" Bluespec-2: Types

Arvind

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

1N

February 27, 2006 http://csg.csail.mit.edu/6.375/ L08-1

Example: Shifter

N
N

#® Goal: implement: y = shift (X,S)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

@ Strategy:
s Shift by s =
shift by 4 (=22 If s[2] is set,
and by 2 (=21) If s[1] is set,
and by 1 (=29) If s[O] is set

= A shift by 2! is trivial: it’s just a “lane change” made purely

with wires
EEEEEEEER

p A

VY v v v v vy

February 27, 2006 http://csg.csail.mit.edu/6. 375/ LO8-2

Cascaded Combinational
Shifter

5 3/ f

So S&lj szl
X IE = ;§7 For
sh, Xo sh, 9 X1 sh, »ﬂ X2

function Pair step jJ (Pailr sx); where k=2j
return ((sx.s[j]==0) ? sx
Pair{s: sx.s,x:sh_k(sx.x)});

\4

Xnw

A 4

\4

\4

A family of
functions

endfunction

function Int shifter (int s,iInt X);
Pair sx0, sx1, sx2;

sx0 = step O(Pair{s:s, X:x});

sx1 = step_1(sx0); typedef struct

sx2 = step_2(sx1); {int x; int s;}
return (sx2.Xx); Pair-

February Z%r%%gé'mc-t 10N http://csg.csail.mit.edu/6.375/ LO8-3

Asynchronous pipeline

with FIFOs (regs with interlocks)

N

»
|

s 3|,

So

»
L

X s

fifo,

\ 4

sh,

XNnuwl

»
>

S1

»
»

3

»
»

XNnw

\4

sh
fifo, 2 fifo,

\4

A4

sh,

»
>

—

=
-
X

—

L

fifo,

endrule

rule stage 0 (True);
Pair sxO0 = fifoO.first(); fifoO0.deq(); fifol.enqg(step _0(sx0));

endrule

rule stage 1 (True);
Pair sx1 = fifol.first(); fifol.deq(); fifo2.enq(step_1(sx1));

endrule

rule stage 2 (True);
Pair sx2 = fifo2.first(); fifo2.deq(); fFifo3.eng(step 2(sx2));

February 27, 2006

http://csg.csail.mit.edu/6.375/

LO8-4

Required simultaneity

N

If It IS necessary for several
actions to happen together,
(1.e., Indivisibly, atomically)

Put them In the same rule!

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-5

Synchronous pipeline
(with registers)

q
s 3 [N B T
> ZEEEN > > >
[0] [1{ [Z]l
X D/ > —] é — > " g > > ” g D/ >
— Sh — - Sh L > Sh N |
sx0 712 sxa 2727 sx2 4172 sx3
N o VN ., Y N iy y
step O step_1 step 2
rule sync-shifter (True);
sx1l <= step_0(sx0); sx1, sx2 and sx3 are
sx2 <= step 1(sx1); registers defined
sx3 <= step 2(sx2): outside of the rules
endrule

Reg#(Pair) sxi <- mkRegU(Q);

Will it start properly?
Will it leave some values Iin the pipe?

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-6

Discussion

In the synchronous pipeline, we compose
actions in parallel
s All stages move data simultaneously, in lockstep
(atomic!)
In the asynchronous pipeline, we compose
rules in parallel

s Stages can move independently (each stage can
move when its input fifo has data and its output fifo
has room)

s If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move

Your design goals will suggest which kind of
composition Is appropriate in each situation

N

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-7

Expressions vs. Functions

@ A function is just an abstraction of a
combinational expression

#® Arguments are inputs to the circuit
@® The result is the output of the circuit

function 1nt discr (int a, Int b, Int c);

return| b*b — 4*a*c;
T /(

endfunction K\
February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-8

N
N

expression

Function Application

|[nstantiates combinational hardware of the
function body

@ Connects the body to argument expressions

d = discr (10, p, 9); Pl |9
- |

function iInt EHJ—\
discr (int a, Int b, Int ¢c);| p @

N
N

return b*b — 4*a*c;
endfunction

No runtime allocation of stack frames

or passing of arguments; only @%

meaningful for static elaboration

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-9

Types and type-checking

N

#® BSV is strongly-typed
s Every variable and expression has a type

s The Bluespec compiler performs strong type
checking to guarantee that values are
used only in places that make sense,
according to their type

This catches a huge class of design
errors and typos at compile time, I.e.,
before simulation

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-10

What Is a Type?

