
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-1

Bluespec-5: Scheduling
& Rule Composition

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

March 8, 2006 L11-2http://csg.csail.mit.edu/6.375/

Executing Multiple Rules Per Cycle:

Conflict-free rules

Parallel execution behaves
like ra < rb = rb < ra

rule ra (z > 10);
x <= x + 1;

endrule
rule rb (z > 20);

y <= y + 2;
endrule

rule ra_rb((z>10)&&(z>20));
x <= x+1; y <= y+2;

endrule

Parallel Execution can
also be understood in
terms of a composite

rule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒ 1. πa(δb(s)) ∧ πb(δa(s))

2. δa(δb(s)) == δb(δa(s))

March 8, 2006 L11-3http://csg.csail.mit.edu/6.375/

Executing Multiple Rules Per Cycle:

Sequentially Composable rules
rule ra (z > 10);

x <= y + 1;
endrule
rule rb (z > 20);

y <= y + 2;
endrule

Parallel execution behaves
like ra < rb

rule ra_rb((z>10)&&(z>20));
x <= y+1; y <= y+2;

endrule

Parallel Execution
can also be

understood in
terms of a

composite rule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

March 8, 2006 L11-4http://csg.csail.mit.edu/6.375/

Sequentially Composable rules ...

Parallel execution can behave
either like ra < rb or rb < ra
but the two behaviors are not
the same

Composite rules

rule ra (z > 10);
x <= 1;

endrule
rule rb (z > 20);

x <= 2;
endrule

Behavior ra < rb

Behavior rb < ra

March 8, 2006 L11-5http://csg.csail.mit.edu/6.375/

A property of rule-based
systems

Adding a new rule to a system can only
introduce new behaviors
If the new rule is a derived rule, then it does
not add new behaviors

Example of a derived rule:
Given rules:

Ra: when πa(s) => s := δa(s);
Rb: when πb(s) => s := δb(s);

The following rule is a derived rule:

Ra,b: when πa(s) & πb(δa(s)) => s := δb(δa(s));

For CF rules πb(δa(s)) = πb(s) and s := δb(δa(s))= δa(δb(s));
For SC rules πb(δa(s)) = πb(s) and s := δb(δa(s));

March 8, 2006 L11-6http://csg.csail.mit.edu/6.375/

Rule composition

rule_1 rule_2

rule_1_2

Semantics of rule based systems guarantee that rule_1_2
which takes s1 to s3 is correct
Such composed rules are called derived rules because
they are mechanically derivable

S1 S2 S3

rule rule_1 (p1(s)); r <= f1(s); endrule
rule rule_2 (p2(s)); r <= f2(s); endrule
rule rule_1_2 (p1(s) && p2(s’); s <= f2(s’);endrule

where s’ = f1(s);

March 8, 2006 L11-7http://csg.csail.mit.edu/6.375/

Implementation oriented
view of concurrency

A. When executing a set of rules in a clock cycle, each
rule reads state from the leading clock edge and
sets state at the trailing clock edge

⇒ none of the rules in the set can see the effects of
any of the other rules in the set

B. However, in one-rule-at-a-time semantics, each rule
sees the effects of all previous rule executions

Thus, a set of rules can be safely executed
together in a clock cycle only if A and B
produce the same net state change

March 8, 2006 L11-8http://csg.csail.mit.edu/6.375/

Pictorially

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• There are more intermediate states in the rule
semantics (a state after each rule step)

• In the HW, states change only at clock edges

March 8, 2006 L11-9http://csg.csail.mit.edu/6.375/

Parallel execution
reorders reads and writes

Rules

HW
clocks

rule

steps

• In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules

• In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks

reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

March 8, 2006 L11-10http://csg.csail.mit.edu/6.375/

Correctness

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule
execution (i.e., CF or SC)

• Consequence: the HW can never reach a state
unexpected in the rule semantics

March 8, 2006 L11-11http://csg.csail.mit.edu/6.375/

Compiler determines if two rules
can be executed in parallel

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s))

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

March 8, 2006 L11-12http://csg.csail.mit.edu/6.375/

Mutually Exclusive Rules
Rulea and Ruleb are mutually exclusive if they
can never be enabled simultaneously

∀s . πa(s) ⇒ ~ πb(s)

Mutually-exclusive rules are Conflict-free
even if they write the same state

Mutual-exclusive analysis brings down the cost
of conflict-free analysis

March 8, 2006 L11-13http://csg.csail.mit.edu/6.375/

Conflict-Free Scheduler
Partition rules into maximum number of
disjoint sets such that

a rule in one set may conflict with one or more rules
in the same set
a rule in one set is conflict free with respect to all the
rules in all other sets

(Best case: All sets are of size 1!!)

