
1

VLSI CAD Flow: Logic Synthesis,
Placement and Routing

6.375 Lecture 5

Guest Lecture by Srini Devadas

2

RTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

3

Two-Level Logic Minimization

Can realize an arbitrary logic function in
sum-of-products or two-level form

F1 = A B + A B D + A B C D
+ A B C D + A B + A B D

F1 = B + D + A C + A C

Of great interest to find a minimum sum-
of-products representation

– Solved problem even for functions with 100’s
of inputs (variants of Quine-McCluskey)

4

Two-Level versus Multilevel

2-Level:

6 product terms which cannot be shared.
24 transistors in static CMOS

Multi-level:

Note that B + C is a common term in f1 and f2

K = B + C 3 Levels
20 transistors in static CMOS
not counting inverters

f1 = AB + AC + AD
f2 = AB + AC + AE

f1 = ΑΚ + AD

f2 = AK + AE

5

Technologies

“Closed book”: gate-array
standard-cell

“Open book”: CMOS Domino,
complex gate static CMOS

LOGIC EQUATIONS

TECHNOLOGY-INDEPENDENT
OPTIMIZATION

Factoring
Commonality Extraction

LIBRARYTECH-DEPENDENT OPTIMIZATION
(MAPPING, TIMING)

OPTIMIZED LOGIC NETWORK

6

Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.

Factored versus Disjunctive forms

sum-of-products or disjunctive form

factored form
multi-level or complex gate

f = ac + ad + bc + bd + ae

f = a + b() c + d() + a e

7

Optimizations

Factor F

Extract common expression

F =
f1 = AB + AC + AD + AE + A BC D E

f2 = AB + AC + AD + AF + A BC D F
⎧⎨⎩

F =
f1 = A B + C + D + E() + ABC DE

f2 = A B + C + D + F() + ABC DF
⎧
⎨
⎩

G =
g1 = B + C + D
f1 = A g1 + E() + A E g1

f2 = A g1 + F() + A F g1

⎧
⎨

⎩
⎪

8

What Does “Best” Mean?

Transistor count AREA
Number of circuits POWER
Number of levels DELAY

(Speed)

Need quick estimators of area, delay and power
which are also accurate

9

Algebraic vs. Boolean Methods

Algebraic techniques view equations as
polynomials and attempt to factor equations or
“divide” them
Do not exploit Boolean identities e.g., a a = 0

In algebraic substitution (or division) if a function
f = f(a, b, c) is divided by g = g(a, b), a and b
will not appear in f / g

Algebraic division: O(n log n) time
Boolean division: 2-level minimization required

10

Algebraic factorization procedures

Boolean factorization produces

Algebraic substitution of l into r fails
Boolean substitution

Comparison

f = a b + a c + b a + b c + c a + c b

f = a b + c() + a b + c() + b c + c b

f = a + b + c() a + b + c()

l = b f + bf() a + e() + ae b f + bf()
r = b f + b f() a + e() + ae b f + bf()

r = a e l + el() + a el + el()
l = a er + e r() + a er + e r()

11

Given a function f to be strong divided by g
Add an extra input to f corresponding to g,

namely G and obtain function h as follows

Minimize h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hDC = G g + Gg

12

Strong Division Example

f = a bc + a bc + a b c + a b c

g = a b +a b

1xx

x

x

1

1

x x

x

x100

01

11

10

00 01 11 10bc
Ga

Minimization gives h = G c + G c

Function h

hDC = G (a b + a b) + G (a b + a b)

hON = fON − hDC

13

Weak (or Algebraic) Division

Definition: support of f as sup(f) = { set of all
variables v that occur in f as v or v }

Example: f = A B + C

sup(f) = { A, B, C }

Definition: we say that f is orthogonal to g,
f ⊥ g, if sup(f) ∩ sup(g) = φ

Example: f = A + B g = C + D

∴ f ⊥ g since { A, B } ∩ { C, D } = φ

14

Weak Division - 2

We say that g divides f weakly if there exist h, r
such that f = gh + r where h ≠ φ and g ⊥ h

Example: f = ab + ac + d
g = b + c

f = a(b + c) + d h = a r = d

We say that g divides f evenly if r = φ

The quotient f / g is the largest h such that
f = gh + r i.e., f = (f / g)g + r

15

Weak Division Example

f = abc + abde + abh + bcd
g = c + de + h

Theorem: f / g = f / c ∩ f / de ∩ f / h

f / c = ab + bd
f / de = ab
f / h = ab

f / g = (ab + bd) ∩ ab ∩ ab = ab

f = ab(c + de + h) + bcd

Time complexity: O(| f | | g |)

16

How to Find Good Divisors?

