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Example: Shifter

Goal: implement: y = shift (x,s)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

Strategy:
Shift by s =

shift by 4 (=22) if s[2] is set,
and by 2 (=21 ) if s[1] is set,
and by 1 (=20 ) if s[0] is set

A shift by 2j is trivial: it’s just a “lane change” made purely 
with wires

0 0

sh2
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Cascaded Combinational 
Shifter
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function int shifter (int s,int x);
Pair sx0, sx1, sx2;
sx0 = step_0(Pair{s:s, x:x});
sx1 = step_1(sx0);
sx2 = step_2(sx1);
return (sx2.x);

endfunction

function Pair step_j (Pair sx);
return ((sx.s[j]==0) ? sx : 

Pair{s: sx.s,x:sh_k(sx.x)});
endfunction

where k=2j
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typedef struct
{int x; int s;} 
Pair;
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Asynchronous pipeline
with FIFOs (regs with interlocks)
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rule stage_0 (True);
Pair sx0 = fifo0.first(); fifo0.deq(); fifo1.enq(step_0(sx0));

endrule

fifo0 fifo1 fifo2 fifo3

rule stage_1 (True);
Pair sx1 = fifo1.first(); fifo1.deq(); fifo2.enq(step_1(sx1));

endrule

rule stage_2 (True);
Pair sx2 = fifo2.first(); fifo2.deq(); fifo3.enq(step_2(sx2));

endrule
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Required simultaneity

If it is necessary for several 
actions to happen together,
(i.e., indivisibly, atomically)

Put them in the same rule!
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Synchronous pipeline
(with registers)
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sx1 sx2 sx3sx0

rule sync-shifter (True);
sx1 <= step_0(sx0);
sx2 <= step_1(sx1);
sx3 <= step_2(sx2);

endrule

step_0 step_1 step_2

sx1, sx2 and sx3 are 
registers defined 
outside of the rules

Reg#(Pair) sxi <- mkRegU(); Will it start properly?
Will it leave some values in the pipe?
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Discussion
In the synchronous pipeline, we compose 
actions in parallel

All stages move data simultaneously, in lockstep 
(atomic!)

In the asynchronous pipeline, we compose 
rules in parallel

Stages can move independently (each stage can 
move when its input fifo has data and its output fifo
has room)
If we had used parallel action composition instead, 
all stages would have to move in lockstep, and could 
only move when all stages were able to move

Your design goals will suggest which kind of 
composition is appropriate in each situation



February 27, 2006 L08-8http://csg.csail.mit.edu/6.375/

Expressions vs. Functions
A function is just an abstraction of a 
combinational expression
Arguments are inputs to the circuit
The result is the output of the circuit

x x

-

const 4

x
b a c

discr

function int discr (int a, int b, int c);
return b*b – 4*a*c;

endfunction

expression
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Function Application
Instantiates combinational hardware of the 
function body
Connects the body to argument expressions

x x

-

const 4

x
b a c

discr

function int
discr (int a, int b, int c);
return b*b – 4*a*c;
endfunction

d = discr (10, p, q); const 10
p q

No runtime allocation of stack frames 
or passing of arguments; only 
meaningful for static elaboration
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Types and type-checking

BSV is strongly-typed
Every variable and expression has a type
The Bluespec compiler performs strong type 
checking to guarantee that values are 
used only in places that make sense, 
according to their type

This catches a huge class of design 
errors and typos at compile time, i.e., 
before simulation
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What is a Type?
A type describes a set of values

Types are orthogonal (independent) of entities that 
may carry values (such as wires, registers, …)

No inherent connection with storage, or updating

This is true even of complex types 
E.g., struct { int …, Bool …}
This just represents a set of pairs of values, where the first 
member of each pair is an int value, and the second member 
of each pair is a Bool value
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SV notation for types
Some types just have a name

More complex types can have 
parameters which are themselves types

Type names begin with uppercase letter
Exceptions: ‘int’ and ‘bit’, for compatibility with Verilog

int, Bool, Action, …

FIFO#(Bool)              // fifo containing Booleans
Tuple2#(int,Bool)        // pair of int and Boolean
FIFO#(Tuple2#(int,Bool)) // fifo of pairs of int

// and Boolean

bit[15:0] is the same as Bit#(16)
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Numeric type parameters
BSV types also allows numeric
parameters

These numeric types should not be 
confused with numeric values, even 
though they use the same number 
syntax

The distinction is always clear from context, i.e., 
type expressions and ordinary expressions are 
always distinct parts of the program text

Bit#(16)             // 16-bit wide bit-vector
Int#(29)             // 29-bit wide signed integers
Vector#(16,Int#(29)) // vector of 16 whose elements 

// are of type Int#(29) 
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Common scalar types

Bool
Booleans

Bit#(n)
Bit vectors, with a width n bits

Int#(n)
Signed integers of n bits

UInt#(n)
Unsigned integers of n bits

Integer
Unbound integers; has meaning only during static 
elaboration
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Some Composite Types

Enumerations
Sets of symbolic names

Structs
Records with fields

Tagged Unions
unions, made “type-safe” with tags
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Types of variables
Every variable has a data type:

BSV will enforce proper usage of values 
according to their types

You can't apply “+” to a struct
You can’t assign a boolean value to a 
variable declared as a struct type

bit[3:0] vec;  // or   Bit#(4) vec;
vec = 4’b1010;
Bool cond = True;
typedef struct {Bool b; bit[31:0] v;} Val;
Val x = Val {b: True, v: 17};
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“let” and type-inference
Normally, every variable is introduced 
in a declaration (with its type)
The “let” notation introduces a variable 
with an assignment, with the compiler 
inferring its correct type

