
March 6, 2006 http://csg.csail.mit.edu/6.375/ L10-1

Bluespec-4: Rule
Scheduling and Synthesis

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

March 6, 2006 http://csg.csail.mit.edu/6.375/ L10-2

Exploring microarchitectures

IP Lookup Module

March 6, 2006 L10-3http://csg.csail.mit.edu/6.375/

IP Lookup block in a router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on
the “Longest Prefix Match”
(LPM) of it’s IP address with
entries in a routing table
Line rate and the order of
arrival must be maintained line rate ⇒ 15Mpps for 10GE

March 6, 2006 L10-4http://csg.csail.mit.edu/6.375/

18

2

3

M RefResultIP address

E5.13.7.2

C10.18.200.7

7.14.7.2

F10.18.201.5

F7.13.7.3

Sparse tree representation

3

A…

A…

B

C…

C…

5 D

F…

F…

14

A…

A…

7

F…

F…

200

F…

F…

F*

E5.*.*.*

D10.18.200.5

C10.18.200.*

B7.14.7.3

A7.14.*.* F…

F…

F

F…

E5

7

10

255

0

1
4

4A Real-world lookup algorithms
are more complex but all make
a sequence of dependent
memory references.

March 6, 2006 L10-5http://csg.csail.mit.edu/6.375/

Table representation issues
Table size

Depends on the number of entries: 10K to 100K
Too big to fit on chip memory SRAM DRAM
latency, cost, power issues

Number of memory accesses for an LPM?
Too many difficult to do table lookup at line rate
(say at 10Gbps)

Control-plane issues:
incremental table update
size, speed of table maintenance software

In this lecture (to fit the code on slides!):
Level 1: 16 bits, Level 2: 8 bits, Level 3: 8 bits

⇒ from 1 to 3 memory accesses for an LPM
March 6, 2006 L10-6http://csg.csail.mit.edu/6.375/

“C” version of LPM
int
lpm (IPA ipa)
/* 3 memory lookups */
{ int p;

/* Level 1: 16 bits */
p = RAM [ipa[31:16]];
if (isLeaf(p)) return p;
/* Level 2: 8 bits */
p = RAM [p + ipa [15:8]];
if (isLeaf(p)) return p;
/* Level 3: 8 bits */
p = RAM [p + ipa [7:0]];
return p; /* must be a leaf */

}

How to implement LPM
in HW?

Not obvious from the C
code!

…

216 -1

0

…

…28 -1

0

…

28 -1

0

Must process a packet every 1/15 μs or 67 ns

Must sustain 3 memory dependent lookups in 67 ns

March 6, 2006 L10-7http://csg.csail.mit.edu/6.375/

Static Pipeline
Assume the memory has
a latency of n cycles and
can accept a request
every cycle

Inefficient memory usage
– unused memory slots
represent wasted
bandwidth.

Difficult to schedule table
updates

RAM

req

IP addr

resp

RAM latency=4

March 6, 2006 L10-8http://csg.csail.mit.edu/6.375/

Circular pipeline

luReq

luResp

Completion buffer
- gives out tokens to control the entry into the
circular pipeline

- ensures that departures take place in order
even if lookups complete out-of-order

enter?enter?
done?done?RAM

cbuf
yes

getToken

in

active

no

March 6, 2006 L10-9http://csg.csail.mit.edu/6.375/

RAMs: Synchronous vs
Asynchronous view

Basic memory components are "synchronous":
Present a read-address AJ on clock J
Data DJ arrives on clock J+N
If you don't "catch" DJ on clock J+N, it may be lost, i.e.,
data DJ+1 may arrive on clock J+1+N