$64K question

Strong division: Use existing nodes in the
multilevel network to simplify other nodes

Weak division: Generate good algebraic
divisors using algorithms based on “kernels”
of an algebraic expression

17

Tech.-Dependent Optimization

Area, delay and power dissipation cost
functions

OPTIMIZED LOGIC EQUATIONS

TECHNOLOGY MAPPING

GATE
NETLIST

LIBRARY
TIMING

CONSTRAINTS

18

“Closed Book” Technologies

A standard cell technology or library is
typically restricted to a few tens of gates
e.g., MSU library: 31 cells

Gates may be NAND, NOR, NOT, AOIs.

A

A

A

C

A

B

AB+C

B

C

A

19

Mapping via DAG Covering

Represent network in canonical form
⇒ subject DAG

Represent each library gate with canonical
forms for the logic function
⇒ primitive DAGs

Each primitive DAG has a cost

Goal: Find a minimum cost covering of the
subject DAG by the primitive DAGs

Canonical form: 2-input NAND gates and
inverters

20

Sample Library

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

21

Sample Library - 2

AOI21 4

AOI22 5

22

Trivial Covering

subject DAG

7 NAND2 = 21
5 INV = 10

31

23

Covering #1

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

19

24

Covering #2

1 INV = 2
1 NAND2 = 3
2 NAND3 = 8
1 AOI21 = 4

17

25

Sound Algorithmic approach
NP-hard optimization problem

Tree covering heuristic: If subject and primitive
DAGs are trees, efficient algorithm can find
optimum cover in linear time
⇒ dynamic programming formulation

DAG Covering

multiple fanout

26

Partitioning a Graph

27

Resulting Trees

Break at multiple fanout points

28

Dynamic Programming

Principle of optimality: Optimal cover for a tree
consists of a match at the root of the tree
plus the optimal cover for the sub-trees
starting at each input of the match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

29

Optimum Tree Covering

NAND2
3

AOI21
4 + 3 = 7

INV
11 + 2 = 13

NAND2
2 + 6 + 3 = 11

NAND2
3 + 3 = 6

NAND2
3

INV
2

RTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Physical Design: Overall Conceptual Flow
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning

3
Kurt Keutzer

Results of Placement

A bad placement A good placement

A. Kahng

What’s good about a good placement?
What’s bad about a bad placement?

4
Kurt Keutzer

Results of Placement

Bad placement causes routing
congestion resulting in:

• Increases in circuit area (cost)
and wiring

• Longer wires more capacitance
Longer delay
Higher dynamic power
dissipation

Good placement

•Circuit area (cost) and wiring
decreases

• Shorter wires less capacitance
Shorter delay
Less dynamic power
dissipation

Gordian Placement Flow

Complexity
space: O(m) time: Q(m1.5 log2m)

Final placement
•standard cell •macro-cell &SOG

Global
Optimization
minimization

of
wire length

Partitioning
of the module set
and dissection of

the placement
region

Final
Placement

adoption of style
dependent
constraints

module coordinates

position constraints

module
coordinates

Regions
with ≤ k

modules

Data flow in the placement procedure GORDIAN

Gordian: A Quadratic Placement Approach

• Global optimization:
solves a sequence of quadratic
programming problems

• Partitioning:
enforces the non-overlap constraints

Intuitive formulation

Given a series of points x1, x2, x3, … xn

and a connectivity matrix C describing the connections
between them

(If cij = 1 there is a connection between xi and xj)

Find a location for each xj that minimizes the total sum of
all spring tensions between each pair <xi, xj>

xjxi

Problem has an obvious (trivial) solution – what is it?

