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Exploring microarchitectures

IP Lookup Module
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IP Lookup block in a router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on 
the “Longest Prefix Match” 
(LPM) of it’s IP address with 
entries in a routing table
Line rate and the order of 
arrival must be maintained line rate ⇒ 15Mpps for 10GE
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4A Real-world lookup algorithms 
are more complex but all make 
a sequence of dependent 
memory references.
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Table representation issues
Table size

Depends on the number of entries: 10K to 100K
Too big to fit on chip memory SRAM DRAM 
latency, cost, power issues

Number of memory accesses for an LPM?
Too many difficult to do table lookup at line rate 
(say at 10Gbps)

Control-plane issues:
incremental table update
size, speed of table maintenance software

In this lecture (to fit the code on slides!):
Level 1: 16 bits, Level 2: 8 bits, Level 3: 8 bits  

⇒ from 1 to 3 memory accesses for an LPM
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“C” version of LPM
int
lpm (IPA ipa)  
/*  3 memory lookups */
{  int p;

/*  Level 1: 16 bits  */
p = RAM [ipa[31:16]]; 
if (isLeaf(p)) return p;
/*  Level 2: 8 bits  */
p = RAM [p + ipa [15:8]];  
if (isLeaf(p)) return p;
/*  Level 3:  8 bits  */
p = RAM [p + ipa [7:0]];    
return p;  /* must be a leaf */

}

How to implement LPM 
in HW?

Not obvious from the C 
code!
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Must process a packet every 1/15 μs or 67 ns

Must sustain 3 memory dependent lookups in 67 ns
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Static Pipeline
Assume the memory has 
a latency of n cycles and 
can accept a request 
every cycle

Inefficient memory usage 
– unused memory slots 
represent wasted 
bandwidth.

Difficult to schedule table 
updates

RAM

req

IP addr

resp

RAM latency=4
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Circular pipeline

luReq

luResp

Completion buffer
- gives out tokens to control the entry into the
circular pipeline

- ensures that departures take place in order 
even if lookups complete out-of-order

enter?enter?
done?done?RAM

cbuf
yes

getToken

in

active

no



March 6, 2006 L10-9http://csg.csail.mit.edu/6.375/

RAMs: Synchronous vs
Asynchronous view

Basic memory components are "synchronous":
Present a read-address AJ on clock J
Data DJ arrives on clock J+N
If you don't "catch" DJ on clock J+N, it may be lost, i.e., 
data DJ+1 may arrive on clock J+1+N

This kind of synchronicity can pervade the design and 
cause complications

Synch Mem,
Latency NAddr Data

Clock
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Asynchronous RAMs

It's easier to work with an "asynchronous" block

Synch Mem
Latency N

Addr

Ready
ctr

(ctr > 0) ctr++

ctr--

deq

Enable
enq

interface AsyncRAM#(type addr_T, type data_T);
method Action req(addr_T a);
method ActionValue#(data_T) resp();

endinterface

Data

Ack

Data
Ready

req

re
sp
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Static code
rule static (True);

if (c5 == 3) begin
IP ip = in.first(); 
ram.req(ip[31:16]); r1 <= ip[15:0];
in.deq(); c1 <= 1; 

end
else begin

r1 <= r5; c1 <= c5+1;
ram.req(r5);

end
r2 <= r1; c2 <= c1;
r3 <= r2; c3 <= c2;
r4 <= r3; c4 <= c3;
TableEntry p <- ram.resp(); 
r5 <= nextReq(p, r4); c5 <= c4;
if (c5 == 3) out.enq(r5); 

endrule

RAM

req

IP addr

resp

ri, ci

RAM latency=4
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Circular Pipeline Code
rule enter (True);

Token t <- cbuf.getToken();
IP ip = in.first(); 
ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], t)); in.deq();

endrule
rule done (True);

TableEntry p <- ram.resp();
match {.rip, .t} = active.first();
if (isLeaf(p)) cbuf.done(t, p);
else begin

active.enq(rip << 8, t);
ram.req(p + signExtend(rip[15:7]));

end
active.deq();

endrule

enter?enter?
done?done?RAM

cbuf
in

active
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Completion buffer
interface CBuffer#(type any_T);
method ActionValue#(Token) getToken(); 
method Action done(Token t, any_T d);
method ActionValue#(any_T) getResult();

endinterface

module mkCBuffer (CBuffer#(any_T)) 
provisos (Bits#(any_T,sz));

RegFile#(Token, Maybe#(any_T)) buf <- mkRegFileFull();
Reg#(Token) i <- mkReg(0);   //input index
Reg#(Token) o <- mkReg(0);   //output index
Reg#(Token) cnt <- mkReg(0); //number of filled slots

…

I
I
V
I
V
In

i

o

buf
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Completion buffer

... // state elements buf, i, o, n ...

method ActionValue#(any_T) getToken() if (cnt <= maxToken);
cnt <= cnt + 1; i <= i + 1;
buf.upd(i, Invalid);
return i;
endmethod
method Action done(Token t, any_T data);
return buf.upd(t, Valid data);

endmethod
method ActionValue#(any_T) get() if (cnt > 0) &&& 

(buf.sub(o) matches tagged (Valid .x));
o <= o + 1;
cnt <= cnt - 1;
return x;

endmethod

I
I
V
I
V
Icnt

i

o

buf
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Synthesis from rules ...

we will revisit IP LPM block synthesis results 
after a better understanding of the synthesis 
procedure 
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Synthesis:  From State & Rules 
into Synchronous FSMs

interface

module

Transition
Logic

I OS“Next” S
Collection

of
State

Elements
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Hardware Elements
Combinational circuits

Mux, Demux, ALU, ...

