> Bluespec-1: Design
Affects Everything

Arvind

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

1N

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-1

Chip costs are exploding
because of design complexity

Issues Found on First Spin ICs/ASICs
0% 10% 20% 30% 40% 50%

N

Functional Logic Error #43%

10%
10%

Has Path(s) Too Slow
Has Path(s) Too Fast
IR Drop Issues —=7%
Firmware Error 4%
Other 3%

I Analog Tuning Issue | 20%
SOC fallures Signal Integrity Issue | 1%
1 Clock Scheme Error |
COStI ng Reliability Issue |
- - Mixed Signal Problem |
time/spins Too Much Power |

IC Design Costs Source: Aart de Geus, CEO of Synopsys
30 Based on a survey of 2000 users by Synopsys

4 Prototype
<4 Validation

« Physical Design and verification
 verifcation dominate escalating
project costs

Cost ($M)
[
(6]

4 Architecture
0
0.18um 0.13pum 90nm

Silicon Feature Dimension Source: IBM/IBS, Inc.

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-2

Common quotes

N

#®“Design Is not a problem;
design is easy”

@ “Verification is a problem”
#®“Timing closure Is a problem?”
®“Physical design Is a problem”

¢ | Almost complete reliance on post-design

o verification for quality

W

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-3

Through the early 1980s:

CHRYSLER __—w

American Kotors

The U.S. auto industry

Sought quality solely through post-build inspection
Planned for defects and rework

Inspect

N

and U.S. quality was...

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-4

N

L/

.. less than world class Q§\>

#® Adding gquality inspectors (“verification
engineers”) and giving them better tools, was
not the solution

#® The Japanese auto industry showed the way
s “Zero defect” manufacturing

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-5

New mind set:

Design affects everything!

N

#® A good design methodology
s Can keep up with changing specs
s Permits architectural exploration
= Facilitates verification and debugging
s Eases changes for timing closure
s Eases changes for physical design
= Promotes reuse

= |t Is essential to

Design for Correctness

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-6

New semantics for expressing behavior
to reduce design complexity

N

L/
#® Decentralize complexity: Rule-based
specifications (Guarded Atomic Actions)
= Let us think about one rule at a time

#® Formalize composition: Modules with
guarded interfaces

= Automatically manage and ensure the
correctness of connectivity, I.e., correct-by-
construction methodology

= Retain resilience to changes in design or
ayout, e.g. compute latency A’s

= Promote regularity of layout at macro level

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-7

RTL has poor semantics for
composition

\V

data_in data out

Example: Commercially available Q
FIFO IP block q

These constraints are spread over many pages of
the documentation...

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-8

Bluespec promotes composition
through guarded interfaces

Self-documenting
theModuleA interfaces;

N
N

Automatic generation

quet of logic to eliminate
arbitration -)

\ control conflicts In use.

Enqueue

theFifo.enq(vedues);

J\\\ theFifo
=
not fu dy

-
enab

theFifo.deq();
value2 = theFifo.first();

theModuleB

FIFO

N

A ;
S
A5 <
first | |[deg | | enq

theFifo.enq(value3);

theFifo.deq()+— /
valued = theFifo.ifst();

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-9

A4

Dequeue
arbitration
control

In Bluespec SystemVerilog (BSV) ...

N

@® Power to express complex static
structures and constraints

s Checked by the compiler

#® “Micro-protocols” are managed by the
compiler

= The compiler generates the necessary
hardware (muxing and control)

= Micro-protocols need less or no verification

#® Easier to make changes while
preserving correctness

= Smaller, simpler, clearer, more correct code

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-10

Bluespec: State and Rules
organized into modules

G module
I
interface T/ / 4%\ % f |
=
| F v
o

P

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:
Rule: condition = action

Rules can manipulate state in other modules only via their

Interfaces.
February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-11

Examples

N

®GCD
@ Multiplication
#®IP Lookup

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-12

Programming with
rules: A simple example

N

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

15 6
O 6 subtract

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-13

GCD In BSV

L/

N

module mkGCD (1_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > vy) && (y = 0));
X <= y; Yy <= X;

endrule

rule subtract ((Xx <=y) && (y = 0));
Y <=y — X,

endrule

method Action start(int a, int b) i1if (y==0);
X <= a; Yy <= b;
endmethod
method Int result() 1t (y==0);
return X;
endmethod

endmodule

Assumes x /=0andy /=0
February 24, 2006 http://csg.csail.mit.edu/6.375/ L07-14

GCD Hardware Module

S .
Jnt |

\iht >l =
enab |3)
Ly NS
implicit s
conditions Jdnt |= =

dy 13

interface | GCD;

method Action start (int a, Int b);
method Int result();
endinterface

® The module can easily be made polymorphic

® Many different implementations can provide the same
Interface: modulle mkGCD (1 _GCD)

