Bluespec-7: Semantics of Bluespec

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

BS₀ : A simple language of Guarded Atomic Actions

a is an Action;
e is an Expression;
r is a register (state variable)

a ::= r := e | a when e | if e then a | a ; a

e ::= r | c | Op(e , e) | e ? e : e | e when e | ...

";" is commutative and associative, i.e.
a₁;a₂ = a₂;a₁
a₁;(a₂;a₃) = (a₁;a₂);a₃

BS₀ Program

A program is a collection of registers and rules:
R, R₁, R₂, ... are names for rules;
r, r₁, r₂, ... are register names

Program ::= Registers r₁, ... ;
Rule R₁ a₁; ... ; Rule Rₘ aₘ ;

a ::= r := e | a when e | if e then a | a ; a

e ::= r | c | Op(rᵥ , rₑ) | e ? e : e | e when e | ...
Guards vs If’s

- A guard on one action of a group of actions affects every action within the group:
 \[(a1 \text{ when } p1); (a2 \text{ when } p2) \Rightarrow (a1; a2) \text{ when } p1 \& p2\]
- A condition of a Conditional action only affects the actions within the scope of the conditional action:
 \[(\text{if } p1 \text{ then } a1); (\text{if } p2 \text{ then } a2)\]
 \[p1 \text{ has no effect on } a2 \ldots\]

Canonicalizing BS\(_0\) ignoring guards on expressions

Rules for canonicalization:

1. \[(a1 \text{ when } p); a2 \Rightarrow (a1; a2) \text{ when } p\]
2. \[(a \text{ when } p1) \text{ when } p2 \Rightarrow a \text{ when } (p1 \& p2)\]
3. \[\text{if } p \text{ then } (a \text{ when } q) \Rightarrow (\text{if } p \text{ then } a) \text{ when } (p \& q | !p)\]

Conditionals & Cases

- if \(p\) then \(a1\) else \(a2\)
 \[= \text{ if } p \text{ then } a1; \text{ if } !p \text{ then } a2\]

- Similarly for cases

BS\(_0\) : Canonical form

In the canonical form, expressions have no guards and an (or a compound) action has at most one guard and it occurs at the top level;

- \(ag\) is an Action with guard
- \(a\) is an Action without guard;
- \(e\) is an Expression;
- \(r\) is a register (state variable)

- \(ag ::= a \text{ when } e\)
- \(a ::= r := e \mid \text{if } e \text{ then } a \mid a ; a\)
- \(e ::= r \mid c \mid \text{Op}(e, e) \mid e ? e : e \mid \ldots\)
Rules for Canonicalizing BS₀

1. \((a₁ \text{ when } p); a₂\) \implies (a₁; a₂) when p
2.1 \((a \text{ when } p) \text{ when } q\) \implies a \text{ when } (p \& q)
2.2 \((e \text{ when } p) \text{ when } q\) \implies e \text{ when } (p \& q)
3.1 if \(p\) then \((a \text{ when } q)\) \implies (if \(p\) then \(a\)) \text{ when } (p \& \neg p | \neg p)
3.2 \(p \;?\; (e₁ \text{ when } q) : e₂\) \implies (p \;?\; e₁ : e₂) \text{ when } (p \& \neg p | \neg p)
4. \(r := (e \text{ when } q)\) \implies (r := e) \text{ when } q
5.1 Op(e₁ \text{ when } q, e₂) \implies Op(e₁,e₂) \text{ when } q
5.2 Op(e₁, e₂ \text{ when } q) \implies Op(e₁,e₂) \text{ when } q
3.3 \(p \;?\; e₁ : (e₂ \text{ when } q)\) \implies (p \;?\; e₁ : e₂) \text{ when } (p \& \neg p \& q)

Theorem: Canonical form for an action exists and is unique up to the boolean simplification of the guard expression.

BS₁ = BS₀ + Let blocks
Introducing local names

t, t₁, t₂, ... are identifiers (not registers)

Program ::= Registers \(r_1, ..., ;\)

t₁ = e₁; ...; tₙ = eₙ;
Rule R₁ a₁; ...; Rule Rₘ aₘ;

a ::= \(r := e \text{ when } a \text{ when } e \text{ when } a \text{ when } e \text{ when } a\)

\(|(t₁ = e₁; ...; tₙ = eₙ; \text{ in } a)|

e ::= r | c | Op(r₁, r₂) | e₁ \text{ when } e \text{ when } e \text{ when } e \text{ when } e \text{ when } e

| t | (t₁ = e₁; ...; tₙ = eₙ; \text{ in } e)

BS₁ Lifting rules

- Unique local names (t₁, t₂, ...) can be introduced anywhere for sharing

 \(e \implies (t = e \text{ in } t)\)

- Lifting rules for actions
 - \(r := (t = e \text{ in } e')\) \implies (t = e \text{ in } r := e')
 - a \text{ when } (t = e \text{ in } e') \implies (t = e \text{ in } (a \text{ when } e'))
 - (t = e \text{ in } (e' \text{ when } p)) \implies (t = e \text{ in } e') \text{ when } p
 - if \(t = e \text{ in } p\) then e₁ \implies (t = e \text{ in } (if \(p\) then e₁))
 - (t = e \text{ in } a₁; a₂) \implies (t = e \text{ in } (a₁; a₂))
 - (t₁ = e₁ in (t₂ = e₂ in a)) \implies (t₁ = e₁; t₂ = e₂ in a)

- Substitution \& when clauses
 - \(t = e \text{ when } p \text{ in } e'\) \implies (t = e; t₁ = p in [(t when t₁)/t]e')