This kind of synchronicity can pervade the design and
cause complications

Synch Mem,
Latency NAddr Data

Clock

March 6, 2006 L10-10http://csg.csail.mit.edu/6.375/

Asynchronous RAMs

It's easier to work with an "asynchronous" block

Synch Mem
Latency N

Addr

Ready
ctr

(ctr > 0) ctr++

ctr--

deq

Enable
enq

interface AsyncRAM#(type addr_T, type data_T);
method Action req(addr_T a);
method ActionValue#(data_T) resp();

endinterface

Data

Ack

Data
Ready

req

re
sp

March 6, 2006 L10-11http://csg.csail.mit.edu/6.375/

Static code
rule static (True);

if (c5 == 3) begin
IP ip = in.first();
ram.req(ip[31:16]); r1 <= ip[15:0];
in.deq(); c1 <= 1;

end
else begin

r1 <= r5; c1 <= c5+1;
ram.req(r5);

end
r2 <= r1; c2 <= c1;
r3 <= r2; c3 <= c2;
r4 <= r3; c4 <= c3;
TableEntry p <- ram.resp();
r5 <= nextReq(p, r4); c5 <= c4;
if (c5 == 3) out.enq(r5);

endrule

RAM

req

IP addr

resp

ri, ci

RAM latency=4

March 6, 2006 L10-12http://csg.csail.mit.edu/6.375/

Circular Pipeline Code
rule enter (True);

Token t <- cbuf.getToken();
IP ip = in.first();
ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], t)); in.deq();

endrule
rule done (True);

TableEntry p <- ram.resp();
match {.rip, .t} = active.first();
if (isLeaf(p)) cbuf.done(t, p);
else begin

active.enq(rip << 8, t);
ram.req(p + signExtend(rip[15:7]));

end
active.deq();

endrule

enter?enter?
done?done?RAM

cbuf
in

active

March 6, 2006 L10-13http://csg.csail.mit.edu/6.375/

Completion buffer
interface CBuffer#(type any_T);
method ActionValue#(Token) getToken();
method Action done(Token t, any_T d);
method ActionValue#(any_T) getResult();

endinterface

module mkCBuffer (CBuffer#(any_T))
provisos (Bits#(any_T,sz));

RegFile#(Token, Maybe#(any_T)) buf <- mkRegFileFull();
Reg#(Token) i <- mkReg(0); //input index
Reg#(Token) o <- mkReg(0); //output index
Reg#(Token) cnt <- mkReg(0); //number of filled slots

…

I
I
V
I
V
In

i

o

buf

March 6, 2006 L10-14http://csg.csail.mit.edu/6.375/

Completion buffer

... // state elements buf, i, o, n ...

method ActionValue#(any_T) getToken() if (cnt <= maxToken);
cnt <= cnt + 1; i <= i + 1;
buf.upd(i, Invalid);
return i;
endmethod
method Action done(Token t, any_T data);
return buf.upd(t, Valid data);

endmethod
method ActionValue#(any_T) get() if (cnt > 0) &&&

(buf.sub(o) matches tagged (Valid .x));
o <= o + 1;
cnt <= cnt - 1;
return x;

endmethod

I
I
V
I
V
Icnt

i

o

buf

March 6, 2006 L10-15http://csg.csail.mit.edu/6.375/

Synthesis from rules ...

we will revisit IP LPM block synthesis results
after a better understanding of the synthesis
procedure

March 6, 2006 L10-16http://csg.csail.mit.edu/6.375/

Synthesis: From State & Rules
into Synchronous FSMs

interface

module

Transition
Logic

I OS“Next” S
Collection

of
State

Elements

March 6, 2006 L10-17http://csg.csail.mit.edu/6.375/

Hardware Elements
Combinational circuits

Mux, Demux, ALU, ...

Synchronous state elements
Flipflop, Register, Register file, SRAM, DRAM

Sel

O
I0
I1

In

Mux...

Sel

I De-
Mux ...

O0
O1

On

OpSelect
- Add, Sub, AddU, ...
- And, Or, Not, ...
- GT, LT, EQ, ...
- SL, SR, SRA, ...

Result

NCVZ

A

B
ALU

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

QQQQQQQQ

D

Clk

En
register

March 6, 2006 L10-18http://csg.csail.mit.edu/6.375/

Flip-flops with Write Enables

ff Q
D

C

EN
C

D

Q

EN

ff QD
C

EN

0
1

ff Q
D

C
EN

dangerous!