#® A type describes a set of values

N

Types are orthogonal (independent) of entities that
may carry values (such as wires, registers, ...)
= No inherent connection with storage, or updating

This Is true even of complex types
= E.g,struct { Int .., Bool ..}

m This just represents a set of pairs of values, where the first
member of each pair is an int value, and the second member

of each pair is a Bool value

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-11

SV notation for types

J -
® Some types just have a name
int, Bool, Action, ..

® More complex types can have
parameters which are themselves types

FIFO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of int and Boolean
FIFO#(Tuple2#(int,Bool)) // fifo of pairs of int

// and Boolean

N

@® Type names begin with uppercase letter
s EXxceptions: ‘int’ and ‘bit’, for compatibility with Verilog

bit[15:0]} IS the same as Bit#(16)

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-12

Numeric type parameters

#® BSV types also allows numeric

N

L/

parameters
Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide signed integers

Vector#(16, Int#(29)) // vector of 16 whose elements
// are of type Int#(29)

#® These numeric types should not be
confused with numeric values, even
though they use the same number

syntax

= The distinction is always clear from context, I.e.,
type expressions and ordinary expressions are
always distinct parts of the program text

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-13

Common scalar types

N

Bool
= Booleans
® Bit#(n)
= Bit vectors, with a width n bits
® Int#(n)
= Signhed integers of n bits
® UlInt#(n)
= Unsigned integers of n bits
#® Integer

= Unbound integers; has meaning only during static
elaboration

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-14

Some Composite Types

N

#®Enumerations
s Sets of symbolic nhames

#® Structs
s Records with fields

#Tagged Unions
= Unions, made “type-safe” with tags

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-15

Types of variables

@ Every variable has a data type:

bit[3:0] vec; // or Bit#(4) vec;

vec = 47°pb1010;

Bool cond = True;

typedef struct {Bool b; bit[31:0] v;} Vval;
Val x = Val {b: True, v: 17};

N

#® BSV will enforce proper usage of values
according to their types

= YOU can't apply “+” to a struct

= YOU can’t assign a boolean value to a
variable declared as a struct type

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-16

“let” and type-inference

T #® Normally, every variable is introduced
In a declaration (with its type)

#® The “let” notation introduces a variable
with an assignment, with the compiler
Inferring Its correct type

let vec = 4°b1010; // bit[3:0] vec = ..

let cond = True; // Bool cond = ..;

#® This is typically used only for very
“local” temporary values, where the
type Is obvious from context

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-17

Type synonyms with typedef

#® typedef is used to define a new, more
readable synonym for an existing type

Reminder: type

names begin with
muppercase letter!

N

typedef existingType NewType;
typedef int Addr;
typedef bit [63:0] Data;
typedef bit [15:0] Halfword;
typedef Bool Flag;

Type synonyms do not introduce new types.

For example, Bool and Flag can be intermixed without
affecting the meaning of a program

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-18

Enumeration

typedef enum {Red; Green; Blue} Color;
Red = 00, Green = 01, Blue = 10

N

typedef enum {Waiting; Running; Done} State;
Waiting = 00, Running = 01, Done = 10

typedef enum {RO;R1;R2;R3} RName;
RO=00,R1=01,R2=10,R3 =11

Enumerations define new, distinct types:

= Even though, of course, they are
represented as bit vectors

February 27, 2006 http://csg.csail.mit.edu/6.375/

LO8-19

Type safety

@ Type checking guarantees that bit-
vectors are consistently interpreted.

#® If a Color and a State are different

types, a Color cannot accidentally be
used as a State:

N

Reg#(Color) c <- mkRegU(Q);
Reg#(State) s <- mkRegU();

S <=7TC,;

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-20

Structs

’/typedef Bool FP_Sign ;
typedef Bit#(2) FP_RS ;

N

typedef struct {

FP_Sign sign; // sign bit

Bit#(ee) exp; // exponent

Bit#(ss) sfd; // significand

FP RS rs; // round and sticky bit

} FP_1#(type ee, type Ss);
// exponent and significand sizes are
// *numeric* type parameters

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-21

Bit interpretation of structs

L/

N

sign sfd

1 ee SS 2

exp rs

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-22

Tagged Unions

N

L/
typedef union tagged {
struct {RName dst; RName srcl; RName src2;} Add;