- Lifting rules for expressions are similar

Lifting lets to the top level

- Registers \(r₁, ..., ;\)

 \(t₁ = e₁; ...; tₙ = eₙ;\)

 Rule R₁ a₁; ...; Rule Rₘ aₘ;

 \implies Registers \(r₁, ..., ;\)

 \(t₁ = e₁; ...; tₙ = eₙ;\)

 \(t₁ = e₁; ...; tₙ = eₙ;\)

 Rule R₁ a₁; ...; Rule Rₘ aₘ;

 Rule R₁ a₁

Some renaming of local variables may be required
BS₁: Canonical form

Program ::=
 Registers \(r_1, \ldots, ; \)
 \(t_1 = e_1; \ldots; t_n = e_n; \)
 Rule \(R_1 \) ac₁; \ldots; Rule \(R_m \) acₘ ;

\(ac ::= (t_1 = e_1; \ldots; t_n = e_n; \text{ in } aw) \)
\(ac' ::= (t_1 = e_1; \ldots; t_n = e_n; \text{ in } a) \)
\(aw ::= a \mid a \text{ when } e \)
\(a ::= r := e \mid a \text{ when } e \mid \text{if } e \text{ then } a \mid a ; a \mid (t = e \text{ in } a) \mid m.g(e) \)

\(ec ::= (t_1 = e_1; \ldots; t_n = e_n; \text{ in } ew) \)
\(ec' ::= (t_1 = e_1; \ldots; t_n = e_n; \text{ in } e) \)
\(ew ::= e \mid e \text{ when } p \)
\(e ::= r \mid c \mid \text{Op}(r_a, r_b) \mid e \text{ when } e \mid t \mid (t = e \text{ in } e) \mid m.f(e) \)

BS₂ = BS₁ + Modules

A program is a collection of instantiated modules \(m, m_1, \ldots; \)
A module is a collection of rules and interface methods
\(f, f_1, f_2, \ldots \) are names for “read methods”
\(g, g_1, g_2, \ldots \) are names for “action methods”

\(a ::= r := e \mid a \text{ when } e \mid \text{if } e \text{ then } a \mid a ; a \mid (t = e \text{ in } a) \mid m.g(e) \)

\(e ::= r \mid c \mid \text{Op}(r_a, r_b) \mid e \text{ when } e \mid t \mid (t = e \text{ in } e) \mid m.f(e) \)

BS₂ Program

A program is a collection of instantiated modules:

Program ::= \(m_1 ; m_2 ; m_2 ; \ldots \)

Module ::=
 Module name
 [Register \(r \)]
 [Rule \(R a \);]
 Interface

Interface ::= \[\text{action method}; \] [\text{read method}]
action method ::= \text{method } g (x) = a
read method ::= \text{method } f (x) = e

Implicit conditions

- Every method has two parts: guard and body. These will be designated by subscripts \(G \) and \(B \), respectively.

- Making guards explicit in every method call:
 \(m.h(e) \implies (p = m.h_G \text{ in } m.h_B(e) \text{ when } p) \)
BS₂ : Additional Lifting rules

- Only read methods can be named in a let block
 \[m.f(e) \Rightarrow (t=m.f(e) \text{ in } t) \]

- \[m.g (t = e \text{ in } e') \Rightarrow (t = e \text{ in } m.g(e')) \]

- \[m.g (e \text{ when } p) \Rightarrow m.g(e) \text{ when } p \]

 - similar rules for read methods

Some subtle issues

- Does it matter if we first make the guards explicit and then lift or can we lift at any stage?

BS₂ : Canonicalization procedure

1. Make guards of method calls explicit
2. Lift *lets* to the top
3. Get rid of the *whens* from the *lets*
4. Lift *whens* to the top

Getting ready for circuit generation

- We need to collect multiple conditional assignments to one register in one expression, i.e.,

 \[\ldots \text{if } p1 \text{ then } r:= e1; \]
 \[\text{if } p2 \text{ then } r:= e2; \]
 \[(r:= p3? e4: e5); \ldots \]
Notation for conditional assignment

- \(r:= e_1p_1 + \ldots + e_n p_n \)
 where
 - \(e_1, e_2, \ldots \) are expressions
 - \(p_1, p_2, \ldots \) are booleans

- \(e.p \) evaluates to \(e \) if \(p \) is true otherwise to False (zero’s)

- if \(p_i's \) are not pairwise mutually exclusive then the program is illegal

- \(e_1p_1 + \ldots + e_n p_n \) evaluates to some \(e_i \) or if all \(p_i \)'s are false then the value of \(r \) does not change

Collecting conditional assignments to a register

- Apply the following rules after the guards have been made explicit and the program has been canonicalized,

 1. if \(p \) then \(a \) \(\implies \) \(a \cdot p \)
 2. \(1 \) \((r := e) \cdot p \) \(\implies \) \(r := e \cdot p \)
 3. \(2.1 \) \(m.g(e) \cdot p \) \(\implies \) \(m.g(e \cdot p) \)
 4. \(3 \) \((a1; a2) \cdot p \) \(\implies \) \(a1 \cdot p ; a2 \cdot p \)
 5. \(4.1 \) \(r := e1 ; r := e2 \) \(\implies \) \(r := e1 + e2 \)
 6. \(4.2 \) \(m.g(e1); m.g(e2) \) \(\implies \) \(m.g(e1 + e2) \)

Theorem: After applying the above rules to a Program in canonical form any action in it will be reduced the following form:
\[
\begin{align*}
 &r1 := e1; r2 := e2; \ldots \\
 &m.g(e); m1.g1(e1); \ldots \text{ where } e's \text{ may contain } "." \text{ and } "+"
\end{align*}
\]