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Example: Shifter

N
N

#® Goal: implement: y = shift (X,S)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

@ Strategy:
s Shift by s =
shift by 4 (=22 If s[2] is set,
and by 2 (=21) If s[1] is set,
and by 1 (=29) If s[O] is set

= A shift by 2! is trivial: it’s just a “lane change” made purely

with wires
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Cascaded Combinational
Shifter
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function Pair step jJ (Pailr sx); where k=2j
return ((sx.s[j]==0) ? sx
Pair{s: sx.s,x:sh_k(sx.x)});
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A family of
functions

endfunction

function Int shifter (int s,iInt X);
Pair sx0, sx1, sx2;

sx0 = step O(Pair{s:s, X:x});

sx1 = step_1(sx0); typedef struct

sx2 = step_2(sx1); {int x; int s;}
return (sx2.Xx); Pair-
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Asynchronous pipeline

with FIFOs (regs with interlocks)
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endrule

rule stage 0 (True);
Pair sxO0 = fifoO.first(); fifoO0.deq(); fifol.enqg(step _0(sx0));

endrule

rule stage 1 (True);
Pair sx1 = fifol.first(); fifol.deq(); fifo2.enq(step_1(sx1));

endrule

rule stage 2 (True);
Pair sx2 = fifo2.first(); fifo2.deq(); fFifo3.eng(step 2(sx2));
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Required simultaneity

N

If It IS necessary for several
actions to happen together,
(1.e., Indivisibly, atomically)

Put them In the same rule!
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Synchronous pipeline
(with registers)
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step O step_1 step 2
rule sync-shifter (True);
sx1l <= step_0(sx0); sx1, sx2 and sx3 are
sx2 <= step 1(sx1); registers defined
sx3 <= step 2(sx2): outside of the rules
endrule

Reg#(Pair) sxi <- mkRegU(Q);

Will it start properly?
Will it leave some values Iin the pipe?
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Discussion

# In the synchronous pipeline, we compose
actions in parallel
s All stages move data simultaneously, in lockstep
(atomic!)
# In the asynchronous pipeline, we compose
rules in parallel

s Stages can move independently (each stage can
move when its input fifo has data and its output fifo
has room)

s If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move

# Your design goals will suggest which kind of
composition Is appropriate in each situation

N
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Expressions vs. Functions

@ A function is just an abstraction of a
combinational expression

#® Arguments are inputs to the circuit
@® The result is the output of the circuit

function 1nt discr (int a, Int b, Int c);

return| b*b — 4*a*c;
T /(

endfunction K\
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Function Application

# |[nstantiates combinational hardware of the
function body

@ Connects the body to argument expressions

d = discr (10, p, 9); Pl |9
- |

function iInt EHJ—\
discr (int a, Int b, Int ¢c);| p @

N
N

return b*b — 4*a*c;
endfunction

No runtime allocation of stack frames

or passing of arguments; only @%

meaningful for static elaboration
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Types and type-checking

N

#® BSV is strongly-typed
s Every variable and expression has a type

s The Bluespec compiler performs strong type
checking to guarantee that values are
used only in places that make sense,
according to their type

# This catches a huge class of design
errors and typos at compile time, I.e.,
before simulation
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What Is a Type?

#® A type describes a set of values

N

# Types are orthogonal (independent) of entities that
may carry values (such as wires, registers, ...)
= No inherent connection with storage, or updating

# This Is true even of complex types
= E.g,struct { Int .., Bool ..}

m This just represents a set of pairs of values, where the first
member of each pair is an int value, and the second member

of each pair is a Bool value
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SV notation for types

J -
® Some types just have a name
int, Bool, Action, ..

® More complex types can have
parameters which are themselves types

FIFO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of int and Boolean
FIFO#(Tuple2#(int,Bool)) // fifo of pairs of int

// and Boolean

N

@® Type names begin with uppercase letter
s EXxceptions: ‘int’ and ‘bit’, for compatibility with Verilog

bit[15:0]} IS the same as Bit#(16)
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Numeric type parameters

#® BSV types also allows numeric

N

L/

parameters
Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide signed integers

Vector#(16, Int#(29)) // vector of 16 whose elements
// are of type Int#(29)

#® These numeric types should not be
confused with numeric values, even
though they use the same number

syntax

= The distinction is always clear from context, I.e.,
type expressions and ordinary expressions are
always distinct parts of the program text
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Common scalar types

N

# Bool
= Booleans
® Bit#(n)
= Bit vectors, with a width n bits
® Int#(n)
= Signhed integers of n bits
® UlInt#(n)
= Unsigned integers of n bits
#® Integer

= Unbound integers; has meaning only during static
elaboration
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Some Composite Types

N

#®Enumerations
s Sets of symbolic nhames

#® Structs
s Records with fields

#Tagged Unions
= Unions, made “type-safe” with tags
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Types of variables

@ Every variable has a data type:

bit[3:0] vec; // or Bit#(4) vec;

vec = 47°pb1010;

Bool cond = True;

typedef struct {Bool b; bit[31:0] v;} Vval;
Val x = Val {b: True, v: 17};

N

#® BSV will enforce proper usage of values
according to their types

= YOU can't apply “+” to a struct

= YOU can’t assign a boolean value to a
variable declared as a struct type
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“let” and type-inference

T #® Normally, every variable is introduced
In a declaration (with its type)

#® The “let” notation introduces a variable
with an assignment, with the compiler
Inferring Its correct type

let vec = 4°b1010; // bit[3:0] vec = ..

let cond = True; // Bool cond = ..;

#® This is typically used only for very
“local” temporary values, where the
type Is obvious from context
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Type synonyms with typedef

#® typedef is used to define a new, more
readable synonym for an existing type

Reminder: type

names begin with
muppercase letter!

