
February 27, 2006 http://csg.csail.mit.edu/6.375/ L08-1

Bluespec-2: Types

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 27, 2006 L08-2http://csg.csail.mit.edu/6.375/

Example: Shifter

Goal: implement: y = shift (x,s)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

Strategy:
Shift by s =

shift by 4 (=22) if s[2] is set,
and by 2 (=21) if s[1] is set,
and by 1 (=20) if s[0] is set

A shift by 2j is trivial: it’s just a “lane change” made purely
with wires

0 0

sh2

February 27, 2006 L08-3http://csg.csail.mit.edu/6.375/

Cascaded Combinational
Shifter

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

s0 s1 s2

n n
x0 x1 x2

3 f

function int shifter (int s,int x);
Pair sx0, sx1, sx2;
sx0 = step_0(Pair{s:s, x:x});
sx1 = step_1(sx0);
sx2 = step_2(sx1);
return (sx2.x);

endfunction

function Pair step_j (Pair sx);
return ((sx.s[j]==0) ? sx :

Pair{s: sx.s,x:sh_k(sx.x)});
endfunction

where k=2j

A
 f

am
ily

 o
f

fu
n
ct

io
n
s

typedef struct
{int x; int s;}
Pair;

February 27, 2006 L08-4http://csg.csail.mit.edu/6.375/

Asynchronous pipeline
with FIFOs (regs with interlocks)

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

s0 s1 s2

n n

3

rule stage_0 (True);
Pair sx0 = fifo0.first(); fifo0.deq(); fifo1.enq(step_0(sx0));

endrule

fifo0 fifo1 fifo2 fifo3

rule stage_1 (True);
Pair sx1 = fifo1.first(); fifo1.deq(); fifo2.enq(step_1(sx1));

endrule

rule stage_2 (True);
Pair sx2 = fifo2.first(); fifo2.deq(); fifo3.enq(step_2(sx2));

endrule

February 27, 2006 L08-5http://csg.csail.mit.edu/6.375/

Required simultaneity

If it is necessary for several
actions to happen together,
(i.e., indivisibly, atomically)

Put them in the same rule!

February 27, 2006 L08-6http://csg.csail.mit.edu/6.375/

Synchronous pipeline
(with registers)

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

[0] [1] [2]

n n

3

sx1 sx2 sx3sx0

rule sync-shifter (True);
sx1 <= step_0(sx0);
sx2 <= step_1(sx1);
sx3 <= step_2(sx2);

endrule

step_0 step_1 step_2

sx1, sx2 and sx3 are
registers defined
outside of the rules

Reg#(Pair) sxi <- mkRegU(); Will it start properly?
Will it leave some values in the pipe?

February 27, 2006 L08-7http://csg.csail.mit.edu/6.375/

Discussion
In the synchronous pipeline, we compose
actions in parallel

All stages move data simultaneously, in lockstep
(atomic!)

In the asynchronous pipeline, we compose
rules in parallel

Stages can move independently (each stage can
move when its input fifo has data and its output fifo
has room)
If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move

Your design goals will suggest which kind of
composition is appropriate in each situation

February 27, 2006 L08-8http://csg.csail.mit.edu/6.375/

Expressions vs. Functions
A function is just an abstraction of a
combinational expression
Arguments are inputs to the circuit
The result is the output of the circuit

x x

-

const 4

x
b a c

discr

function int discr (int a, int b, int c);
return b*b – 4*a*c;

endfunction

expression

February 27, 2006 L08-9http://csg.csail.mit.edu/6.375/

Function Application
Instantiates combinational hardware of the
function body
Connects the body to argument expressions

x x

-

const 4

x
b a c

discr

function int
discr (int a, int b, int c);
return b*b – 4*a*c;
endfunction

d = discr (10, p, q); const 10
p q

No runtime allocation of stack frames
or passing of arguments; only
meaningful for static elaboration

February 27, 2006 L08-10http://csg.csail.mit.edu/6.375/

Types and type-checking

BSV is strongly-typed
Every variable and expression has a type
The Bluespec compiler performs strong type
checking to guarantee that values are
used only in places that make sense,
according to their type

This catches a huge class of design
errors and typos at compile time, i.e.,
before simulation

February 27, 2006 L08-11http://csg.csail.mit.edu/6.375/

What is a Type?
A type describes a set of values

Types are orthogonal (independent) of entities that
may carry values (such as wires, registers, …)

No inherent connection with storage, or updating

This is true even of complex types
E.g., struct { int …, Bool …}
This just represents a set of pairs of values, where the first
member of each pair is an int value, and the second member
of each pair is a Bool value