Edge-triggered: Data is sampled at the rising edge

March 6, 2006 L10-19http://csg.csail.mit.edu/6.375/

Semantics and synthesis

Rules
Semantics: “Untimed” (one rule at a time)

Verilog RTL
Semantics: clocked synchronous HW

(multiple rules per clock)

Scheduling
and

Synthesis
by the BSV compiler

Using Rule Semantics,
establish functional
correctness

Using Schedules,
establish performance
correctness

Verification activities

March 6, 2006 L10-20http://csg.csail.mit.edu/6.375/

Rule semantics
Given a set of rules and an initial state

while (some rule is applicable
in the current state)

choose one applicable rule
apply that rule to the current state to
produce the next state of the system*

(*) These rule semantics are “untimed” – the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.

Bluespec synthesis is all about executing many rules concurrently while
preserving the above semantics

March 6, 2006 L10-21http://csg.csail.mit.edu/6.375/

Rule: As a State Transformer
A rule may be decomposed into two parts
π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule.

(conjunction of explicit and implicit conditions)

δ(s) is the “state transformation” function,
i.e., computes the next-state value in terms
of the current state values.

March 6, 2006 L10-22http://csg.csail.mit.edu/6.375/

Compiling a Rule

f

x

current
state

next
state
values

δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ; f.deq ();

endrule

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action
parameters

March 6, 2006 L10-23http://csg.csail.mit.edu/6.375/

Combining State Updates:
strawman

next state
value

latch
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?
March 6, 2006 L10-24http://csg.csail.mit.edu/6.375/

Combining State Updates

next state
value

latch
enable

R

Scheduler:
Priority
Encoder

OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

March 6, 2006 L10-25http://csg.csail.mit.edu/6.375/

One-rule-at-a-time Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. One rewrite at a time
i.e. at most one φi is true

Very co
nservative

way of guaranteeing

corre
ctn

ess

March 6, 2006 L10-26http://csg.csail.mit.edu/6.375/

Executing Multiple Rules
Per Cycle

Can these rules be executed
simultaneously?

These rules are “conflict free”
because they manipulate
different parts of the state

rule ra (z > 10);
x <= x + 1;

endrule
rule rb (z > 20);

y <= y + 2;
endrule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s))

March 6, 2006 L10-27http://csg.csail.mit.edu/6.375/

Executing Multiple Rules
Per Cycle

Can these rules be executed
simultaneously?

These rules are
“sequentially composable”,
parallel execution behaves
like ra < rb

rule ra (z > 10);
x <= y + 1;

endrule
rule rb (z > 20);

y <= y + 2;
endrule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

March 6, 2006 L10-28http://csg.csail.mit.edu/6.375/

Multiple-Rules-per-Cycle
Scheduler

Schedulerπ1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. Multiple operations such that
φi ∧ φj ⇒ Ri and Rj are conflict-free or

sequentially composable

Scheduler

Scheduler

Divide the
rules into
smallest
conflicting
groups;
provide a
scheduler
for each
group

March 6, 2006 L10-29http://csg.csail.mit.edu/6.375/

Sequentially composable

Muxing structure
Muxing logic requires determining for
each register (action method) the rules
that update it and under what
conditions

Conflict Free

and

and

or

and

and

or

δ1π1
δ2π2

δ1π1 and ~π2
δ2π2

π1 ~π2

March 6, 2006 L10-30http://csg.csail.mit.edu/6.375/

Scheduling and control logic
Modules

(Current state) Rules

δ1

π1
Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

March 6, 2006 L10-31http://csg.csail.mit.edu/6.375/

Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common
piece of state, the compiler introduces suitable
muxing and mux control logic

This is very simple logic: the compiler will not
introduce long paths on its own (details later)

March 6, 2006 L10-32http://csg.csail.mit.edu/6.375/

Scheduling conflicting rules

When two rules conflict on a shared
resource, they cannot both execute in
the same clock
The compiler produces logic that
ensures that, when both rules are
applicable, only one will fire

Which one?
more on this later

