N

Bluespec-5: Scheduling
& Rule Composition

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology E

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-1

Executing Multiple Rules Per Cycle:
Conflict-free rules

rule ra (z > 10);
X <= X + 1;
endrule

L/

N

Parallel execution behaves
likera<rb=rb <ra

rule rb (z > 20);
y <=y + 2;
endrule

Rule, and Rule, are conflict-free if
Vs . () A mp(S) = 1. mu(8,(S)) A mp(8,(S))
2. 6,(3,(S)) == 06,(34(5))

Parallel Execution can -
also be understood In rule r;a_rb(_(z>1(1)&&(z_>20)) ’
X <= X+1; y <= y+2;

endrule

terms of a composite
rule

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-2

Executing Multiple Rules Per Cycle:
Seguentially Composable rules

rule ra (z > 10);

X <=y + 1; Parallel execution behaves
endrule like ra < rb

N

L/

rule rb (z > 20);
y <=y + 2;
endrule

Rule, and Rule, are sequentially composable if
Vs . m4(S) A 1p(S) = m,(04(S))

Parallel Execution
can also be rule ra rb((z>10)&&(z>20));
understood In X <= y+1; y <= y+2;
terms of a endrule
composite rule

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-3

Seguentially Composable rules ...

Q¥
rule ra (z > 10); _
X <= 1; Parallel execution can behave
endrule either like ra < rb _or rb < ra
but the two behaviors are not
rule rb (z > 20); the same
X <= 2;
endrule

Composite rules

Behavior ra <rb

Behavior rb < ra

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-4

A property of rule-based
systems

#® Adding a new rule to a system can only
Introduce new behaviors

|f the new rule Is a derived rule, then it does
not add new behaviors

N

#Example of a derived rule:
=Given rules:
R,: when n(S) == s := 5,(S);
R,: when n (s) == s := §,(S);
s [he following rule is a derived rule:

Rop When m,(s) & m,(3,(5)) => s 1= 8,(8,(5));

For CF rules 1,(8,(5)) = m,(s) and s := 8,(8,(5))= 8,(8,(5));
For SC rules n,(5,(s)) = n,(s) and s := 5,(3,(5));
March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-5

Rule composition

rule 1 rulle 2
S1 = - — -
JISSSES 4

N
N

A

rule 1 2
rule rule_ 1 (p1(s)); r <= f1(s); endrule
rule rule 2 (p2(s)); r <= f2(s); endrule
rule rule 1 2 (pl1(s) && p2(s’); s <= T2(s’);endrule
where s” = T1(s);

Semantics of rule based systems guarantee that rule_ 1 2
which takes sl to s3 is correct

Such composed rules are called derived rules because
they are mechanically derivable

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-6

Implementation oriented
view of concurrency

N

A. When executing a set of rules in a clock cycle, each
rule reads state from the leading clock edge and
sets state at the trailing clock edge

— none of the rules in the set can see the effects of
any of the other rules in the set

B. However, in one-rule-at-a-time semantics, each rule
sees the effects of all previous rule executions

Thus, a set of rules can be safely executed
together in a clock cycle only if A and B
produce the same net state change

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-7

Pictorially

Ri . Rj RK rule
RUIES eeel Aeeel A A A Weeel A o oA Aoool o A lees Hst.ekpgl
HW ‘ H 'Ri(J: ‘ |_glocks
Ri .

e There are more intermediate states in the rule
semantics (a state after each rule step)

e In the HW, states change only at clock edges

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-8

Parallel execution
reorders reads and writes

g
<
Rules ‘ rule
Ireads write§|reads write§|reads Writeélreads writeslreads write§I steps
reads writeg reads writeg
>
>| clocks
HW
e In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules
e In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks
L11-9

March 8, 2006 http://csg.csail.mit.edu/6.375/

Correctness

N

L/

HW

RuUles eeel Aol A A AT eee FL o g oeel o A oo

rule

BN

. steps

‘ H(; :(%‘ ‘

RI

>

|_glocks

e Rules are allowed to fire in parallel only if the net

state change is equivalent to sequential rule
execution (i.e., CF or SC)

e Conseguence: the HW can never reach a state

unexpected in the rule semantics

March 8, 2006

http://csg.csail.mit.edu/6.375/

L11-10

Compiler determines if two rules
can be executed In parallel

L/

N

Rule, and Rule, are conflict-free if
Vs . n,(S) A mp(S) =
1. 7,(3,(S)) A 1,(34(S))
2. 8,(8,(5)) == 8,(3,(5))

Rule, and Rule, are sequentially composable if
Vs . m,(S) A m(S) = m,(8,(S))

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-11

Mutually Exclusive Rules

® Rule_, and Rule, are mutually exclusive If they
can never be enabled simultaneously

N

Vs . n,(S) = — n,(S)