Improving the intuitive formulation

To avoid the trivial solution add constraints: Hx=b

These may be very natural - e.g. endpoints (pads)

To integrate the notion of ``critical nets’’
Add weights wij to nets

xjxi wij - some
springs have
more tension
should pull
associated
vertices closer

x1 xn

wij

Modeling the Net’s Wire Length

∑ () ()[]yyxxL
Mu vuvvuvv

v
−+−=

←
22

module u

(xv ,yv)

(xu ,yu)
),(vuvu ηξ

vupin

vul vnet
node

x

y
connection to
other modules

(xuv= xu+ uv ;ξ yuv = yu+ y)vu

The length Lv of a net v is measured by the squared distances from its
points to the net’s center

10
Kurt Keutzer

Cost = (x1 − 100)2 + (x1 − x2)2 + (x2 − 200)2

x1
Cost = 2(x1 − 100) + 2(x1 − x2)

x2
Cost =− 2(x1 −x2) + 2(x2 − 200)

setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0

 = 04 −2
−2 4

x1
x2

+ −200
−400

 = 02 −1
−1 2

x1
x2

+ −100
−200

x1=400/3 x2=500/3

x2x1

x=100 x=200Toy
Example:

D. Pan

ρ

Quadratic Optimization Problem

D
E

F

A
B

C

),(''ρ vu

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

M

L

L

M

M

M

M

M

MMMM

MMMM

M

M

*
0

*
0

*000
0***

'
)(

ρ
ρ

lA

GFEDCBA

Linearly constrained quadratic programming problem

)({min TT

Rx
x }dxCxx

m
+=Φ

∈

ρ),(ρ vu

s.t.)()(ll uxA =
Wire-length for movable modules

Accounts for fixed modules

Center-of-gravity constraints

Problem is computationally tractable, and well behaved

Commercial solvers available: mostek

Global Optimization Using Quadratic
Placement

Quadratic placement clumps cells in center

Partitioning divides cells into two regions
Placement region is also divided into two regions

New center-of-gravity constraints are added to the
constraint matrix to be used on the next level of global
optimization

Global connectivity is still conserved

Setting up Global Optimization

Layout After Global Optimization

A. Kahng

Partitioning

16
Kurt Keutzer

Partitioning

In GORDIAN, partitioning is used to constrain the movement of
modules rather than reduce problem size

By performing partitioning, we can iteratively impose a new
set of constraints on the global optimization problem

Assign modules to a particular block

Partitioning is determined by
Results of global placement – initial starting point

Spatial (x,y) distribution of modules
Partitioning cost

Want a min-cut partition

Layout after Min-cut

Now global placement problem will be solved again
with two additional center_of_gravity constraints

Adding Positioning Constraints

• Partitioning gives us two
new “center of gravity”
constraints

• Simply update constraint
matrix

• Still a single global
optimization problem

• Partitioning is not
“absolute”

• modules can migrate
back during optimization

• may need to re-partition

Continue to Iterate

20
Kurt Keutzer

First Iteration

A. Kahng

21
Kurt Keutzer

Second Iteration

A. Kahng

22
Kurt Keutzer

Third Iteration

A. Kahng

23
Kurt Keutzer

Fourth Iteration

A. Kahng

Final Placement

25
Kurt Keutzer

Final Placement - 1

Earlier steps have broken down the problem into a manageable
number of objects

Two approaches:
Final placement for standard cells/gate array – row
assignment
Final placement for large, irregularly sized macro-blocks –
slicing – won’t talk about this

Final Placement – Standard Cell Designs

This process continues until there are only a
few cells in each group(≈ 6)

each group
has ≤ 6 cells

group: smallest partition

Assign cells in each
group close together in
the same row or nearly
in adjacent rows

A. E. Dunlop, B. W. Kernighan,
A procedure for placement of standard-cell VLSI
circuits, IEEE Trans. on CAD, Vol. CAD-4, Jan , 1985,
pp. 92- 98

27
Kurt Keutzer

Final Placement – Creating Rows

1 1 1 1,2
1,2 1,2

1,2 2
2 2,3 2,3

2,3
2,3

3 33

3,4 3,43,43,4
4 44

4
5

555
5

5
4,5 4,5

Row-based
standard cell
design

Partitioning of circuit into 32 groups. Each group is
either assigned to a single row or divided into 2 rows

28
Kurt Keutzer

Standard Cell Layout

29
Kurt Keutzer

Another Series of Gordian

(a) Global placement with 1 region (b) Global placement with 4 region (c) Final placements

D. Pan – U of Texas

ECE 260B – CSE 241A /UCB EECS 244 1
Kahng/Keutzer/Newton

Physical Design Flow
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning

Courtesy K. Keutzer et al. UCB

ECE 260B – CSE 241A /UCB EECS 244 2
Kahng/Keutzer/Newton

Imagine …

You have to plan transportation (i.e. roads and highways)
for a new city the size of Chicago

Many dwellings need direct roads that can’t be used by
anyone else

You can affect the layout of houses and neighborhoods
but the architects and planners will complain

And … you’re told that the time along any path can’t be
longer than a fixed amount

What are some of your considerations?