Schedule each set independently
Priority Encoder, Round-Robin Priority Encoder
Enumerated Encoder

The state update logic depends upon whether the
scheduler chooses “sequential composition” or not

March 8, 2006 L11-14http://csg.csail.mit.edu/6.375/

Multiple-Rules-per-Cycle
Scheduler

1. φi ⇒ πi
2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn
3. Multiple operations such that

φi ∧ φj ⇒ Ri and Rj are conflict-free or
sequentially composable

Schedulerπ1
π2

πn

φ1
φ2

φn

Scheduler

Scheduler

Divide the rules
into smallest
conflicting
groups; provide
a scheduler for
each group

March 8, 2006 L11-15http://csg.csail.mit.edu/6.375/

Muxing structure
Muxing logic requires determining for each
register (action method) the rules that update
it and under what conditions

π1 ~π2

Conflict Free (Mutually exclusive)

and

and

or
δ1π1
δ2π2

Sequentially composable

and

and

or
δ1π1 and ~π2
δ2π2

CF rules
either do not
update the
same element
or are ME

March 8, 2006 L11-16http://csg.csail.mit.edu/6.375/

Scheduling and control logic
Modules

(Current state) Rules

δ1

π1 Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

March 8, 2006 L11-17http://csg.csail.mit.edu/6.375/

Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common
piece of state, the compiler introduces
appropriate muxing logic

March 8, 2006 L11-18http://csg.csail.mit.edu/6.375/

Scheduling conflicting rules

When two rules conflict on a shared
resource, they cannot both execute in
the same clock
The compiler produces logic that
ensures that, when both rules are
applicable, only one will fire

Which one?
source annotations

March 8, 2006 L11-19http://csg.csail.mit.edu/6.375/

Circular Pipeline Code
rule enter (True);

Token t <- cbuf.getToken();
IP ip = in.first();
ram.req(ip[31:16]);
active.enq(tuple2(ip[15:0], t)); in.deq();

endrule
rule done (True);

TableEntry p <- ram.resp();
match {.rip, .t} = active.first();
if (isLeaf(p)) cbuf.done(t, p);
else begin

active.enq(rip << 8, t);
ram.req(p + signExtend(rip[15:7]));

end
active.deq();

endrule

enter?enter?
done?done?RAM

cbuf
in

active

Can rules enter and
done be applicable
simultaneously?

Which one should go?

March 8, 2006 L11-20http://csg.csail.mit.edu/6.375/

Concurrency Expectations
Register

FIFO

read2 write2
read1
write1

enq2 first2 deq2 clear2
enq1
first1
deq1
clear1

March 8, 2006 L11-21http://csg.csail.mit.edu/6.375/

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);
method Action enq(t x) if (!full);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False;

endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod
endmodule

One Element FIFO
Concurrency?

enq and deq ?

March 8, 2006 L11-22http://csg.csail.mit.edu/6.375/

Two-Element FIFO
module mkFIFO2#(FIFO#(t));
Reg#(t) data0 <-mkRegU; Reg#(Bool) full0 <- mkReg(False);
Reg#(t) data1 <-mkRegU; Reg#(Bool) full1 <- mkReg(False);
method Action enq(t x) if (!(full0 && full1));
data1 <= x; full1 <= True;
if (full1) then begin data0 <= data1; full0 <= True; end

endmethod
method Action deq() if (full0 || full1);
if (full0) full0 <= False; else full1 <= False;

endmethod
method t first() if (full0 || full1);
return ((full0)?data0:data1);

endmethod
method Action clear();
full0 <= False; full1 <= False;

endmethod
endmodule Shif

t re
gist

er

impl
emen

tati
on

March 8, 2006 L11-23http://csg.csail.mit.edu/6.375/

The good news ...

It is always possible to transform
your design to meet desired
concurrency and functionality

March 8, 2006 L11-24http://csg.csail.mit.edu/6.375/

Register Interfaces

read < write

D Q0

1
readwrite.x

write.en

write < read ?

March 8, 2006 L11-25http://csg.csail.mit.edu/6.375/

Ephemeral History Register (EHR)

read0 < write0 < read1 < write1 < ….