February 27, 2006

http://csg.csail.mit.edu/6.375/

struct {RName cond; RName addr;} Bz;
struct {RName dst; RName addr;} Load;
struct {RName dst; Immediate 1mm;} AddImm;
} Instr;

00 dst srcl src2

01 cond addr

10 dst addr

11 dst Imm

LO8-23

The Maybe type

N

#® The Maybe type can be regarded as a value
together with a “valid” bit

typedef union tagged {
void Invalid;
t Valid;

} Maybe#(type t);

#® Example: a function that looks up a nhame in a
telephone directory can have a return type
Maybe#(Te INum)

= If the name is not present in the directory it returns
tagged Invalid

= If the name iIs present with number X, It returns
tagged Valid X

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-24

The Maybe type

#®The 1sValid(m) function

s returns True 1Ifmis tagged Valid Xx
s returns False if mis tagged Invalid

N

#®The fromMaybe(y,m) function
s returns x if mis tagged Valid X
mreturnsy if mis tagged Invalid

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-25

Deriving

j@ When defining new types, by attaching a
“deriving” clause to the type definition, we let
the compiler automatically create the “natural”
definition of certain operations on the type

N

typedef struct { .. } Foo
deriving (EqQ);

@® Eg generates the “==" and “!=" operations on
the type via bit comparison

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-26

Deriving Bits

N

typedef struct { .. } Foo
deriving (Bits);

Automatically generates the “pack” and “unpack”
operations on the type (simple concatenation of bit
representations of components)

This Is necessary, for example, If the type is going to be
stored in a register, fifo, or other element that demands
that the content type be in the Bits typeclass

It Is possible to customize the pack/unpack operations to
any specific desired representation

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-27

Pattern-matching

Pattern-matching is a more readable way to:
s test data for particular structure and content

= extract data from a data structure, by binding
“pattern variables” (.variable) to components

N
N

case (m) matches
tagged Invalid
tagged Valid .x
endcase

1T (m matches (Valid .x) &&& (x > 10))

return O;
return Xx;

® The &&& Is a conjunction, and allows pattern-
variables to come into scope from left to right

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-28

Example: CPU Instructions
Operands

N

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal,;
struct {
bit [4:0] regAddr; bit [4:0] reglndex;
} Indexed;
} InstrOperand;

case (oprand) matches
tagged Register .r :- X
X

rflr];
tagged Literal .n : ;

n,

X = mem.get(a);
end

endcase

tagged Indexed {regAddr: .ra, reglndex: .ri } :
begin laddress a = rf[ra]+rf[ri];

February 27, 2006 http://csg.csail.mit.edu/6.375/

8-29

Other types In BSV

®String

s Character strings
®Action

s What rules/interface methods do
#®#Rule

s Behavior inside modules
#® Interface

s External view of module behavior

Useful during
static elaboration
February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-30

N

Instantiating

INterfaces and modules

" @ The SV idiom is:

s INnstantiate an interface

» INnstantiate a module, binding the interface

* Note: the module instance name is generally not
used, except in debuggers and in hierarchical

N

Nnames
interface type’s
interface type parameters interface inistance
interface instance declaration —> FI1FO#(DataT) inbound1();
module instance declaration —» mMkSi1zedFIFO#(fifo _depth) the i1nboundl(inboundl);
t t t
module name module module instance
parameters

#® BSV also allows a shorthand:
FIFO#(DataT) i1nboundl <- mkSizedFIFO(fi1fo depth);

We will only use the shorthand
February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-31

Module Syntax

j #Module declaration

module name interface provided
module mkGCD (1 _GCD#(t)); by this module

N

endmodule

Module instantiation

Interface interface type’s interface module module’s
type parameter(s) instance r?we parameter(s)
_GCD#(1nt) gcd <- mkGCD ;

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-32

Rules

N

@ A rule is declarative specification of a
state transition

= An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action=>
endrule

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-33

Rule predicates

N

® The rule predicate can be any Boolean
expression

= INncluding function calls and method calls

#® Cannot have a side-effect
s This Is enforced by the type system

® The predicate must be true for rule
execution

= But in general, this is not enough

= Sharing resources with other rules may
constrain execution

February 27, 2006 http://csg.csail.mit.edu/6.375/

LO8-34

Next Lecture

N

Static elaboration and architectural
exploration

February 27, 2006 http://csg.csail.mit.edu/6.375/ LO8-35

