
February 24, 2006 http://csg.csail.mit.edu/6.375/ L07-1

Bluespec-1: Design
Affects Everything

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 24, 2006 L07-2http://csg.csail.mit.edu/6.375/

Chip costs are exploding
because of design complexity

Design and verification
dominate escalating
project costs

Issues Found on First Spin ICs/ASICs

43%
20%

17%
14%

12%
11%
11%

10%
10%

7%
4%

3%

0% 10% 20% 30% 40% 50%

Functional Logic Error
Analog Tuning Issue

Signal Integrity Issue
Clock Scheme Error

Reliability Issue
Mixed Signal Problem

Too Much Power
Has Path(s) Too Slow
Has Path(s) Too Fast

IR Drop Issues
Firmware Error

Other

Source: Aart de Geus, CEO of Synopsys
Based on a survey of 2000 users by Synopsys

SoC failures
costing

time/spins

IC Design Costs

0

5

10

15

20

25

30

0.18µm 0.13µm 90nm

Silicon Feature Dimension

C
o

st
 (

$
M

)

Source: IBM/IBS, Inc.

Architecture

Verification

Physical

Validation
Prototype

February 24, 2006 L07-3http://csg.csail.mit.edu/6.375/

Common quotes
“Design is not a problem;
design is easy”

Almost complete reliance on post-design
verification for qualityMind se

t

“Verification is a problem”
“Timing closure is a problem”
“Physical design is a problem”

February 24, 2006 L07-4http://csg.csail.mit.edu/6.375/

The U.S. auto industry
Sought quality solely through post-build inspection
Planned for defects and rework

and U.S. quality was…

Through the early 1980s:

Defect

Make Inspect Rework

D
ef

ec
t

D
ef

ec
t

February 24, 2006 L07-5http://csg.csail.mit.edu/6.375/

… less than world class

Adding quality inspectors (“verification
engineers”) and giving them better tools, was
not the solution
The Japanese auto industry showed the way

“Zero defect” manufacturing

February 24, 2006 L07-6http://csg.csail.mit.edu/6.375/

New mind set:

Design affects everything!
A good design methodology

Can keep up with changing specs
Permits architectural exploration
Facilitates verification and debugging
Eases changes for timing closure
Eases changes for physical design
Promotes reuse

Design for Correctness

⇒ It is essential to

February 24, 2006 L07-7http://csg.csail.mit.edu/6.375/

New semantics for expressing behavior
to reduce design complexity

Decentralize complexity: Rule-based
specifications (Guarded Atomic Actions)

Let us think about one rule at a time

Formalize composition: Modules with
guarded interfaces

Automatically manage and ensure the
correctness of connectivity, i.e., correct-by-
construction methodology
Retain resilience to changes in design or
layout, e.g. compute latency ∆’s
Promote regularity of layout at macro level

Bluespec

February 24, 2006 L07-8http://csg.csail.mit.edu/6.375/

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

RTL has poor semantics for
composition

Example: Commercially available
FIFO IP block

These constraints are spread over many pages of
the documentation...

No machine verific
ation of su

ch

informal co
nstra

ints i
s fe

asible

February 24, 2006 L07-9http://csg.csail.mit.edu/6.375/

Bluespec promotes composition
through guarded interfaces

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

en
q

de
q

fir
st

FIFO

theModuleA

theModuleB

theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration

control

Dequeue
arbitration

control

Self-documenting
interfaces;
Automatic generation
of logic to eliminate
conflicts in use.