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-15

GCD:
Another implementation

L/

N

module mkGCD (1_GCD);
Reg#(int) x <- mkRegU; Combine swap
Reg#(int) y <- mkReg(0); ﬁ and subtract rule
rule swapANDsub ((x > vy) & (y '= 0));
X <=y; Y <=X-Y;

endrule

rule subtract ((x<=y) && (y!=0));
Y <=y — X,

endrule

method Action start(int a, int b) if (y==0);
X <= a; Yy <= b;
endmethod
method Int result() 1t (y==0);
return X;
endmethod
endmodule Does it compute faster ?

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-16

Bluespec Tool flow

N

Legend
[files |
Bluespec tools

3rd party tools

omie

k__

[Bluespec SystemVerilog source]

Bluespec Compiler

A

y

... [Verilog 95 RTL |

Bluespec C sim ge=

Accurate

cyce = Verilog sim

RTL synthesis

y

Debussy
Visualization

http://csg.csail.mit.edu/6.375/

—

........................... | VCD output |

\4

gates

Place & E
Route Y
S
v H
Tapeout @
apeou 1

T _17

1
(

Generated Verilog RTL: Gebp

/ﬁodule mkGCD(CLK,RST N,start _a,start b,EN start,RDY_start,
result,RDY result);
input CLK; input RST N;
// action method start
input [31 : O] start_a; input [31 : O] start _b; input EN _start;
output RDY_start;
// value method result
output [31 : O] result; output RDY result;
// register x and y
reg [31 : O] x;
wire [31 : O] x$D_IN; wire X$EN;
reg [31 - O] vy;
wire [31 : O] y$D_IN; wire y$EN;

N

// rule RL_subtract
assign WILL FIRE RL subtract = x SLE vy d3 && 'y EQ O d10 ;

// rule RL_swap
assign WILL FIRE_RL swap = !x SLE vy d3 && 'y EQ O d10 ;

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-18

Generated Hardware

N

—
|
¢ v y ¢

> 1(=0) sub

L |

T T

swap? subtract?

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-19

Generated Hardware Module

e
N
X . l
T, j v
y m =
en 1> stant en < start_en
m »
rdy <
y X _en ; Yy €en y
I
¢ v A4 y ¢
> 1(=0) sub
L |
e
X B v
A 4
rdy < %
| -
swap? subtract?

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-20

GCD: A Simple Test Bench

'/module mkTest ();
Reg#(int) state <- mkReg(0);
1_GCD gcd <- mkGCDQ);

N

Why do we need
rule go (state == 0); the state variable?
gcd.start (423, 142);

state <= 1;
endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;
endrule
endmodule

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-21

GCD: Test Bench

module mkTest);

Reg#(int) state <- mkReg(0);
Reg#(Int#(4)) cl <- mkReg(1l);
Reg#(Int#(7)) c2 <- mkReg(1l);
I GCD gcd <- mkGCDQ);

N

rule req (state==0);
gcd.start(signExtend(cl), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);
$display (““GCD of %d & %d =%d”, cl, c2, gcd.result());
iIT (cl==7) begin cl <= 1; c2 <= c2+1; state <= 0; end
else cl <= cl+1;
IT (c2 == 63) state <= 2;
endrule
endmodule

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-22

GCD: Synthesis results

N

@ Original (16 bits)
s Clock Period: 1.6 ns
a Area: 4240.10 mm?

@ Unrolled (16 bits)
s Clock Period: 1.65ns
a Area: 5944.29 mm?

@ Unrolled takes 31% fewer cycles on
testbench

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-23

N

1001
* 0101
1001
0000
1001
0000
0101101

Multiplier Example

Simple binary multiplication:

// d =4d9

/lr =4d5

// d << 0O (since r[0] == 1)

// 0 << 1 (since r[1] == 0)

// d << 2 (since r[2] == 1)

// 0 << 3 (since r[3] == 0)

// product (sum of above) = 45

What does it look like in Bluespec?

3
d

One step of multiplication

r product
v ¥

February 24, 2006 http://csg.csail.mit.edu/6.375/

LO7-24

Multiplier in Bluespec

module mkMult (I_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(32)) d <- mkReg(0);
Reg#(Int#(16)) r <- mkReg(0);

N

rule cycle

endrule

method Action start

endmethod
method Int#(32) result O
What is the
endmethod Interface
endmodule I mult?