This is typically used only for very 
“local” temporary values, where the 
type is obvious from context

let vec = 4’b1010;    // bit[3:0] vec = …

let cond = True;      // Bool cond = …;
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Type synonyms with typedef
typedef is used to define a new, more 
readable synonym for an existing type

Reminder: type
names begin with
uppercase letter!

typedef existingType NewType;
typedef int Addr;
typedef bit [63:0]      Data;
typedef bit [15:0]      Halfword;
typedef Bool Flag;

Type synonyms do not introduce new types. 
For example, Bool and Flag can be intermixed without 
affecting the meaning of a program
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Enumeration

Enumerations define new, distinct types:
Even though, of course, they are 
represented as bit vectors

typedef enum {Red; Green; Blue} Color;

Red = 00, Green = 01, Blue = 10

typedef enum {Waiting; Running; Done} State;
Waiting = 00, Running = 01, Done = 10

typedef enum {R0;R1;R2;R3} RName;
R0 = 00, R1 = 01, R2 = 10, R3 = 11
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Type safety
Type checking guarantees that bit-
vectors are consistently interpreted.
If a Color and a State are different 
types, a Color cannot accidentally be 
used as a State:

Reg#(Color) c <- mkRegU();
Reg#(State) s <- mkRegU();
...
s <= c;
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Structs
typedef Bool FP_Sign ;
typedef Bit#(2) FP_RS ;

typedef struct {
FP_Sign sign; // sign bit
Bit#(ee) exp;  // exponent
Bit#(ss) sfd;  // significand
FP_RS    rs;   // round and sticky bit
} FP_I#(type ee, type ss);
// exponent and significand sizes are
// *numeric* type parameters
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Bit interpretation of structs

sign

exp

sfd

rs

1           ee ss 2
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Tagged Unions

00        dst src1          src2

01                        cond addr

10                         dst addr

11        dst imm

typedef union tagged {
struct {RName dst; RName src1; RName src2;}  Add;
struct {RName cond; RName addr;}              Bz;
struct {RName dst; RName addr;}             Load;
struct {RName dst; Immediate imm;}        AddImm;
…

} Instr;
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The Maybe type
The Maybe type can be regarded as a value 
together with a “valid” bit

Example: a function that looks up a name in a 
telephone directory can have a return type 
Maybe#(TelNum)

If the name is not present in the directory it returns
tagged Invalid

If the name is present with number x, it returns
tagged Valid x

typedef union tagged {
void Invalid;
t     Valid;

} Maybe#(type t);
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The Maybe type
The isValid(m) function

returns True if m is    tagged Valid x
returns False if m is    tagged Invalid

The fromMaybe(y,m) function 
returns x if m is    tagged Valid x
returns y if m is    tagged Invalid



February 27, 2006 L08-26http://csg.csail.mit.edu/6.375/

When defining new types, by attaching a 
“deriving” clause to the type definition, we let 
the compiler automatically create the “natural” 
definition of certain operations on the type

Eq generates the “==” and “!=” operations on 
the type via bit comparison

Deriving

typedef struct { … } Foo
deriving (Eq);
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Automatically generates the “pack” and “unpack” 
operations on the type (simple concatenation of bit 
representations of components)
This is necessary, for example, if the type is going to be 
stored in a register, fifo, or other element that demands 
that the content type be in the Bits typeclass
It is possible to customize the pack/unpack operations to 
any specific desired representation

Deriving Bits
typedef struct { … } Foo
deriving (Bits);
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Pattern-matching
Pattern-matching is a more readable way to:

test data for particular structure and content
extract data from a data structure, by binding 
“pattern variables” (.variable) to components

The &&& is a conjunction, and allows pattern-
variables to come into scope from left to right

case (m) matches
tagged Invalid  : return 0;
tagged Valid .x : return x;

endcase
if (m matches (Valid .x) &&& (x > 10))

…
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Example: CPU Instructions 
Operands
typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr; bit [4:0] regIndex;

} Indexed;
} InstrOperand;

case (oprand) matches
tagged Register .r : x = rf[r];
tagged Literal  .n : x = n;
tagged Indexed {regAddr: .ra, regIndex: .ri } : 

begin Iaddress a = rf[ra]+rf[ri];
x = mem.get(a);

end
endcase
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Other types in BSV
String

Character strings
Action

What rules/interface methods do
Rule

Behavior inside modules
Interface

External view of module behavior
Useful during 
static elaboration
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Instantiating
interfaces and modules

The SV idiom is:
Instantiate an interface
Instantiate a module, binding the interface

Note: the module instance name is generally not 
used, except in debuggers and in hierarchical 
names

BSV also allows a shorthand:

FIFO#(DataT)                          inbound1();
mkSizedFIFO#(fifo_depth) the_inbound1(inbound1);

interface type interface instance

module name module
parameters

module instance

interface instance declaration

module instance declaration

interface type’s
parameters

FIFO#(DataT) inbound1 <- mkSizedFIFO(fifo_depth);

We will only use the shorthand
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Module Syntax
Module declaration

I_GCD#(int)     gcd <- mkGCD ();

interface 
type

interface
instance

interface type’s
parameter(s)

module
name

module’s
parameter(s)

Module instantiation 

module mkGCD (I_GCD#(t));
…

endmodule

module name interface provided 
by this module
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Rules
A rule is declarative specification of a 
state transition

An action guarded by a Boolean condition

rule ruleName (<predicate>); 
<action>

endrule
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Rule predicates
The rule predicate can be any Boolean 
expression

Including function calls and method calls

Cannot have a side-effect
This is enforced by the type system

The predicate must be true for rule 
execution

But in general, this is not enough
Sharing resources with other rules may 
constrain execution
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Next Lecture
Static elaboration and architectural 
exploration