February 27, 2006 L08-12http://csg.csail.mit.edu/6.375/

SV notation for types
Some types just have a name

More complex types can have
parameters which are themselves types

Type names begin with uppercase letter
Exceptions: ‘int’ and ‘bit’, for compatibility with Verilog

int, Bool, Action, …

FIFO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of int and Boolean
FIFO#(Tuple2#(int,Bool)) // fifo of pairs of int

// and Boolean

bit[15:0] is the same as Bit#(16)

February 27, 2006 L08-13http://csg.csail.mit.edu/6.375/

Numeric type parameters
BSV types also allows numeric
parameters

These numeric types should not be
confused with numeric values, even
though they use the same number
syntax

The distinction is always clear from context, i.e.,
type expressions and ordinary expressions are
always distinct parts of the program text

Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide signed integers
Vector#(16,Int#(29)) // vector of 16 whose elements

// are of type Int#(29)

February 27, 2006 L08-14http://csg.csail.mit.edu/6.375/

Common scalar types

Bool
Booleans

Bit#(n)
Bit vectors, with a width n bits

Int#(n)
Signed integers of n bits

UInt#(n)
Unsigned integers of n bits

Integer
Unbound integers; has meaning only during static
elaboration

February 27, 2006 L08-15http://csg.csail.mit.edu/6.375/

Some Composite Types

Enumerations
Sets of symbolic names

Structs
Records with fields

Tagged Unions
unions, made “type-safe” with tags

February 27, 2006 L08-16http://csg.csail.mit.edu/6.375/

Types of variables
Every variable has a data type:

BSV will enforce proper usage of values
according to their types

You can't apply “+” to a struct
You can’t assign a boolean value to a
variable declared as a struct type

bit[3:0] vec; // or Bit#(4) vec;
vec = 4’b1010;
Bool cond = True;
typedef struct {Bool b; bit[31:0] v;} Val;
Val x = Val {b: True, v: 17};

February 27, 2006 L08-17http://csg.csail.mit.edu/6.375/

“let” and type-inference
Normally, every variable is introduced
in a declaration (with its type)
The “let” notation introduces a variable
with an assignment, with the compiler
inferring its correct type

This is typically used only for very
“local” temporary values, where the
type is obvious from context

let vec = 4’b1010; // bit[3:0] vec = …

let cond = True; // Bool cond = …;

February 27, 2006 L08-18http://csg.csail.mit.edu/6.375/

Type synonyms with typedef
typedef is used to define a new, more
readable synonym for an existing type

Reminder: type
names begin with
uppercase letter!

typedef existingType NewType;
typedef int Addr;
typedef bit [63:0] Data;
typedef bit [15:0] Halfword;
typedef Bool Flag;

Type synonyms do not introduce new types.
For example, Bool and Flag can be intermixed without
affecting the meaning of a program

February 27, 2006 L08-19http://csg.csail.mit.edu/6.375/

Enumeration

Enumerations define new, distinct types:
Even though, of course, they are
represented as bit vectors

typedef enum {Red; Green; Blue} Color;

Red = 00, Green = 01, Blue = 10

typedef enum {Waiting; Running; Done} State;
Waiting = 00, Running = 01, Done = 10

typedef enum {R0;R1;R2;R3} RName;
R0 = 00, R1 = 01, R2 = 10, R3 = 11

February 27, 2006 L08-20http://csg.csail.mit.edu/6.375/

Type safety
Type checking guarantees that bit-
vectors are consistently interpreted.
If a Color and a State are different
types, a Color cannot accidentally be
used as a State:

Reg#(Color) c <- mkRegU();
Reg#(State) s <- mkRegU();
...
s <= c;

February 27, 2006 L08-21http://csg.csail.mit.edu/6.375/

Structs
typedef Bool FP_Sign ;
typedef Bit#(2) FP_RS ;

typedef struct {
FP_Sign sign; // sign bit
Bit#(ee) exp; // exponent
Bit#(ss) sfd; // significand
FP_RS rs; // round and sticky bit
} FP_I#(type ee, type ss);
// exponent and significand sizes are
// *numeric* type parameters

February 27, 2006 L08-22http://csg.csail.mit.edu/6.375/

Bit interpretation of structs

sign

exp

sfd

rs

1 ee ss 2

February 27, 2006 L08-23http://csg.csail.mit.edu/6.375/

Tagged Unions

00 dst src1 src2

01 cond addr

10 dst addr

11 dst imm

typedef union tagged {
struct {RName dst; RName src1; RName src2;} Add;
struct {RName cond; RName addr;} Bz;
struct {RName dst; RName addr;} Load;
struct {RName dst; Immediate imm;} AddImm;
…

