Bluespec-5: Scheduling
& Rule Composition

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

March 8, 2006

http://csg.csail.mit.edu/6.375/

L11-1

Executing Multiple Rules Per Cycle:
Conflict-free rules

rule ra (z > 10);
X <= X + 1;
endrule

Parallel execution behaves
likera<rb=rb<ra

rule rb (z > 20);
y <=y + 2;
endrule

Rule, and Rule, are conflict-free if
VS . my(S) A mp(S) = 1. mu(8,(S)) A mp(8,(S))
2. 8,(8,(8)) == 8,(8.(5))

Parallel Execution can
also be understood in

terms of a composite
rule

March 8, 2006

rule ra_rb((z>10)&&(z>20));
X <= X+1; y <= y+2;
endrule

http://csg.csail.mit.edu/6.375/

Executing Multiple Rules Per Cycle:
Sequentially Composable rules

rule ra (z > 10);
X <=y + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Parallel execution behaves
likera<rb

Rule, and Rule, are sequentially composable if
VS . 1a(S) A mp(S) = 1(84(5))

Parallel Execution
can also be

understood in
terms of a
composite rule

March 8, 2006

rule ra_rb((z>10)&&(z>20))
X <= y+l; y <= y+2;
endrule

http://csg.csail.mit.edu/6.375/

L11-3

Sequentially Composable rules ...

rule ra (z > 10);
X <= 1;
endrule

rule rb (z > 20);
X <= 2;
endrule

Composite rules

Behavior ra < rb

Behavior rb < ra

March 8, 2006

http://csg.csail.mit.edu/6.375/

Parallel execution can behave
either likera<rb orrb <ra
but the two behaviors are not
the same

L11-2

L11-4

A property of rule-based
systems

Adding a new rule to a system can only
introduce new behaviors

@ If the new rule is a derived rule, then it does
not add new behaviors

#Example of a derived rule:
=Given rules:
R,: when m,(S) == s := §,(9);
Ry: when n,(s) == s := §,(S);
sThe following rule is a derived rule:

Rap? When m,(s) & m,(8,(S)) => s := 8,(8.(5));

For CF rules n,(5,(s)) = n,(s) and s := 3,(5,(8))= 3,(5,(S));
For SC rules n,(5,(S)) = n,(s) and s := §,(5,(5));
March 8, 2006 http://csg.csail.mit.edu/6.375/

Rule composition

rule rule 1 (p1(s));
rule rule 2 (p2(s));

rule rule_1 2 (pl(s) && p2(s’);
where s’

<= f1(s); endrule
<= f2(s); endrule
<= f2(s”);endrule
1(s):

N o = =

Semantics of rule based systems guarantee that rule_1 2
which takes sl to s3 is correct

Such composed rules are called derived rules because
they are mechanically derivable

L11-5 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-6
Implementation oriented
view of concurrency Pictorially
A. When executing a set of rules in a clock cycle, each } o } ol
rule reads state from the leading clock edge and Rules sl feeel A ..R' ALK T L A deeel o oA leee I rU'-|e 1
sets state at the trailing clock edge steps
= none of the rules in the set can see the effects of Rj '
any of the other rules in the set HW | | RK | | .
B. However, in one-rule-at-a-time semantics, each rule | I = I | clocks
sees the effects of all previous rule executions S
* There are more intermediate states in the rule
Thus, a set of rules can be safely executed semantics (a state after each rule step)
together in a clock cycle only if A and B
produce the same net state change < In the HW, states change only at clock edges
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-7 March 8, 2006

http://csg.csail.mit.edu/6.375/

L11-8

Parallel execution

reorders reads and writes Correctness
Rules rule ; Ri _Ri RK ; ' rule
Ireads Writeglreads Write§|m5|reads Writeslmgl steps Rules coel ’!"'I 1 'I 1 J'I'"I 1 'I Aoeel oA A oo I steps
J // J J // /‘/“*\f N J | | R | |
"//// \\\\ A 4// /// \\\‘\\:\\‘ I -
reads v\v:ite§ reads writes HW I I .R.l.(I I clocks
HW i *Iclocks . R
: * Rules are allowed to fire in parallel only if the net
= In the rule semantics, each rule sees (reads) the state change is equivalent to sequential rule
effects (writes) of previous rules execution (i.e., CF or SC)
e In the HW, rules only see the effects from previous e Consequence: the HW can never reach a state
clocks, and only affect subsequent clocks unexpected in the rule semantics
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-9 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-10
Compiler determines if two rules
can be executed in parallel Mutually Exclusive Rules
Rule, and Rule, are conflict-free if # Rule, and Rule, are mu_tually exclusive if they
Vs . m,(S) A my(s) = can never be enabled simultaneously
1. 1,(85(5)) A mp(8,(S))
2. 8,(8p(8)) == 6,(84(s)) Vs . m(s) = ~ m,(S)
Rule, and Rule, are sequentially composable if
Vs . ma(S) A my(S) = m,(84(S)) _ _
Mutually-exclusive rules are Conflict-free
_ _ . ven if they wri h m
These properties can be determined by examining the eve they te the same state
domains and ranges of the rules in a pairwise manner.
Mutual-exclusive analysis brings down the cost
of conflict-free analysis
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-11 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-12

