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Chip costs are exploding
because of design complexity

Design and verification 
dominate escalating 
project costs
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Common quotes
“Design is not a problem;
design is easy”

Almost complete reliance on post-design 
verification for qualityMind se

t

“Verification is a problem”
“Timing closure is a problem”
“Physical design is a problem”
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The U.S. auto industry
Sought quality solely through post-build inspection
Planned for defects and rework

and U.S. quality was…

Through the early 1980s:

Defect

Make Inspect Rework
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… less than world class

Adding quality inspectors (“verification 
engineers”) and giving them better tools, was 
not the solution
The Japanese auto industry showed the way

“Zero defect” manufacturing 
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New mind set:

Design affects everything!
A good design methodology

Can keep up with changing specs
Permits architectural exploration
Facilitates verification and debugging
Eases changes for timing closure
Eases changes for physical design
Promotes reuse

Design for Correctness

⇒ It is essential to
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New semantics for expressing behavior 
to reduce design complexity 

Decentralize complexity: Rule-based 
specifications (Guarded Atomic Actions)

Let us think about one rule at a time

Formalize composition: Modules with 
guarded interfaces

Automatically manage and ensure the 
correctness of connectivity, i.e., correct-by-
construction methodology
Retain resilience to changes in design or 
layout, e.g. compute latency ∆’s
Promote regularity of layout at macro level

Bluespec
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data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

RTL has poor semantics for 
composition

Example: Commercially available 
FIFO IP block

These constraints are spread over many pages of 
the documentation...

No machine verific
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Bluespec promotes composition
through guarded interfaces

not full

not empty

not empty
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FIFO

theModuleA

theModuleB

theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration 

control

Dequeue
arbitration 

control

Self-documenting 
interfaces; 
Automatic generation 
of logic to eliminate 
conflicts in use.
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In Bluespec SystemVerilog (BSV) …
Power to express complex static 
structures and constraints

Checked by the compiler

“Micro-protocols” are managed by the 
compiler

The compiler generates the necessary 
hardware (muxing and control)
Micro-protocols need less or no verification

Easier to make changes while 
preserving correctness

Smaller, simpler, clearer, more correct code
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Bluespec:  State and Rules 
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their 
interfaces.

interface

module
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Examples

GCD
Multiplication
IP Lookup
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Programming with
rules: A simple example

Euclid’s algorithm for computing the 
Greatest Common Divisor (GCD):

15 6
9 6 subtract
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD in BSV

Assumes x /= 0 and y /= 0

x y

swap sub
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implicit 
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module

The module can easily be made polymorphic

Many different implementations can provide the same 
interface: module mkGCD (I_GCD)
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) &&  (y != 0));
x <= y;  y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD: 
Another implementation

Combine swap 
and subtract rule

Does it compute faster ?
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Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluespec C sim Cycle
Accurate

Blueview
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Generated Verilog RTL: GCD
module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,

result,RDY_result);
input  CLK; input  RST_N;

// action method start
input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...
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Generated Hardware

x_en y_enx y

> !(=0)

swap? subtract?

sub
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Generated Hardware Module

x_en y_enx y

> !(=0)

swap? subtract?

sub
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GCD: A Simple Test Bench
module mkTest ();
Reg#(int) state <- mkReg(0);
I_GCD     gcd <- mkGCD();

rule go (state == 0);

gcd.start (423, 142);
state <= 1;

endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;

endrule
endmodule

Why do we need 
the state variable?



February 24, 2006 L07-22http://csg.csail.mit.edu/6.375/

GCD: Test Bench
module mkTest ();

Reg#(int)  state <- mkReg(0);
Reg#(Int#(4)) c1 <- mkReg(1);
Reg#(Int#(7)) c2 <- mkReg(1);
I_GCD  gcd <- mkGCD();

rule req (state==0);
gcd.start(signExtend(c1), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);
$display (“GCD of %d & %d =%d”, c1, c2, gcd.result());
if (c1==7) begin c1 <= 1; c2 <= c2+1; state <= 0; end

else  c1 <= c1+1;
if (c2 == 63) state <= 2;

endrule
endmodule
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GCD: Synthesis results

