
1

VLSI CAD Flow: Logic Synthesis, 
Placement and Routing

6.375 Lecture 5

Guest Lecture by Srini Devadas
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Two-Level Logic Minimization

Can realize an arbitrary logic function in 
sum-of-products or two-level form

F1 = A B + A B D + A B C D
+ A B C D + A B + A B D

F1 = B + D + A C + A C

Of great interest to find a minimum sum-
of-products representation

– Solved problem even for functions with 100’s 
of inputs (variants of Quine-McCluskey)
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Two-Level versus Multilevel

2-Level:

6 product terms which cannot be shared.
24 transistors in static CMOS

Multi-level:

Note that B + C is a common term in  f1 and  f2

K = B + C 3 Levels
20 transistors in static CMOS
not counting inverters

f1 = AB + AC + AD
f2 = AB + AC + AE

f1 = ΑΚ + AD

f2 = AK + AE
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Technologies

“Closed book”: gate-array
standard-cell

“Open book”: CMOS Domino,
complex gate static CMOS

LOGIC EQUATIONS

TECHNOLOGY-INDEPENDENT
OPTIMIZATION

Factoring
Commonality Extraction

LIBRARYTECH-DEPENDENT OPTIMIZATION
(MAPPING, TIMING)

OPTIMIZED LOGIC NETWORK
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Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.

Factored versus Disjunctive forms

sum-of-products or disjunctive form

factored form
multi-level or complex gate

f = ac + ad + bc + bd + ae

f = a + b( ) c + d( ) + a e
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Optimizations

Factor F

Extract common expression

F =
f1 = AB + AC + AD + AE + A BC D E

f2 = AB + AC + AD + AF + A BC D F
⎧⎨⎩

F =
f1 = A B + C + D + E( ) + ABC DE

f2 = A B + C + D + F( ) + ABC DF
⎧
⎨
⎩

G =
g1 = B + C + D
f1 = A g1 + E( ) + A E g1

f2 = A g1 + F( ) + A F g1

⎧
⎨

⎩
⎪
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What Does “Best” Mean?

Transistor count   AREA
Number of circuits POWER
Number of levels DELAY

(Speed)

Need quick estimators of area, delay and power
which are also accurate
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Algebraic vs. Boolean Methods

Algebraic techniques view equations as 
polynomials and attempt to factor equations or 
“divide” them
Do not exploit Boolean identities e.g.,  a a  =  0

In algebraic substitution (or division) if a function 
f = f(a, b, c) is divided by  g = g(a, b), a and b
will not appear in f / g

Algebraic division:  O(n log n) time
Boolean division:    2-level minimization required
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Algebraic factorization procedures

Boolean factorization produces

Algebraic substitution of  l into  r fails
Boolean substitution

Comparison

f = a b + a c + b a + b c + c a + c b

f = a b + c( ) + a b + c( ) + b c + c b

f = a + b + c( ) a + b + c( )

l = b f + bf( ) a + e( ) + ae b f + bf( )
r = b f + b f( ) a + e( ) + ae b f + bf( )

r = a e l + el( ) + a el + el( )
l = a er + e r( ) + a er + e r( )
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Given a function  f to be strong divided by  g
Add an extra input to f corresponding to  g, 

namely  G and obtain function  h as follows

Minimize  h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hDC = G g + Gg
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Strong Division Example

f = a bc + a bc + a b c + a b c

g = a b +a b
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Minimization gives  h = G c + G c

Function h

hDC =  G (a b + a b) + G (a b + a b)

hON =  fON − hDC
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Weak (or Algebraic) Division

Definition:  support of f as sup( f ) = { set of all 
variables  v that occur in f as  v or  v }

Example:    f = A B + C

sup( f ) = { A, B, C }

Definition:  we say that  f is orthogonal to  g,
f ⊥ g,  if  sup( f ) ∩ sup( g ) = φ

Example:    f = A + B g = C + D

∴ f ⊥ g since { A, B } ∩ { C, D } = φ  



14

Weak Division - 2

We say that  g divides  f weakly if there exist  h, r
such that   f  = gh + r where h ≠ φ and  g ⊥ h