Mutually-exclusive rules are Conflict-free
even If they write the same state

Mutual-exclusive analysis brings down the cost
of conflict-free analysis

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-12

Conflict-Free Scheduler

#® Partition rules into maximum number of
disjoint sets such that

= a rule in one set may conflict with one or more rules
In the same set

= a rule in one set is conflict free with respect to all the
rules in all other sets

(Best case: All sets are of size 1!!)
#® Schedule each set independently

= Priority Encoder, Round-Robin Priority Encoder
= Enumerated Encoder

N

The state update logic depends upon whether the
scheduler chooses “sequential composition” or not

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-13

Multiple-Rules-per-Cycle
Scheduler

S
4! 4
7Ty Scheduler > ¢, | Divide the rules
, | Into smallest
. Scheduler . | conflicting
. e | groups; provide
. . * |a scheduler for
’ . - | each group
. Scheduler)
l. ¢ =7

2. VIVt VI, PV Py Voo VP,
3. Multiple operations such that
¢~ ¢ = R;and R, are conflict-free or
sequentially composable

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-14

Muxing structure

N

It and under what conditions

Muxing logic requires determining for each
register (action method) the rules that update

Conflict Free (Mutually exclusive)

o, —>

ni _ ,land

\AA 4

or

82—>
Ty ——

and

Sequentially composable

\ 4

1 >
n, and <g;——{ and or

»

2 and

March 8, 2006 http://csg.csail.mit.edu/6.375/

CF rules
either do not
update the
same element
or are ME

T, =P ~T,

L11-15

Scheduling and control logic

Modules “CAN_FIRE” “WILL_FIRE" Modules
X Rules = -
(Current state) T, d, (Next state)
. /
T, ’ Scheduler .
Ty Py A
5,
N

. o "
cond . _’. .
. * Muxin °
l action 5 ° 9 ° A
N i -
J N

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-16

Synthesis Summary

N

@ Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute In the same clock cycle

s The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)

= Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order
#® Since multiple rules can write to a common
piece of state, the compiler introduces
appropriate muxing logic

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-17

Scheduling conflicting rules

N

#® \When two rules conflict on a shared
resource, they cannot both execute In
the same clock

The compiler produces logic that
ensures that, when both rules are
applicable, only one will fire
= Which one?

source annotations

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-18

Circular Pipeline Code —
rule enter (True); " _, | RAM Jone?

Token t <- cbuf.getToken(); 1J
IP ip = in.first(); g _
ram.req(ip[31:16]); active
active.enq(tuple2(ip[15:0], t)); in.deq(;

endrule
rule done (True); Can rules enter and

TableEntry p <- ram.resp(); done be applicable
match {.rip, .t} = active.first(); simultaneously?
iIT (isLeaf(p)) cbuf.done(t, p);
else begin
active.enq(rip << 8, t);
ram.req(p + signExtend(rip[15:7]));
end
active.deq(Q);
endrule

N

»
»

Which one should go?

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-19

Concurrency Expectations

N

L/
Register
read? write?2
readl
writel
® FIFO
eng2 | first2 deqg2 | clear2
enql
firstl
deql
clearl

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-20

One Element FIFO

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);
method Action enq(t x) i1f (I1full);
full <= True; data <= X;
endmethod
method Action deq() 1f (full);
full <= False;
endmethod
method t first() 1t (full);
return (data);
endmethod
method Action clear();
full <= False;
endmethod
endmodule

N

March 8, 2006 http://csg.csail.mit.edu/6.375/

Concurrency?

eng and deq ?

L11-21

Two-Element FIFO

“module mkFIFO2#(FIFO#(t));
Reg#(t) dataO <-mkRegU; Reg#(Bool) TullO <- mkReg(False);
Reg#(t) datal <-mkRegU; Reg#(Bool) fulll <- mkReg(False);

N

method Action enq(t x) 1f (I(fullO && fulll));

datal <= x; fulll <= True;

it (fulll) then begin dataO <= datal; fullO <= True; end
endmethod
method Action deq() 1f (fullO || fulll);

iIT (fullO) fullO <= False; else fulll <= False;
endmethod
method t First() i1f (fullO || fulll);

return ((full0)?dataO:datal);

endmethod
method Action clear(); {9(
fullO <= False; fulll <= False; Q} = o
€ A\
endmethod £< ‘“ca
endmodule ot \e©

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-22

The good news ...

N

#®1t is always possible to transform
your design to meet desired
concurrency and functionality

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-23

Register Interfaces

-
read < write write < read ?
s o o
Write.enj—T
A

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-24

Ephemeral History Register (EHR)

[MEMOCODE’04]

N

L/

read® < write® < read! < writel <

—»
— "D Q >(read?)

(- M
write0.x —>
Kwriteo.enj—T L P
(- ™
writel.x g A
\writel.en

» read?!

write'*1 takes precedence over write!