Original (16 bits)
Clock Period: 1.6 ns
Area: 4240.10 mm2

Unrolled (16 bits)
Clock Period: 1.65ns
Area: 5944.29 mm2

Unrolled takes 31% fewer cycles on 
testbench
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Multiplier Example
Simple binary multiplication:

1001
0101
1001

0000
1001

0000
0101101

// d = 4’d9
// r  = 4’d5
// d << 0 (since r[0] == 1)
// 0 << 1 (since r[1] == 0)
// d << 2 (since r[2] == 1)
// 0 << 3 (since r[3] == 0)
// product (sum of above) = 45

x

What does it look like in Bluespec?

d r product

One step of multiplicationOne step of multiplication
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module mkMult (I_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(32)) d       <- mkReg(0);
Reg#(Int#(16)) r       <- mkReg(0);

rule cycle 

endrule

method Action start

endmethod

method Int#(32) result () 

endmethod
endmodule

Multiplier in Bluespec

What is the 
interface 
I_mult ?
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Exploring microarchitectures

IP Lookup Module



February 24, 2006 L07-27http://csg.csail.mit.edu/6.375/

IP Lookup block in a router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on 
the “Longest Prefix Match” 
(LPM) of it’s IP address with 
entries in a routing table
Line rate and the order of 
arrival must be maintained line rate ⇒ 15Mpps for 10GE
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SW (“C”) version of LPM
int
lpm (IPA ipa)                         /*  3 memory lookups */
{  int p;

p = RAM [ipa[31:16]];       /*  Level 1: 16 bits  */
if (isLeaf(p)) return p;

p = RAM [p + ipa [15:8]];  /*  Level 2: 8 bits  */
if (isLeaf(p)) return p;

p = RAM [p + ipa [7:0]];    /*  Level 3:  8 bits  */
return p; /* must be a leaf */

}

How to implement LPM in HW?
Not obvious from C code!
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Longest Prefix Match for IP lookup:
3 possible implementation architectures

Rigid pipeline

Inefficient memory 
usage but simple 
design

Linear pipeline

Efficient memory 
usage through 
memory port 
replicator

Circular pipeline

Efficient memory 
with most complex 
control

Designer’s 
Ranking:

1 2 3
Which is “best”?
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Static Pipeline

RAM

MUX

req

IP addr

resp
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Static code
rule static (True);

if (canInsert(c5))
begin
c1 <= 0; r1 <= in.first(); in.deq();

end
else
begin
r1 <= r5; c1 <= c5;

end
if (notEmpty(r1)) makeMemReq(r1);
r2 <= r1; c2 <= c1;
r3 <= r2; c3 <= c2;
r4 <= r3; c4 <= c3;
r5 <= getMemResp(); c5 <= (c4 == n-1) ? 0 : n;
if (c5 == n) out.enq(r5);

endrule
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Circular pipeline

luReq

luResp

enter?enter?
done?done?RAM

cbuf
yes

getToken

in

active

no
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Circular Pipeline code
rule enter (True);

t <- cbuf.newToken();
IP ip = in.first(); ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], t));  in.deq();

endrule
rule done (True);

p <- ram.resp();
match {.rip, .t} = active.first();
if (isLeaf(p)) cbuf.complete(t, p);
else begin

match {.newreq, .newrip} = remainder(p, rip);
active.enq(rip << 8, t);
ram.req(p+signExtend(rip[15:7]));

end
active.deq();

endrule
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Synthesis results

V      = Verilog
BSV  = Bluespec System Verilog 

99.9%3.67 (2% slower)8170 (1% larger)257Circular BSV

99.9%3.628103364Circular V

99.9%4.7 (same)15910 (8% larger)168Linear BSV

99.9%4.714759410Linear V

63.5%3.32 (7% faster)2391 (5% larger)179Static BSV

63.5%3.562271220Static V

Mem. util. 
(random 
workload)

Best Speed
(ns)

Best Area
(gates)

Code 
size
(lines)

LPM 
versions

Synthesized to TSMC 0.18 µm library

Bluespec and Verilog synthesis results are nearly identical

Arvind, Nikhil, Rosenband & Dave ICCAD 2004
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Next Time

Combinational Circuits and Types