Example: f  = ab + ac + d
g = b + c

f  = a(b + c) + d      h = a    r = d

We say that  g divides f evenly if r = φ

The quotient  f / g is the largest  h such that
f = gh + r i.e.,  f  = ( f / g )g + r
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Weak Division Example

f = abc + abde + abh + bcd
g = c + de + h

Theorem:     f / g  =  f / c ∩ f / de ∩ f / h

f / c    =   ab + bd
f / de   =   ab
f / h    =   ab

f / g   =   (ab + bd) ∩ ab ∩ ab =  ab

f  =  ab(c + de + h) + bcd

Time complexity: O( | f |  | g | )
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How to Find Good Divisors?

$64K question

Strong division: Use existing nodes in the 
multilevel network to simplify other nodes

Weak division: Generate good algebraic 
divisors using algorithms based on “kernels” 
of an algebraic expression
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Tech.-Dependent Optimization

Area, delay and power dissipation cost 
functions

OPTIMIZED LOGIC EQUATIONS

TECHNOLOGY MAPPING

GATE
NETLIST

LIBRARY
TIMING

CONSTRAINTS
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“Closed Book” Technologies

A standard cell technology or library is 
typically restricted to a few tens of gates
e.g., MSU library:  31 cells

Gates may  be NAND, NOR, NOT, AOIs.
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Mapping via DAG Covering

Represent network in canonical form
⇒ subject DAG

Represent each library gate with canonical 
forms for the logic function
⇒  primitive DAGs

Each primitive DAG has a cost

Goal:  Find a minimum cost covering of the 
subject DAG by the primitive DAGs

Canonical form:  2-input NAND gates and 
inverters
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Sample Library

INVERTER 2

NAND2 3

NAND3 4

NAND4 5
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Sample Library - 2

AOI21 4

AOI22 5
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Trivial Covering

subject DAG

7 NAND2  =  21
5 INV        =  10

31
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Covering #1

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

19
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Covering #2

1 INV =  2
1 NAND2 =  3
2 NAND3 =  8
1 AOI21 =  4

17
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Sound Algorithmic approach
NP-hard optimization problem

Tree covering heuristic:  If subject and primitive 
DAGs are trees, efficient algorithm can find 
optimum cover in linear time
⇒ dynamic programming formulation

DAG Covering

multiple fanout
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Partitioning a Graph



27

Resulting Trees

Break at multiple fanout points
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Dynamic Programming

Principle of optimality:  Optimal cover for a tree 
consists of a match at the root of the tree 
plus the optimal cover for the sub-trees 
starting at each input of the match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z
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Optimum Tree Covering

NAND2
3

AOI21
4 + 3 = 7

INV
11 + 2 = 13

NAND2
2 + 6 + 3 = 11

NAND2
3 + 3 = 6

NAND2
3

INV
2
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Physical Design: Overall Conceptual Flow
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning
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Kurt Keutzer

Results of Placement

A bad placement A good placement

A. Kahng

What’s good about a good placement?
What’s bad about a bad placement?



4
Kurt Keutzer

Results of Placement

Bad placement  causes routing 
congestion resulting in:

• Increases in circuit area (cost) 
and wiring

• Longer wires more capacitance
Longer delay
Higher dynamic power 
dissipation

Good placement

•Circuit area (cost) and wiring 
decreases

• Shorter wires less capacitance
Shorter delay
Less dynamic power 
dissipation



Gordian Placement Flow

Complexity
space:   O(m)   time:   Q( m1.5 log2m)

Final placement
•standard cell        •macro-cell &SOG

Global 
Optimization 
minimization   

of                   
wire length

Partitioning         
of the module set 
and dissection of 

the placement 
region

Final               
Placement           

adoption of style 
dependent       
constraints

module coordinates

position constraints

module 
coordinates

Regions           
with ≤ k    

modules

Data flow in the placement procedure GORDIAN



Gordian: A Quadratic  Placement Approach

• Global optimization:                            
solves a sequence of quadratic 
programming problems

• Partitioning:                                        
enforces the non-overlap constraints



Intuitive formulation

Given a series of points x1, x2, x3, … xn

and a connectivity matrix C describing the connections 
between them 

(If cij = 1 there is a connection between xi and xj)

Find a location for each xj that minimizes the total sum of 
all spring tensions between each pair <xi, xj>  

xjxi

Problem has an obvious (trivial) solution – what is it?