D Q0

1

read1

write0.x
write0.en

read0

0

1write1.x
write1.en

writei+1 takes precedence over writei

[MEMOCODE’04]

March 8, 2006 L11-26http://csg.csail.mit.edu/6.375/

One Element FIFO using EHRs
module mkFIFO1 (FIFO#(t));
EHReg2#(t) data <- mkEHReg2U();
EHReg2#(Bool) full <- mkEHReg2(False);
method Action enq0(t x) if (!full.read0);
full.write0 <= True; data.write0 <= x;

endmethod
method Action deq0() if (full.read0);
full.write0 <= False;

endmethod
method t first0() if (full.read0);
return (data.read0);

endmethod
method Action clear0();
full.write0 <= False;

endmethod
endmodule

first0 < deq0 < enq1

March 8, 2006 L11-27http://csg.csail.mit.edu/6.375/

D Q

0

1

0

1

0

1

0

1writen.x
writen.en

write2.x
write2.en

write1.x
write1.en

write0.x
write0.en

EHR as the base case?

read0

read1

read2

read3

readn+1

read0

read2

read3

readn+1

March 8, 2006 L11-28http://csg.csail.mit.edu/6.375/

The bad news ...

EHR cannot be written in Bluespec as defined so far

Even though this transformation to meet the
performance “specification” is mechanical, the Bluespec
compiler currently does not do this transformation.
Choices:

do it manually and use a library of EHRs
rely on a low level (dangerous) programming mechanism.

Wires

March 8, 2006 L11-29http://csg.csail.mit.edu/6.375/

RWires

The mkRWire module contains no state and no logic: it’s just
wires!
By testing the valid bit of wget() we know whether some rule
containing wset() is executing concurrently (enab is True)

interface RWire #(type t);
method Action wset (t data);
method Maybe#(t) wget ();

endinterface

module mkRWire (RWire#(t));

enab

n

w
se

t

no rdy wire
(always True)

mkRWire

n
w

ge
t

no rdy wire
(always True)

data a Maybe value
containing a
data value and
a valid bit

March 8, 2006 L11-30http://csg.csail.mit.edu/6.375/

Intra-clock communication
Suppose Rj uses rw.wset() on an RWire
Suppose Rk uses rw.wget() on the same RWire
If Rj and Rk execute in the same cycle then Rj
always precedes Rk in the rule-step semantics
Testing isValid(rw.wget()) allows Rk to test
whether Rj is executing in the same cycle)
wset/wget allows Rj to communicate a value to Rk

clocks

rule
steps

Rj

Rk

Ri Rj Rk

mx = wget()

Intra-clock rule-to-rule
communication, provided
both rules actually execute
concurrently (same cycle)

Forward communication only
(in the rule-step ordering)

wset(x)

March 8, 2006 L11-31http://csg.csail.mit.edu/6.375/

module mkFIFO1#(type t);
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);
PulseWire deqW <- mkPulseWire();
method Action enq(t x) if (deqW || !full);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False; deqW.send();

endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod
endmodule

One Element FIFO w/ RWires
Pipeline FIFO

first < deq < enq

March 8, 2006 L11-32http://csg.csail.mit.edu/6.375/

module mkFIFO1#(type t);
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);
RWire#(t) enqW <- mkRWire();
PulseWire deqW <- mkPulseWire();
rule finishMethods(isJust(enqW.wget) || deqW);

full <= !deqW;
endrule
method Action enq(t x) if (!full);

enqW.wset(x); data <= x;
endmethod
method Action deq() if (full || isJust(enqW.wget()));

deqW.send();
endmethod
method t first() if (full || isJust(enqW.wget()));

return (full ? data : unJust(enqW.wget));
endmethod
method Action clear();

full <= False;
endmethod

endmodule

One Element FIFO w/ RWires
Bypass FIFO

enq < first < deq

March 8, 2006 L11-33http://csg.csail.mit.edu/6.375/

A HW implication of
mkPipelineFIFO

rdy_enq
enab

n

rdy

en
q

cl
ea

r

not full ||
enab_deq

always true

m
k

P
ip

li
n

e
F

IF
O

enab

rdy

enab_deq

de
q

not empty

n

rdy fir
st

not empty

There is now a
combinational path from
enab_deq to rdy_enq (a
consequence of the RWire)

This is how a rule using
enq() “knows” that it can
go even if the FIFO is full,
i.e., enab_deq is a signal
that a rule using deq() is
executing concurrently

March 8, 2006 L11-34http://csg.csail.mit.edu/6.375/

Viewing the schedule
The command-line flag -show-schedule can
be used to dump the schedule
Three groups of information:

method scheduling information

rule scheduling information

the static execution order of rules and methods

