a}+\bar{b}+\bar{c}) \\
I & =(b \bar{f}+\bar{b} f)(a+e)+\bar{a} \bar{e}(\bar{b} \bar{f}+b f) \\
r & =(b \bar{f}+\bar{b} f)(\bar{a}+\bar{e})+a e(\bar{b} \bar{f}+b f)
\end{aligned}
$$

Algebraic substitution of l into r fails
Boolean substitution

$$
\begin{aligned}
& r=a(\bar{e} \bar{l}+e l)+\bar{a}(\bar{e} l+e \bar{l}) \\
& l=a(e r+\bar{e} \bar{r})+\bar{a}(\bar{e} r+e \bar{r})
\end{aligned}
$$

Strong (or Boolean) Division

Given a function f to be strong divided by g
Add an extra input to f corresponding to g, namely G and obtain function h as follows

$$
\begin{aligned}
& \boldsymbol{h}_{D C}=\boldsymbol{G} \overline{\boldsymbol{g}}+\overline{\boldsymbol{G}} \boldsymbol{g} \\
& \boldsymbol{h}_{O N}=\boldsymbol{f}_{O N}-\boldsymbol{h}_{D C}
\end{aligned}
$$

Minimize h using two-level minimizer

Strong Division Example

$f=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} \bar{c}+a b c$
$g=a \bar{b}+\bar{a} b$

$$
\begin{aligned}
& \boldsymbol{h}_{D C}=G(a b+\bar{a} \bar{b})+\bar{G}(a \bar{b}+\bar{a} b) \\
& h_{O N}=f_{O N}-h_{D C}
\end{aligned}
$$

Function h

Minimization gives $h=\bar{G} c+G \bar{c}$

Weak (or Algebraic) Division

Definition: support of f as $\sup (f)=\{$ set of all variables v that occur in fas v or $\bar{v}\}$
Example: $f=A \bar{B}+C$

$$
\sup (f)=\{A, B, C\}
$$

Definition: we say that f is orthogonal to g,

$$
f \perp g, \text { if } \sup (f) \cap \sup (g)=\phi
$$

Example: $f=A+B \quad g=C+D$

$$
\therefore f \perp g \text { since }\{A, B\} \cap\{C, D\}=\phi
$$

Weak Division-2

We say that g divides f weakly if there exist h, r such that $f=g h+r$ where $h \neq \phi$ and $g \perp h$
Example: $\quad f=a b+a c+d$

$$
\begin{aligned}
& g=b+c \\
& f=a(b+c)+d \quad h=a \quad r=d
\end{aligned}
$$

We say that g divides f evenly if $r=\phi$

The quotient f / g is the largest h such that

$$
f=g h+r \text { i.e., } f=(f / g) g+r
$$

Weak Division Example

$$
\begin{aligned}
& f=a b c+a b d e+a b h+b c d \\
& g=c+d e+h
\end{aligned}
$$

Theorem: $f / g=f / c \cap f / d e \cap f / h$

$$
\begin{aligned}
& f / c=a b+b d \\
& f / d e=a b \\
& f / h=a b \\
& f / g=(a b+b d) \cap a b \cap a b=a b \\
& f=a b(c+d e+h)+b c d
\end{aligned}
$$

Time complexity: $\mathrm{O}(|f||g|)$

How to Find Good Divisors?

\$64K question

Strong division: Use existing nodes in the multilevel network to simplify other nodes

Weak division: Generate good algebraic divisors using algorithms based on "kernels" of an algebraic expression

Tech.-Dependent Optimization

OPTIMIZED LOGIC EQUATIONS

LIBRARY \longrightarrow TECHNOLOGY MAPPING
TIMING CONSTRAINTS

Area, delay and power dissipation cost functions

"Closed Book" Technologies

A standard cell technology or library is typically restricted to a few tens of gates e.g., MSU library: 31 cells

Gates may be NAND, NOR, NOT, AOIs.

Mapping via DAG Covering

Represent network in canonical form
\Rightarrow subject DAG
Represent each library gate with canonical forms for the logic function
\Rightarrow primitive DAGs
Each primitive DAG has a cost

Goal: Find a minimum cost covering of the subject DAG by the primitive DAGs
Canonical form: 2-input NAND gates and inverters

Sample Library

INVERTER
$2-\infty 0$
NAND2
$3-0$

NAND3
$4=\square 0$
NAND4

Sample Library - 2

AOI21
4

Trivial Covering

$\begin{array}{ll}7 & \text { NAND2 }=21 \\ 5 & \text { INV }= \\ & \\ & \end{array}$