Conflict-Free Scheduler

Partition rules into maximum number of
disjoint sets such that

= a rule in one set may conflict with one or more rules
in the same set

= a rule in one set is conflict free with respect to all the
rules in all other sets

(Best case: All sets are of size 1!1)
Schedule each set independently
= Priority Encoder, Round-Robin Priority Encoder
= Enumerated Encoder

The state update logic depends upon whether the
scheduler chooses “sequential composition” or not

Multiple-Rules-per-Cycle
Scheduler

™ ——— &

m, T Scheduler | | , | Divide the rules
N . , |into smallest

. ————— Scheduler —— . |conflicting

« ———— 7 ——> « | groups; provide

. : ° | a scheduler for

e . . |each group

R — Scheduler —— &

l.¢g=>rn

2. M VIV VI, 9 VP V.. V§,

3. Multiple operations such that

¢ 1 ¢ = R;and R, are conflict-free or
sequentially composable

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-13 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-14
_) . o Modules Rules CAN_FIRE’ “WILL_FIRE” Modules
Muxing logic requires determining for each (Current state) | dy (Next state)
register (action method) the rules that update . edul .
it and under what conditions l o Se eduler & l
n__, _mn
L . R
Conflict Free (Mutually exclusive) CF rules
3, 1 either do not .
gl update the . }
TE22 Same element L4 r—’ o o o - X [}
or are ME . N .
T, P ~T, cond| r.. l. > R
Sequentially composable l il . Muxing . l
S action| § ° °
i, and ~1rc l oS, — l
e
) N
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-15 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-16

Synthesis Summary

@ Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

s The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)

= Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order
Since multiple rules can write to a common
piece of state, the compiler introduces
appropriate muxing logic

Scheduling conflicting rules

When two rules conflict on a shared
resource, they cannot both execute in
the same clock

#® The compiler produces logic that
ensures that, when both rules are
applicable, only one will fire
= Which one?

source annotations

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-17 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-18
Circular Pipeline Code o~ Concurrency Expectations
in
rule enter (True); @ @ .
Token t <- cbuf.getToken;q];[l» ' & ReQISter i
IP ip = in.firstQ); ’—']:I:I]] - read2 write2
ram.req(ip[31:16]); active readl
active.enq(tuple2(ip[15:0], ©)); in.deq(); writel
endrule
rule done (True); Can rules enter and
TableEntry p <- ram.resp(); done be applicable
match {.rip, -t} = active.first(Q); simultaneously?
if (isLeaf(p)) cbuf.done(t, p); @® FIFO
else begin . eng2 | first2 deq2 | clear2
active_enq(rip << 8, t); Wthh one ShOU|d 907 enql
ram.req(p + signExtend(rip[15:7])); -
end firstl
active.deq(Q); deql
endrule Clearl
L11-19 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-20

March 8, 2006 http://csg.csail.mit.edu/6.375/

One Element FIFO

modulle mkFIFO1 (FIFO#(t));

Reg#(t) data <- mkRegUQ);

Reg#(Bool) full <- mkReg(False);

method Action enq(t x) if (Ifull);
Ffull <= True; data <= Xx;

endmethod

method Action deq() if (full);
full <= False;

endmethod

method t First() if (full);
return (data);

endmethod

method Action clear();

Concurrency?

eng and deq ?

Two-Element FIFO

module mkFIFO2#(FIFO#(t));
Reg#(t) dataO0 <-mkRegU; Reg#(Bool) fullO <- mkReg(False);
Reg#(t) datal <-mkRegU; Reg#(Bool) fulll <- mkReg(False);

method Action enq(t x) if (I(fullO && fulll));

datal <= x; fulll <= True;

it (fulll) then begin data0 <= datal; fullO <= True; end
endmethod
method Action deq() if (fullO |] fulll);

if (full0) fullO <= False; else fulll <= False;
endmethod
method t first() if (fullO || fulll);

return ((fullO)?datalO:datal);

full <= False; endmethod
endmethod method Action clear(); ‘gx
endmodulle fullo <= False; fulll <= False; eg‘5<\o“
endmethod ,{1,(“‘a;
endmodule St et®
WY
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-21 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-22
The good news ... Register Interfaces
@It is always possible to transform __read < write | write < read ? |
your design to meet desired
concurrency and functionality
write.en
A
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-23 March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-24

Ephemeral History Register (EHR)

[MEMOCODE’04]

| read® < write® < read! < writel < |

write0.x) | ©
write®.en —T

writel.x a A
writel.en

’ writei*1 takes precedence over writel ‘

read!