February 24, 2006 L07-10http://csg.csail.mit.edu/6.375/

In Bluespec SystemVerilog (BSV) …
Power to express complex static
structures and constraints

Checked by the compiler

“Micro-protocols” are managed by the
compiler

The compiler generates the necessary
hardware (muxing and control)
Micro-protocols need less or no verification

Easier to make changes while
preserving correctness

Smaller, simpler, clearer, more correct code

February 24, 2006 L07-11http://csg.csail.mit.edu/6.375/

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

February 24, 2006 L07-12http://csg.csail.mit.edu/6.375/

Examples

GCD
Multiplication
IP Lookup

February 24, 2006 L07-13http://csg.csail.mit.edu/6.375/

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

15 6
9 6 subtract

February 24, 2006 L07-14http://csg.csail.mit.edu/6.375/

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a; y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD in BSV

Assumes x /= 0 and y /= 0

x y

swap sub

February 24, 2006 L07-15http://csg.csail.mit.edu/6.375/

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module

The module can easily be made polymorphic

Many different implementations can provide the same
interface: module mkGCD (I_GCD)

February 24, 2006 L07-16http://csg.csail.mit.edu/6.375/

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) && (y != 0));
x <= y; y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a; y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD:
Another implementation

Combine swap
and subtract rule

Does it compute faster ?

February 24, 2006 L07-17http://csg.csail.mit.edu/6.375/

Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluespec C sim Cycle
Accurate

Blueview

February 24, 2006 L07-18http://csg.csail.mit.edu/6.375/

Generated Verilog RTL: GCD
module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,

result,RDY_result);
input CLK; input RST_N;

// action method start
input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...

February 24, 2006 L07-19http://csg.csail.mit.edu/6.375/

Generated Hardware

x_en y_enx y

> !(=0)

swap? subtract?

sub

February 24, 2006 L07-20http://csg.csail.mit.edu/6.375/

Generated Hardware Module

x_en y_enx y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

start_en start_en

February 24, 2006 L07-21http://csg.csail.mit.edu/6.375/

GCD: A Simple Test Bench
module mkTest ();
Reg#(int) state <- mkReg(0);
I_GCD gcd <- mkGCD();

rule go (state == 0);

gcd.start (423, 142);
state <= 1;

endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;

endrule
endmodule

Why do we need
the state variable?

February 24, 2006 L07-22http://csg.csail.mit.edu/6.375/

GCD: Test Bench
module mkTest ();

Reg#(int) state <- mkReg(0);
Reg#(Int#(4)) c1 <- mkReg(1);
Reg#(Int#(7)) c2 <- mkReg(1);
I_GCD gcd <- mkGCD();

rule req (state==0);
gcd.start(signExtend(c1), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);
$display (“GCD of %d & %d =%d”, c1, c2, gcd.result());
if (c1==7) begin c1 <= 1; c2 <= c2+1; state <= 0; end

else c1 <= c1+1;
if (c2 == 63) state <= 2;

endrule
endmodule

February 24, 2006 L07-23http://csg.csail.mit.edu/6.375/

GCD: Synthesis results

Original (16 bits)
Clock Period: 1.6 ns
Area: 4240.10 mm2

Unrolled (16 bits)
Clock Period: 1.65ns
Area: 5944.29 mm2

Unrolled takes 31% fewer cycles on
testbench

February 24, 2006 L07-24http://csg.csail.mit.edu/6.375/

Multiplier Example
Simple binary multiplication:

1001
0101
1001

0000
1001

0000
0101101

// d = 4’d9
// r = 4’d5
// d << 0 (since r[0] == 1)
// 0 << 1 (since r[1] == 0)
// d << 2 (since r[2] == 1)
// 0 << 3 (since r[3] == 0)
// product (sum of above) = 45

x

What does it look like in Bluespec?

d r product

One step of multiplicationOne step of multiplication

February 24, 2006 L07-25http://csg.csail.mit.edu/6.375/

module mkMult (I_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(32)) d <- mkReg(0);
Reg#(Int#(16)) r <- mkReg(0);

rule cycle

endrule

method Action start

endmethod

method Int#(32) result ()

endmethod
endmodule

Multiplier in Bluespec

What is the
interface
I_mult ?