Covering \#1

$\begin{array}{ll}2 \text { INV } & =4 \\ 2 \text { NAND2 } & =6 \\ 1 \text { NAND3 } & =4 \\ 1 \text { NAND4 } & =\frac{5}{19}\end{array}$

Covering \#2

1 INV	$=2$
1 NAND2	$=3$
2 NAND3	$=8$
1 AOI21	$=\frac{4}{17}$

DAG Covering

Sound Algorithmic approach
NP-hard optimization problem

Tree covering heuristic: If subject and primitive
DAGs are trees, efficient algorithm can find optimum cover in linear time
\Rightarrow dynamic programming formulation

Partitioning a Graph

Resulting Trees

Break at multiple fanout points

Dynamic Programming

Principle of optimality: Optimal cover for a tree consists of a match at the root of the tree plus the optimal cover for the sub-trees starting at each input of the match

Optimum Tree Covering

RTL Design Flow

Physical Design: Overall Conceptual Flow

Results of Placement

A bad placement

A good placement

What's good about a good placement? What's bad about a bad placement?

Results of Placement

Bad placement causes routing congestion resulting in:

- Increases in circuit area (cost) and wiring
- Longer wires \rightarrow more capacitance
- Longer delay
- Higher dynamic power dissipation

Good placement
-Circuit area (cost) and wiring decreases

- Shorter wires \rightarrow less capacitance
- Shorter delay
- Less dynamic power dissipation

Gordian Placement Flow

Data flow in the placement procedure GORDIAN
Complexity
space: $O(m)$ time: $Q\left(\mathbf{m}^{1.5} \mathbf{l o g}^{2} m\right)$
Final placement
-standard cell •macro-cell \&SOG

Gordian: A Quadratic Placement Approach

- Global optimization: solves a sequence of quadratic programming problems
- Partitioning: enforces the non-overlap constraints

Intuitive formulation

Given a series of points $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \ldots \mathrm{xn}$
and a connectivity matrix C describing the connections between them
(If cij = $\mathbf{1}$ there is a connection between xi and xj)
Find a location for each $x j$ that minimizes the total sum of all spring tensions between each pair <xi, xj>

$$
{ }^{\mathrm{xi}} \text { kososes }{ }^{\mathrm{xj}}
$$

Problem has an obvious (trivial) solution - what is it?

Improving the intuitive formulation

To avoid the trivial solution add constraints: $H x=b$

- These may be very natural - e.g. endpoints (pads) x1 xn

To integrate the notion of "critical nets"

- Add weights wij to nets

wij - some springs have more tension
should pull
associated
vertices closer

Modeling the Net's Wire Length

The length $L v$ of a net v is measured by the squared distances from its points to the net's center

$$
\begin{aligned}
& L_{v}=\sum_{u \leftarrow M_{v}}\left[\left(x_{u v}-x_{v}\right)^{2}+\left(y_{u v}-y_{v}\right)^{2}\right] \\
& \left(x_{u v}=x_{u}+\xi_{u v} ; y_{u v}=y_{u}+y_{v u}\right)
\end{aligned}
$$

$$
\text { Cost }=\left(x_{1}-100\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-200\right)^{2}
$$

$$
\frac{(1)}{(2)} \operatorname{Cost}=2\left(x_{1}-100\right)+2\left(x_{1}-x_{2}\right)
$$

$$
\frac{\omega t}{\left(x_{2}\right)} \operatorname{Cos} t=-2\left(x_{1}-x_{2}\right)+2\left(x_{2}-200\right)
$$

setting the partial derivatives $=0$ we solve for the minimum Cost:
$A x+B=0$
$\left[\begin{array}{cc}4 & -2 \\ -2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}-200 \\ -400\end{array}\right]=0$
$\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}-100 \\ -200\end{array}\right]=0$
$x 1=400 / 3 \quad x 2=500 / 3$

Quadratic Optimization Problem

- Linearly constrained quadratic programming problem

$$
\begin{array}{cc}
\min _{x \in R^{m}}\left\{\Phi(x)=x^{T} C x_{\leftarrow}+d^{T} x\right\} & \text { Accounts for fixed modules } \\
\text { s.t. } A^{(l)} X_{X}=u^{(l)} & \text { Wire-length for movable modules }
\end{array}
$$

Center-of-gravity constraints
Problem is computationally tractable, and well behaved
Commercial solvers available: mostek

Global Optimization Using Quadratic Placement

Quadratic placement clumps cells in center

Partitioning divides cells into two regions

- Placement region is also divided into two regions

New center-of-gravity constraints are added to the constraint matrix to be used on the next level of global optimization

- Global connectivity is still conserved

Setting up Global Optimization

Fig. 1. Data flow in the placement procedure GORDIAN.