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-25

One Element FIFO using EHRs

module mKFIFO1 (FIFO#(t)); ’firStO < deq® < e”ql\

EHReg2#(t) data <- mkEHReg2UQ);
EHReg2#(Bool) full <- mkEHReg2(False);
method Action enq®(t x) if (Ifull.read®);
full .write® <= True; data.write® <= x;
endmethod
method Action deq®() if (full.read®);
full .write?® <= False;
endmethod
method t First?() if (full.read%);
return (data.read®);
endmethod
method Action clear®();
full .write® <= False;
endmethod
endmodule

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-26

EHR as the base case?

write0.x B

ita0
write®.en 0 —» D QH—»[read®
writel.x 1
writel.en L0
write2.x > L,
[]
write2.en S
[]
S 0
writen.x 1
writen.en
»read!
» | read?
»read3
L]
[}
[
— readn+l

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-27

The bad news ...

@ EHR cannot be written in Bluespec as defined so far

@ Even though this transformation to meet the
performance “specification” is mechanical, the Bluespec
compiler currently does not do this transformation.
Choices:

= do it manually and use a library of EHRs
= rely on a low level (dangerous) programming mechanism.

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-28

RWires

interface RWire #(type 1t);
method Action wset (t data);
method Maybe#(t) wget (;
endinterface

module mkRWire (RWire#(t));

#® The mkRWire module contains no state and no logic: it’s just
wires!

By testing the valid bit of wget() we know whether some rule
containing wset() is executing concurrently (enab is True)

a Maybe value

data .n _ _ n ~ e
g g > | containing a
enab & = [data value and
= = a valid bit
D L B R B EEE LR R >
no rdy wire mkRWire no rdy wire
(always True) (always True)

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-29

Intra-clock communication

March 8, 2006

Suppose Rj uses rw.wset() on an RWire
Suppose Rk uses rw.wget() on the same RWire

@ If Rj and Rk execute in the same cycle then Rj
always precedes Rk in the rule-step semantics

Testing isValid(rw.wget()) allows Rk to test
whether Rj is executing in the same cycle)

wset/wget allows Rj to communicate a value to Rk

%] Intra-clock rule-to-rule
communication, provided
both rules actually execute
concurrently (same cycle)

rule oo | i
steps

clocks

Forward communication only
(in the rule-step ordering)

http://csg.csail.mit.edu/6.375/

One Element FIFO w/ RWires

Pipeline FIFO

module mkFIFOl#(type t);
Reg#(t) data <- mkRegUQ);

’first < deq < enq‘

Reg#(Bool) full <- mkReg(False);
PulseWire deqW <- mkPulseWire();

method Action enq(t x) if (degw || 'full);
full <= True; data <= x;
endmethod

method Action deq() if (full);
full <= False; degW.send();

endmethod

method t First() if (full);
return (data);

endmethod

method Action clear();
full <= False;

endmethod

endmodule

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-31

One Element FIFO w/ RWires

Bypass FIFO

March 8, 2006

‘modulle mkFIFO1#(type t);
Reg#(t) data <- mkRegUQ);
Reg#(Bool) full <- mkReg(False);
RWire#(t) engW <- mkRWire(Q);
PulseWire degW <- mkPulseWire();
rule finishMethods(isJust(engW.wget) || deqW);
full <= IdeqW;
endrule
method Action enq(t x) if (Ifull);
engW.wset(x); data <= x;
endmethod
method Action deq() if (full || isJust(engW.wget()));
degW.send();
endmethod
method t First() if (full || isJust(engW.wget()));
return (full ? data : unJust(engW.wget));
endmethod
method Action clear();
full <= False;
endmethod
endmodule

’enq < first < deq‘

http://csg.csail.mit.edu/6.375/

L11-30

L11-32

A HW implication of
mkPipelineFIFO

#® There is now a

combinational path from
enab_deq to rdy_enq (a
consequence of the RWire)

@ This is how a rule using
eng() “knows” that it can
go even if the FIFO is full,
i.e., enab_deq is a signal
that a rule using deq() is
executing concurrently

March 8, 2006

0,

enab

P A

rdy_enq

not full ||
enab_deq

4+
not empty <4 |

enab_deq

—_—

not empty L A—

enab

—

always true . rdy

enq |

I

|

first

http://csg.csail.mit.edu/6.375/

mKkPiplineFIFO

dear‘g} deq (1

L11-33

Viewing the schedule

#® The command-line flag -show-schedule can
be used to dump the schedule

Three groups of information:

= method scheduling information

= rule scheduling information

= the static execution order of rules and methods

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-34