ECE 260B – CSE 241A /UCB EECS 244 3
Kahng/Keutzer/Newton

What are some of your considerations?

How many levels do my roads need to go? Remember:
Higher is more expensive.

How do I avoid congestion?

What basic structure do I want for my roads?
Manhattan?
Chicago?
Boston?

Automated route tools have to solve problems of
comparable complexity on every leading edge chip

ECE 260B – CSE 241A /UCB EECS 244 4
Kahng/Keutzer/Newton

Routing Applications

Block-basedBlock-based

Mixed
Cell and Block

Mixed
Cell and Block

Cell-basedCell-based

ECE 260B – CSE 241A /UCB EECS 244 5
Kahng/Keutzer/Newton

Routing Algorithms

Hard to tackle high-level issues like congestion
and wire-planning and low level details of pin-
connection at the same time

Global routing
Identify routing resources to be used
Identify layers (and tracks) to be used
Assign particular nets to these resources
Also used in floorplanning and placement

Detail routing
Actually define pin-to-pin connections
Must understand most or all design rules
May use a compactor to optimize result
Necessary in all applications

ECE 260B – CSE 241A /UCB EECS 244 6
Kahng/Keutzer/Newton

Basic Rules of Routing - 1

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

Wiring/routing
performed in layers –
5-9 (-11), typically
only in “Manhattan”
N/S E/W directions

E.g. layer 1 – N/S
Layer 2 – E/W

A segment cannot
cross another
segment on the same
wiring layer

Wire segments can
cross wires on other
layers

Power and ground
may have their own
layers

ECE 260B – CSE 241A /UCB EECS 244 7
Kahng/Keutzer/Newton

Basic Rules of Routing – Part 2

Routing can be on a fixed grid –

Case 1: Detailed routing only in channels
Wiring can only go over a row of cells when there is a
free track – can be inserted with a “feedthrough”
Design may use of metal-1, metal-2
Cells must bring signals (i.e. inputs, outputs) out to the
channel through “ports” or “pins”

ECE 260B – CSE 241A /UCB EECS 244 8
Kahng/Keutzer/Newton

Basic Rules of Routing – Part 3

Routing can be on a fixed or gridless (aka area
routing)

Case 1: Detailed routing over cells
Wiring can go over cells
Design of cells must try to minimize obstacles to
routing – I.e. minimize use of metal-1, metal-2
Cells do not need to bring signals (i.e. inputs, outputs)
out to the channel – the route will come to them

ECE 260B – CSE 241A /UCB EECS 244 9
Kahng/Keutzer/Newton

Taxonomy of VLSI Routers

Graph Search

Steiner

Iterative

Hierarchical Greedy Left-Edge

River

Switchbox

Channel

Maze

Line Probe

Line Expansion

Restricted General Purpose Power & Ground

Clock

Global Detailed Specialized

Routers

Courtesy K. Keutzer et al. UCB

ECE 260B – CSE 241A /UCB EECS 244 10
Kahng/Keutzer/Newton

Today’s high-perf logical/physical flow

1) optimize using
estimated or
extracted
capacitances

2) re-place and re-route
3)if design fails to meet

constraints due to
poor estimation -
repeat 1 +2-

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays

ECE 260B – CSE 241A /UCB EECS 244 11
Kahng/Keutzer/Newton

Top-down problems in the flow

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays

initial capacitance
estimates inaccurate

inability to take top-
down timing
constraints

inaccurate internal
timing model

ECE 260B – CSE 241A /UCB EECS 244 12
Kahng/Keutzer/Newton

Iteration problems in the flow

netlist
Library user constraints

layout

RC

extraction

delay
model

generator

routing

tech
files

placement

logic
optimization/
timing verif

SDF
cell/wire
delays

updated capacitances
cause significant
changes in
optimization

limited-incremental
capability

resulting iteration may
not bring closer to

convergence