February 24, 2006 http://csg.csail.mit.edu/6.375/ L07-26

Exploring microarchitectures

IP Lookup Module

February 24, 2006 L07-27http://csg.csail.mit.edu/6.375/

IP Lookup block in a router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on
the “Longest Prefix Match”
(LPM) of it’s IP address with
entries in a routing table
Line rate and the order of
arrival must be maintained line rate ⇒ 15Mpps for 10GE

February 24, 2006 L07-28http://csg.csail.mit.edu/6.375/

18

2

3

M RefResultIP address

E5.13.7.2

C10.18.200.7

7.14.7.2

F10.18.201.5

F7.13.7.3

Sparse tree representation

3

A…

A…

B

C…

C…

5 D

F…

F…

14

A…

A…

7

F…

F…

200

F…

F…

F*

E5.*.*.*

D10.18.200.5

C10.18.200.*

B7.14.7.3

A7.14.*.* F…
F…

F

F…

E5

7

10

255

0

1
4

4A Real-world lookup algorithms
are more complex but all make
a sequence of dependent
memory references.

February 24, 2006 L07-29http://csg.csail.mit.edu/6.375/

SW (“C”) version of LPM
int
lpm (IPA ipa) /* 3 memory lookups */
{ int p;

p = RAM [ipa[31:16]]; /* Level 1: 16 bits */
if (isLeaf(p)) return p;

p = RAM [p + ipa [15:8]]; /* Level 2: 8 bits */
if (isLeaf(p)) return p;

p = RAM [p + ipa [7:0]]; /* Level 3: 8 bits */
return p; /* must be a leaf */

}

How to implement LPM in HW?
Not obvious from C code!

February 24, 2006 L07-30http://csg.csail.mit.edu/6.375/

Longest Prefix Match for IP lookup:
3 possible implementation architectures

Rigid pipeline

Inefficient memory
usage but simple
design

Linear pipeline

Efficient memory
usage through
memory port
replicator

Circular pipeline

Efficient memory
with most complex
control

Designer’s
Ranking:

1 2 3
Which is “best”?

February 24, 2006 L07-31http://csg.csail.mit.edu/6.375/

Static Pipeline

RAM

MUX

req

IP addr

resp

February 24, 2006 L07-32http://csg.csail.mit.edu/6.375/

Static code
rule static (True);

if (canInsert(c5))
begin
c1 <= 0; r1 <= in.first(); in.deq();

end
else
begin
r1 <= r5; c1 <= c5;

end
if (notEmpty(r1)) makeMemReq(r1);
r2 <= r1; c2 <= c1;
r3 <= r2; c3 <= c2;
r4 <= r3; c4 <= c3;
r5 <= getMemResp(); c5 <= (c4 == n-1) ? 0 : n;
if (c5 == n) out.enq(r5);

endrule

February 24, 2006 L07-33http://csg.csail.mit.edu/6.375/

Circular pipeline

luReq

luResp

enter?enter?
done?done?RAM

cbuf
yes

getToken

in

active

no

February 24, 2006 L07-34http://csg.csail.mit.edu/6.375/

Circular Pipeline code
rule enter (True);

t <- cbuf.newToken();
IP ip = in.first(); ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], t)); in.deq();

endrule
rule done (True);

p <- ram.resp();
match {.rip, .t} = active.first();
if (isLeaf(p)) cbuf.complete(t, p);
else begin

match {.newreq, .newrip} = remainder(p, rip);
active.enq(rip << 8, t);
ram.req(p+signExtend(rip[15:7]));

end
active.deq();

endrule

February 24, 2006 L07-35http://csg.csail.mit.edu/6.375/

Synthesis results

V = Verilog
BSV = Bluespec System Verilog

99.9%3.67 (2% slower)8170 (1% larger)257Circular BSV

99.9%3.628103364Circular V

99.9%4.7 (same)15910 (8% larger)168Linear BSV

99.9%4.714759410Linear V

63.5%3.32 (7% faster)2391 (5% larger)179Static BSV

63.5%3.562271220Static V

Mem. util.
(random
workload)

Best Speed
(ns)

Best Area
(gates)

Code
size
(lines)

LPM
versions

Synthesized to TSMC 0.18 µm library

Bluespec and Verilog synthesis results are nearly identical

Arvind, Nikhil, Rosenband & Dave ICCAD 2004

February 24, 2006 L07-36http://csg.csail.mit.edu/6.375/

Next Time

Combinational Circuits and Types