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-25

Exploring microarchitectures

IP Lookup Module

1N

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-26

IP Lookup block In a router

p
4
- <« LC < >
Line Card (LC) Arbitration
Packet Processor
Control
SRAM Processor
(lookup.table -
: Switch
ueue
IP Lookup Q
Manager
< Exit functions

@® A packet is routed based on
the “Longest Prefix Match”
(LPM) of it’s IP address with «—— |c
entries in a routing table

® Line rate and the order of <«— LC —>

arrival must be maintained line rate = 15Mpps for 10GE
February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-27

A
A 4

Sparse tree representation

a 0 : A / . A
7.14.%* |A F ; - — am
7.14.7.3 B > E ; ;

- F t A A
10.18.200.* | C 7':
10.18.200.5 | D -
5% *.* E 10'

255 _ :
IP address | Result |M Ref - -Fl T:¢
—
7.13.7.3 F 2 200l = g
10.18.201.5 | F 3 - e
7.14.7.2 A 4 Real-world lookup algorithms
513.7.2 E 1 are more complex but all make
2 a sequence of dependent

10.18.200.7 C memory references.

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-28

SW (“C”) version of LPM

N

Int
lom (IPA ipa) /* 3 memory lookups */
{ intp;

p = RAM [ipa[31:16]]; /* Level 1: 16 bits */

If (isLeaf(p)) return p;

p = RAM [p + ipa [15:8]]; /* Level 2: 8 bits */
If (isLeaf(p)) return p;

p = RAM [p + ipa [7:0]]; /* Level 3: 8 bits */
return p; /™ must be a leaf */

+

How to implement LPM in HW?
Not obvious from C code!

February 24, 2006 http://csg.csail.mit.edu/6.375/

LO7-29

Longest Prefix Match for IP lookup:
3 possible implementation architectures

L/

N

Rigid pipeline Linear pipeline Circular pipeline

Lé T =

—

te
Inefficient memory Efficient memory Efficient memory
usage butimpled usage through with mostc€omplex
design memory port control
_ replicator
Designer’s
Ranking: @

Which iIs “best”?

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-30

Static Pipeline

N

| | 1P addr
MUX

E——1 reg

v

%F' esp

RAM

February 24, 2006 http://csg.csail.mit.edu/6.375/

LO7-31

Static code

p
Trule static (True);
iIT (canlnsert(ch))
begin
cl <= 0; rl <= in.Ffirst(); in.deqQ;
end
else
begin
rl <= r5; cl <= cb;
end

1T (notEmpty(rl)) makeMemReq(rl);
r2 <= rl; c2 <= ci;
r3 <= r2; c3 <= c2;
r4 <= r3; c4 <= c3;
r5 <= getMemResp(); ¢c5 <= (¢4 == n-1) ? 0 : n;
IT (c5 == n) out.enq(rb);
endrule
February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-32

Circular pipeline

p
4
getToken luURes
cbuf e
in yes
uRegq — | RAM |- done? 2
—>
- no
active

February 24, 2006 http://csg.csail.mit.edu/6.375/

LO7-33

Circular Pipeline code

Trule enter (True);
t <- cbuf.newToken();
IP 1p = In_first(); ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], ©)); 1n.deq();
endrule
rule done (True);
p <- ram.resp(Q);
match {.rip, .t} = active.first();
1T (isLeaf(p)) cbuf.complete(t, p);
else begin
match {.newreq, .-newrip} = remainder(p, rip);
active.enq(rip << 8, t);
ram.req(pt+signExtend(rip[15:7]));
end
active.deqg(Q);

endrule
February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-34

Synthesis results

N
N

LPM
versions

Code
size
(lines)

Best Area
(gates)

Best Speed
(ns)

Mem. util.
(random
workload)

Linear V

410

Linear BSV

N
N
%i
W

14759
15910 (8% larger)

4.7
4.7 (same)

Fds
e
Bt %

.50

99.9%

Circular BSV | 257

BSV =

Verilog

| 8170 (1% larger)

| 3.67 (2% slower) | 99.9%

Synthesized to TSMC 0.18 um library

Bluespec System Verilog

Bluespec and Verilog synthesis results are nearly identical

Arvind, Nikhil,

Rosenband & Dave ICCAD 2004

LO7-35

Next Time

N

#® Combinational Circuits and Types

February 24, 2006 http://csg.csail.mit.edu/6.375/ LO7-36