Layout After Global Optimization

A. Kahng

Partitioning

Fig. 1. Data flow in the placement procedure GORDIAN.

Partitioning

In GORDIAN, partitioning is used to constrain the movement of modules rather than reduce problem size

By performing partitioning, we can iteratively impose a new set of constraints on the global optimization problem

- Assign modules to a particular block

Partitioning is determined by

- Results of global placement - initial starting point
- Spatial (x, y) distribution of modules
- Partitioning cost
- Want a min-cut partition

Layout after Min-cut

Now global placement problem will be solved again with two additional center_of_gravity constraints

Adding Positioning Constraints

- Partitioning gives us two new "center of gravity" constraints
- Simply update constraint matrix
- Still a single global optimization problem

- Partitioning is not "absolute"
- modules can migrate back during optimization
- may need to re-partition

$$
\mathbf{A}^{(l)}=\begin{gathered}
\\
\vdots \\
\varrho \\
\varrho \\
\vdots
\end{gathered}\left[\begin{array}{ccccccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Fig. 4. The constraints for global placement.

Continue to Iterate

Fig. 1. Data flow in the placement procedure GORDIAN.

First Iteration

A. Kahng

Second Iteration

A. Kahng ${ }_{21}$

Third Iteration

A. Kahng ${ }_{22}$

Fourth Iteration

Final Placement

Fig. 1. Data flow in the placement procedure GORDIAN.

Final Placement - 1

Earlier steps have broken down the problem into a manageable number of objects

Two approaches:

- Final placement for standard cells/gate array - row assignment
- Final placement for large, irregularly sized macro-blocks slicing - won't talk about this

Final Placement - Standard Cell Designs

This process continues until there are only a few cells in each group(≈ 6)

group: smallest partition
A. E. Dunlop, B. W. Kernighan, A procedure for placement of standard-cell VLSI circuits, IEEE Trans. on CAD, Vol. CAD-4, Jan , 1985, pp. 92-98

Final Placement - Creating Rows

Partitioning of circuit into 32 groups. Each group is either assigned to a single row or divided into 2 rows

Standard Cell Layout

Another Series of Gordian

(a) Global placement with 1 region

(b) Global placement with 4 region

(c) Final placements

D. Pan - U of Texas

Physical Design Flow

Imagine ...

- You have to plan transportation (i.e. roads and highways) for a new city the size of Chicago
- Many dwellings need direct roads that can't be used by anyone else
- You can affect the layout of houses and neighborhoods but the architects and planners will complain
- And ... you're told that the time along any path can't be longer than a fixed amount
- What are some of your considerations?

What are some of your considerations?

- How many levels do my roads need to go? Remember: Higher is more expensive.
- How do I avoid congestion?
- What basic structure do I want for my roads?
- Manhattan?
- Chicago?
- Boston?
- Automated route tools have to solve problems of comparable complexity on every leading edge chip

Routing Applications

Cell-based

Block-based

Routing Algorithms

Hard to tackle high-level issues like congestion and wire-planning and low level details of pinconnection at the same time

- Global routing
- Identify routing resources to be used
- Identify layers (and tracks) to be used
- Assign particular nets to these resources
- Also used in floorplanning and placement
- Detail routing
- Actually define pin-to-pin connections
- Must understand most or all design rules
- May use a compactor to optimize result

ECE 260B- Necesseren in all applications

Basic Rules of Routing - 1

A. Frons 4raknime maturge

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

- Wiring/routing performed in layers -5-9 (-11), typically only in "Manhattan" N/S E/W directions
- E.g. layer 1 - N/S
- Layer 2 - E/W
- A segment cannot cross another segment on the same wiring layer
- Wire segments can cross wires on other layers
- Power and ground may have their own layers

Basic Rules of Routing - Part 2

- Routing can be on a fixed grid -
- Case 1: Detailed routing only in channels
- Wiring can only go over a row of cells when there is a free track - can be inserted with a "feedthrough"
- Design may use of metal-1, metal-2
- Cells must bring signals (i.e. inputs, outputs) out to the channel through "ports" or "pins"

Basic Rules of Routing - Part 3

- Routing can be on a fixed or gridless (aka area routing)
- Case 1: Detailed routing over cells
- Wiring can go over cells
- Design of cells must try to minimize obstacles to routing - I.e. minimize use of metal-1, metal-2
- Cells do not need to bring signals (i.e. inputs, outputs) $\underset{A}{\text { Out to the }}$ themel - the route will come to them

Taxonomy of VLSI Routers

Today's high-perf logical/physical flow

1) optimize using estimated or extracted capacitances
2) re-place and re-route
3)if design fails to meet constraints due to poor estimation repeat 1 +2-

Top-down problems in the flow

Iteration problems in the flow