Improving the intuitive formulation

To avoid the trivial solution add constraints: Hx=b

These may be very natural - e.g. endpoints (pads)

To integrate the notion of ``critical nets’’
Add weights wij to nets

xjxi wij - some 
springs have 
more tension
should pull 
associated 
vertices closer

x1 xn

wij



Modeling the Net’s Wire Length

∑ ( ) ( )[ ]yyxxL
Mu vuvvuvv

v
−+−=
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22

module u

(xv ,yv)

(xu ,yu )
),( vuvu ηξ

vupin 

vul vnet 
node

x

y
connection to 
other modules

(  xuv= xu+ uv ;ξ yuv = yu+ y       )vu

The length Lv of a net v is measured by the squared distances from its 
points to the net’s center
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Kurt Keutzer

Cost = (x1 − 100)2 + (x1 − x2)2 + (x2 − 200)2

x1
Cost = 2(x1 − 100) + 2(x1 − x2)

x2
Cost =− 2(x1 −x2) + 2(x2 − 200)

setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0 

  = 04 −2
−2 4

x1
x2

+ −200
−400

 = 02 −1
−1 2

x1
x2

+ −100
−200

x1=400/3   x2=500/3

x2x1

x=100 x=200Toy
Example:

D. Pan
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Quadratic Optimization Problem
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Wire-length for movable modules

Accounts for fixed modules

Center-of-gravity constraints

Problem is computationally tractable, and well behaved

Commercial solvers available: mostek



Global Optimization Using Quadratic 
Placement

Quadratic placement clumps cells in center

Partitioning divides cells into two regions
Placement region is also divided into two regions

New center-of-gravity constraints are added to the 
constraint matrix to be used on the next level of global 
optimization

Global connectivity is still conserved



Setting up Global Optimization



Layout After Global Optimization

A. Kahng



Partitioning
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Kurt Keutzer

Partitioning

In GORDIAN, partitioning is used to constrain the movement of 
modules rather than reduce problem size

By performing partitioning, we can iteratively impose a new 
set of constraints on the global optimization problem

Assign modules to a particular block

Partitioning is determined by
Results of global placement – initial starting point

Spatial (x,y) distribution of modules
Partitioning cost

Want a min-cut partition



Layout after Min-cut

Now global placement problem will be solved again  
with two additional center_of_gravity constraints



Adding Positioning Constraints

• Partitioning gives us two 
new “center of gravity” 
constraints

• Simply update constraint 
matrix

• Still a single global 
optimization problem

• Partitioning is not 
“absolute” 

• modules can migrate 
back during optimization

• may need to re-partition



Continue to Iterate
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Kurt Keutzer

First Iteration

A. Kahng
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Kurt Keutzer

Second Iteration

A. Kahng
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Kurt Keutzer

Third Iteration

A. Kahng
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Kurt Keutzer

Fourth Iteration

A. Kahng



Final Placement
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Kurt Keutzer

Final Placement - 1

Earlier steps have broken down the problem into a manageable 
number of objects

Two approaches:
Final placement for standard cells/gate array – row 
assignment
Final placement for large, irregularly sized macro-blocks –
slicing – won’t talk about this



Final Placement – Standard Cell Designs

This process continues until there are only a 
few cells in each group( ≈ 6 )

each group 
has ≤ 6 cells

group: smallest partition

Assign cells in each 
group close together in 
the same row or nearly 
in adjacent rows

A. E. Dunlop, B. W. Kernighan, 
A procedure for placement of  standard-cell VLSI 
circuits, IEEE Trans. on CAD, Vol. CAD-4,  Jan , 1985, 
pp. 92- 98
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Kurt Keutzer