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-25

One Element FIFO using EHRs

" module mKEIEO1 (FIFO#(T)): first? < deq® < engt
EHReg2#(t) data <- mkEHReg2U(Q);
EHReg2#(Bool) full <- mkEHReg2(False);
method Action enq®(t x) 1f (1full.read®);
full .write® <= True; data.write? <= Xx;

endmethod

method Action deq®°() 1t (full.read®);
full .write® <= False;

endmethod

method t First°() 1t (full.read®);
return (data.read®);

endmethod

method Action clear®();
full .write® <= False;

endmethod

endmodule

f\

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-26

EHR as the base case?

p
\
o R
write0.x
\write%.en) —» D O »[readd
o R
writel.x
\writel.en) T -
(- A
write2.x 1 1 |» A
]
\write2.en) T i S
o
. 1
o 0
writen.x M , 2 >
writen.en o 1 1
1 » | read?
1 1 » | read?
1 » reads
]
]
o
> readn+l

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-27

The bad news ...

N

#® EHR cannot be written in Bluespec as defined so far

#® Even though this transformation to meet the
performance “specification” is mechanical, the Bluespec
compiler currently does not do this transformation.

Choices:
= do it manually and use a library of EHRs
= rely on a low level (dangerous) programming mechanism.

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-28

RWires

L/

N

interface RWire #(type 1t);
method Action wset (t data);

method Maybe#(t) wget ();
endinterface

module mkRWire (RWire#(t));

® The mkRWire module contains no state and no logic: it’s just
wires!

By testing the valid bit of wget() we know whether some rule
containing wset() is executing concurrently (enab is True)

data .n n a Mayb_e value
— oI > | containing a
enab | & | S data value and
= = a valid bit
no rdy wire mkRWire no rdy W|re
(always True) (always True)

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-29

Intra-clock communication

N

K Suppose Rj uses rw.wset() on an RWire
@ Suppose Rk uses rw.wget() on the same RWire

@ If Rj and Rk execute In the same cycle then Rj
always precedes Rk In the rule-step semantics

#® Testing isValid(rw.wget()) allows Rk to test
whether Rj Is executing in the same cycle)

#® wset/wget allows Rj to communicate a value to Rk

steps

N

rule .o |Ri.|Rj.|...|R_.|k cee

clocks~} /

wset(X)

X

mx = wget()

{

/

March 8, 2006

http://csg.csail.mit.edu/6.375/

Intra-clock rule-to-rule
communication, provided

both rules actually execute

concurrently (same cycle)

Forward communication only

(in the rule-step ordering)

L11-30

One Element FIFO w/ RWires

Pipeline FIFO

L/

N

module mkFIFOl1#(type t);
Reg#(t) data <- mkRegUQ);
Reg#(Bool) full <- mkReg(False);
PulseWire degqW <- mkPulseWire();
method Action enq(t x) 1f (degw || 'full);
Tfull <= True; data <= Xx;
endmethod
method Action deq() 1t (full);
full <= False; degW.send();
endmethod
method t First() i1t (full);
return (data);
endmethod
method Action clear();
full <= False;
endmethod
endmodule

first < deq < enq

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-31

One Element FIFO w/ RWires

Bypass FIFO

p
~module mkFIFO1#(type t);

Reg#(t) data <- mkRegUQ): enq < first < deq

Reg#(Bool) full <- mkReg(False);

RWire#(t) engW <- mkRWire(Q);

PulseWire degW <- mkPulseWire();

rule finishMethods(isJdust(engW.wget) || deqgW);
full <= ldeqW;

endrule

method Action enq(t x) 1f (1full);
engW.wset(x); data <= x;

endmethod

method Action deq() 1t (full || i1sJdust(engW.wget()));
degW.send();

endmethod

method t Ffirst() 1f (full || 1sJust(engW.wget()));
return (full ? data : unJust(engW.wget));

endmethod

method Action clear();
full <= False;

endmethod

endmodule

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-32

A HW implication of
mkPipelineFIFO

mkPiplineFIFO

q
#® There is now a NL
combinational path from enab’ | o
enab_deq to rdy enqg (a not full || dy_ enqg | @
consequence of the RWire) enap deg
«—1 5
@ This is how a rule using not empty « rdy =
eng() “knows” that it can
go even if the FIFO is full, enab_deq |
i.e., enab_deq is a signal not empty <9 =
that a rule using deq() is
executing concurrently enab | -
always true _rdy %

March 8, 2006 http://csg.csail.mit.edu/6.375/

L11-33

Viewing the schedule

N

The command-line flag -show-schedule can
be used to dump the schedule

#® Three groups of information:

= Mmethod scheduling information

s rule scheduling information

s the static execution order of rules and methods

March 8, 2006 http://csg.csail.mit.edu/6.375/ L11-34