N

typedef existingType NewType;
typedef int Addr;
typedef bit [63:0] Data;
typedef bit [15:0] Halfword;
typedef Bool Flag;

Type synonyms do not introduce new types.

For example, Bool and Flag can be intermixed without
affecting the meaning of a program
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Enumeration

typedef enum {Red; Green; Blue} Color;
Red = 00, Green = 01, Blue = 10

N

typedef enum {Waiting; Running; Done} State;
Waiting = 00, Running = 01, Done = 10

typedef enum {RO;R1;R2;R3} RName;
RO=00,R1=01,R2=10,R3 =11

Enumerations define new, distinct types:

= Even though, of course, they are
represented as bit vectors
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Type safety

@ Type checking guarantees that bit-
vectors are consistently interpreted.

#® If a Color and a State are different

types, a Color cannot accidentally be
used as a State:

N

Reg#(Color) c <- mkRegU(Q);
Reg#(State) s <- mkRegU();

S <=7TC,;
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Structs

’/typedef Bool FP_Sign ;
typedef Bit#(2) FP_RS ;

N

typedef struct {

FP_Sign sign; // sign bit

Bit#(ee) exp; // exponent

Bit#(ss) sfd; // significand

FP RS rs; // round and sticky bit

} FP_1#(type ee, type Ss);
// exponent and significand sizes are
// *numeric* type parameters
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Bit interpretation of structs

L/

N

sign sfd

1 ee SS 2

exp rs
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Tagged Unions

N

L/
typedef union tagged {
struct {RName dst; RName srcl; RName src2;} Add;
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struct {RName cond; RName addr;} Bz;
struct {RName dst; RName addr;} Load;
struct {RName dst; Immediate 1mm;} AddImm;
} Instr;

00 dst srcl src2

01 cond addr

10 dst addr

11 dst Imm
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The Maybe type

N

#® The Maybe type can be regarded as a value
together with a “valid” bit

typedef union tagged {
void Invalid;
t Valid;

} Maybe#(type t);

#® Example: a function that looks up a nhame in a
telephone directory can have a return type
Maybe#(Te INum)

= If the name is not present in the directory it returns
tagged Invalid

= If the name iIs present with number X, It returns
tagged Valid X

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-24



The Maybe type

#®The 1sValid(m) function

s returns True 1Ifmis tagged Valid Xx
s returns False if mis tagged Invalid

N

#®The fromMaybe(y,m) function
s returns x if mis tagged Valid X
mreturnsy if mis tagged Invalid
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Deriving

j@ When defining new types, by attaching a
“deriving” clause to the type definition, we let
the compiler automatically create the “natural”
definition of certain operations on the type

N

typedef struct { .. } Foo
deriving (EqQ);

@® Eg generates the “==" and “!=" operations on
the type via bit comparison
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Deriving Bits

N

typedef struct { .. } Foo
deriving (Bits);

# Automatically generates the “pack” and “unpack”
operations on the type (simple concatenation of bit
representations of components)

# This Is necessary, for example, If the type is going to be
stored in a register, fifo, or other element that demands
that the content type be in the Bits typeclass

# It Is possible to customize the pack/unpack operations to
any specific desired representation
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Pattern-matching

# Pattern-matching is a more readable way to:
s test data for particular structure and content

= extract data from a data structure, by binding
“pattern variables” (.variable) to components

N
N

case (m) matches
tagged Invalid
tagged Valid .x
endcase

1T (m matches (Valid .x) &&& (x > 10))

return O;
return Xx;

® The &&& Is a conjunction, and allows pattern-
variables to come into scope from left to right
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Example: CPU Instructions
Operands

N

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal,;
struct {
bit [4:0] regAddr; bit [4:0] reglndex;
} Indexed;
} InstrOperand;

case (oprand) matches
tagged Register .r :- X
X

rflr];
tagged Literal .n : ;

n,

X = mem.get(a);
end

endcase

tagged Indexed {regAddr: .ra, reglndex: .ri } :
begin laddress a = rf[ra]+rf[ri];
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Other types In BSV

®String

s Character strings
®Action

s What rules/interface methods do
#®#Rule

s Behavior inside modules
#® Interface

s External view of module behavior

Useful during
static elaboration
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Instantiating

INterfaces and modules

" @ The SV idiom is:

s INnstantiate an interface

» INnstantiate a module, binding the interface

* Note: the module instance name is generally not
used, except in debuggers and in hierarchical

N

Nnames
interface type’s
interface type parameters interface inistance
interface instance declaration —> FI1FO#(DataT) inbound1();
module instance declaration —» mMkSi1zedFIFO#(fifo _depth) the i1nboundl(inboundl);
t t t
module name module module instance
parameters

#® BSV also allows a shorthand:
FIFO#(DataT) i1nboundl <- mkSizedFIFO(fi1fo depth);

We will only use the shorthand
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Module Syntax

j #Module declaration

module name interface provided
module mkGCD (1 _GCD#(t)); by this module

N

endmodule

# Module instantiation

Interface interface type’s interface module module’s
type parameter(s) instance r?we parameter(s)
_GCD#(1nt) gcd <- mkGCD ;
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Rules

N

@ A rule is declarative specification of a
state transition

= An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action=>
endrule
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Rule predicates

N

® The rule predicate can be any Boolean
expression

= INncluding function calls and method calls

#® Cannot have a side-effect
s This Is enforced by the type system

® The predicate must be true for rule
execution

= But in general, this is not enough

= Sharing resources with other rules may
constrain execution

February 27, 2006 http://csg.csail.mit.edu/6.375/

LO8-34



Next Lecture

N

# Static elaboration and architectural
exploration
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