Final Placement – Creating Rows

1 1 1 1,2
1,2 1,2

1,2 2
2 2,3 2,3

2,3
2,3

3 33

3,4 3,43,43,4
4 44

4
5

555
5

5
4,5 4,5

Row-based 
standard cell 
design

Partitioning of circuit into 32 groups. Each group is 
either assigned to a  single row or divided into 2 rows
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Kurt Keutzer

Standard Cell Layout
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Kurt Keutzer

Another Series of Gordian

(a) Global placement with 1 region (b) Global placement with 4 region (c) Final placements

D. Pan – U of Texas



ECE 260B – CSE 241A /UCB EECS 244 1
Kahng/Keutzer/Newton

Physical Design Flow
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning

Courtesy K. Keutzer et al. UCB
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Kahng/Keutzer/Newton

Imagine …

You have to plan transportation (i.e. roads and highways) 
for a new city the size of Chicago

Many dwellings need direct roads that can’t be used by 
anyone else

You can affect the layout of houses and neighborhoods 
but the architects and planners will complain

And … you’re told that the time along any path can’t be 
longer than a fixed amount

What are some of your considerations?
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Kahng/Keutzer/Newton

What are some of your considerations?

How many levels do my roads need to go? Remember: 
Higher is more expensive.

How do I avoid congestion?

What basic structure do I want for my roads?
Manhattan?
Chicago?
Boston?

Automated route tools have to solve problems of 
comparable complexity on every leading edge chip
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Routing Applications

Block-basedBlock-based

Mixed
Cell and Block

Mixed
Cell and Block

Cell-basedCell-based
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Kahng/Keutzer/Newton

Routing Algorithms

Hard to tackle high-level issues like congestion 
and wire-planning and low level details of pin-
connection at the same time

Global routing
Identify routing resources to be used
Identify layers (and tracks) to be used
Assign particular nets to these resources
Also used in floorplanning and placement

Detail routing
Actually define pin-to-pin connections
Must understand most or all design rules
May use a compactor to optimize result
Necessary in all applications
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Basic Rules of Routing - 1

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

Wiring/routing 
performed in layers –
5-9 (-11), typically 
only in “Manhattan” 
N/S E/W directions

E.g. layer 1 – N/S
Layer 2 – E/W

A segment cannot 
cross another 
segment on the same 
wiring layer

Wire segments can
cross wires on other 
layers

Power and ground 
may have their own 
layers
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Basic Rules of Routing – Part 2

Routing can be on a fixed grid –

Case 1: Detailed routing only in channels
Wiring can only go over a row of cells when there is a 
free track – can be inserted with a “feedthrough”
Design may use of metal-1, metal-2
Cells must bring signals (i.e. inputs, outputs) out to the 
channel through “ports” or “pins”
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Kahng/Keutzer/Newton

Basic Rules of Routing – Part 3

Routing can be on a fixed or gridless (aka area 
routing)

Case 1: Detailed routing over cells
Wiring can go over cells
Design of cells must try to minimize obstacles to 
routing – I.e. minimize use of metal-1, metal-2
Cells do not need to bring signals (i.e. inputs, outputs) 
out to the channel – the route will come to them
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Taxonomy of VLSI Routers

Graph Search

Steiner

Iterative

Hierarchical Greedy Left-Edge

River

Switchbox

Channel

Maze

Line Probe

Line Expansion

Restricted General Purpose Power & Ground

Clock

Global Detailed Specialized

Routers

Courtesy K. Keutzer et al. UCB
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Today’s high-perf logical/physical flow

1) optimize using 
estimated or 
extracted 
capacitances

2) re-place and re-route
3)if design fails to meet 

constraints due to 
poor estimation -
repeat 1 +2-

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays
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Kahng/Keutzer/Newton

Top-down problems in the flow

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays

initial capacitance 
estimates inaccurate

inability to take top-
down timing 
constraints

inaccurate internal 
timing model



ECE 260B – CSE 241A /UCB EECS 244 12
Kahng/Keutzer/Newton

Iteration problems in the flow

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays

updated capacitances 
cause significant 
changes in 
optimization

limited-incremental 
capability

resulting iteration may 
not bring closer to 

convergence