Synchronous state elements
Flipflop, Register, Register file, SRAM, DRAM

Sel

O
I0
I1

In

Mux...

Sel

I De-
Mux ...

O0
O1

On

OpSelect
- Add, Sub, AddU, ...
- And, Or, Not, ...
- GT, LT, EQ, ...
- SL, SR, SRA, ...

Result

NCVZ

A

B
ALU

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

QQQQQQQQ

D

Clk

En
register
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Flip-flops with Write Enables

ff Q
D

C

EN
C

D

Q

EN

ff QD
C

EN

0
1

ff Q
D

C
EN

dangerous!

Edge-triggered: Data is sampled at the rising edge
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Semantics and synthesis

Rules
Semantics: “Untimed” (one rule at a time)

Verilog RTL
Semantics: clocked synchronous HW

(multiple rules per clock)

Scheduling
and

Synthesis
by the BSV compiler

Using Rule Semantics,
establish functional
correctness

Using Schedules,
establish performance
correctness

Verification activities
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Rule semantics
Given a set of rules and an initial state

while ( some rule is applicable
in the current state )

choose one applicable rule
apply that rule to the current state to 
produce the next state of the system*

(*) These rule semantics are “untimed” – the action to change the state 
can take as long as necessary provided the state change is seen as 
atomic, i.e., not divisible.

Bluespec synthesis is all about executing many rules concurrently while 
preserving the above semantics
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Rule:  As a State Transformer
A rule may be decomposed into two parts 
π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule.

(conjunction of explicit and implicit conditions)

δ(s) is the “state transformation” function, 
i.e., computes the next-state value in terms 
of the current state values.
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Compiling a Rule

f

x

current
state

next
state 
values

δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ;    f.deq ();

endrule

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action   
parameters
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Combining State Updates:
strawman

next state
value

latch 
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?
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Combining State Updates

next state
value

latch 
enable

R

Scheduler:
Priority
Encoder

OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all 
the rules
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One-rule-at-a-time Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi  ⇒ πi

2. π1 ∨ π2 ∨ .... ∨ πn ⇒ φ1 ∨ φ2 ∨ .... ∨ φn

3. One rewrite at a time 
i.e. at most one φi  is true

Very co
nservative 

way of guaranteeing 

corre
ctn

ess
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Executing Multiple Rules 
Per Cycle

Can these rules be executed 
simultaneously?

These rules are “conflict free” 
because they manipulate 
different parts of the state 

rule ra (z > 10); 
x <= x + 1; 

endrule
rule rb (z > 20); 

y <= y + 2; 
endrule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s)) 
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Executing Multiple Rules 
Per Cycle

Can these rules be executed 
simultaneously?

These rules are 
“sequentially composable”, 
parallel execution behaves 
like ra < rb

rule ra (z > 10); 
x <= y + 1; 

endrule
rule rb (z > 20); 

y <= y + 2; 
endrule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))
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Multiple-Rules-per-Cycle 
Scheduler

Schedulerπ1
π2

πn

φ1
φ2

φn

1. φi  ⇒ πi 

2. π1 ∨ π2 ∨ .... ∨ πn ⇒ φ1 ∨ φ2 ∨ .... ∨ φn

3. Multiple operations such that
φi ∧ φj ⇒ Ri and Rj are conflict-free or 

sequentially composable

Scheduler

Scheduler

Divide the 
rules into 
smallest 
conflicting 
groups; 
provide a 
scheduler 
for each 
group
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Sequentially composable

Muxing structure
Muxing logic requires determining for 
each register (action method) the rules 
that update it and under what 
conditions

Conflict Free

and

and

or

and

and

or

δ1π1
δ2π2

δ1π1 and ~π2
δ2π2

π1 ~π2
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Scheduling and control logic
Modules

(Current state) Rules

δ1

π1
Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”
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Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to 
execute in the same clock cycle

The hardware makes a rule-execution decision on 
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset 
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common 
piece of state, the compiler introduces suitable 
muxing and mux control logic

This is very simple logic: the compiler will not 
introduce long paths on its own (details later)
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Scheduling conflicting rules

When two rules conflict on a shared 
resource, they cannot both execute in 
the same clock
The compiler produces logic that 
ensures that, when both rules are 
applicable, only one will fire

Which one?
more on this later