} Instr;

February 27, 2006 L08-24http://csg.csail.mit.edu/6.375/

The Maybe type
The Maybe type can be regarded as a value
together with a “valid” bit

Example: a function that looks up a name in a
telephone directory can have a return type
Maybe#(TelNum)

If the name is not present in the directory it returns
tagged Invalid

If the name is present with number x, it returns
tagged Valid x

typedef union tagged {
void Invalid;
t Valid;

} Maybe#(type t);

February 27, 2006 L08-25http://csg.csail.mit.edu/6.375/

The Maybe type
The isValid(m) function

returns True if m is tagged Valid x
returns False if m is tagged Invalid

The fromMaybe(y,m) function
returns x if m is tagged Valid x
returns y if m is tagged Invalid

February 27, 2006 L08-26http://csg.csail.mit.edu/6.375/

When defining new types, by attaching a
“deriving” clause to the type definition, we let
the compiler automatically create the “natural”
definition of certain operations on the type

Eq generates the “==” and “!=” operations on
the type via bit comparison

Deriving

typedef struct { … } Foo
deriving (Eq);

February 27, 2006 L08-27http://csg.csail.mit.edu/6.375/

Automatically generates the “pack” and “unpack”
operations on the type (simple concatenation of bit
representations of components)
This is necessary, for example, if the type is going to be
stored in a register, fifo, or other element that demands
that the content type be in the Bits typeclass
It is possible to customize the pack/unpack operations to
any specific desired representation

Deriving Bits
typedef struct { … } Foo
deriving (Bits);

February 27, 2006 L08-28http://csg.csail.mit.edu/6.375/

Pattern-matching
Pattern-matching is a more readable way to:

test data for particular structure and content
extract data from a data structure, by binding
“pattern variables” (.variable) to components

The &&& is a conjunction, and allows pattern-
variables to come into scope from left to right

case (m) matches
tagged Invalid : return 0;
tagged Valid .x : return x;

endcase
if (m matches (Valid .x) &&& (x > 10))

…

February 27, 2006 L08-29http://csg.csail.mit.edu/6.375/

Example: CPU Instructions
Operands
typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr; bit [4:0] regIndex;

} Indexed;
} InstrOperand;

case (oprand) matches
tagged Register .r : x = rf[r];
tagged Literal .n : x = n;
tagged Indexed {regAddr: .ra, regIndex: .ri } :

begin Iaddress a = rf[ra]+rf[ri];
x = mem.get(a);

end
endcase

February 27, 2006 L08-30http://csg.csail.mit.edu/6.375/

Other types in BSV
String

Character strings
Action

What rules/interface methods do
Rule

Behavior inside modules
Interface

External view of module behavior
Useful during
static elaboration

February 27, 2006 L08-31http://csg.csail.mit.edu/6.375/

Instantiating
interfaces and modules

The SV idiom is:
Instantiate an interface
Instantiate a module, binding the interface

Note: the module instance name is generally not
used, except in debuggers and in hierarchical
names

BSV also allows a shorthand:

FIFO#(DataT) inbound1();
mkSizedFIFO#(fifo_depth) the_inbound1(inbound1);

interface type interface instance

module name module
parameters

module instance

interface instance declaration

module instance declaration

interface type’s
parameters

FIFO#(DataT) inbound1 <- mkSizedFIFO(fifo_depth);

We will only use the shorthand

February 27, 2006 L08-32http://csg.csail.mit.edu/6.375/

Module Syntax
Module declaration

I_GCD#(int) gcd <- mkGCD ();

interface
type

interface
instance

interface type’s
parameter(s)

module
name

module’s
parameter(s)

Module instantiation

module mkGCD (I_GCD#(t));
…

endmodule

module name interface provided
by this module

February 27, 2006 L08-33http://csg.csail.mit.edu/6.375/

Rules
A rule is declarative specification of a
state transition

An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action>

endrule

February 27, 2006 L08-34http://csg.csail.mit.edu/6.375/

Rule predicates
The rule predicate can be any Boolean
expression

Including function calls and method calls

Cannot have a side-effect
This is enforced by the type system

The predicate must be true for rule
execution

But in general, this is not enough
Sharing resources with other rules may
constrain execution

February 27, 2006 L08-35http://csg.csail.mit.edu/6.375/

Next Lecture
Static elaboration and architectural
exploration

