
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.375 Complex Digital Systems
Spring 2006 - Quiz - March 24, 2006

80 Minutes

NAME: SCORE:

Please write your name on every page of the quiz.

Not all questions are of equal difficulty, so look over the entire quiz and budget your time carefully.

Please carefully state any assumptions you make.

Enter your answers in the spaces provided below. If you need extra room for an answer or for
scratch work, you may use the back of each page but please clearly indicate where your answer is

located.

A list of useful equations is printed at the end of this quiz. You can detach this sheet for reference
and do not have to hand this in. We will not grade anything written on the equation sheet.

You will also receive a separate handout containing a copy of the relevant Bluespec lecture slides
and code. We will not grade anything written on the Bluespec slides.

You must not discuss the quiz’s contents with other students who have not yet taken
the quiz. If, prior to taking it, you are inadvertently exposed to material in a quiz —
by whatever means — you must immediately inform the instructor or a TA.

Points Score

Problem 1 25

Problem 2 25

Problem 3 25

Problem 4 25

6.375 Quiz, Spring 2006 Name: 2

Problem 1 : Logical Effort for Incrementer Carry Chain (25 total points)

The following diagram illustrates two different incrementer architectures. For all parts of this
question you should assume that the delay unit (τ) for this process is 10 ps and that the parasitic
delay of a minimum-sized inverter (Pinv) is 1.

sum[0]sum[1]sum[2]sum[3]sum[4]sum[5]sum[6]sum[7]

in[0]in[1]in[7] in[6] in[5] in[4] in[3] in[2]

Ripple-Carry Architecture

sum[1]sum[2]sum[3]sum[4]sum[5]sum[6]sum[7] sum[0]

in[1]in[2]in[3]in[4]in[5]in[6]in[7]

in[0]in[1]in[6] in[5] in[4] in[3] in[2]

Parallel-Prefix Architecture

Part 1.A : Critical paths for the adder architectures (5 points)

Draw a line through the critical path for both the ripple-carry and the parallel-prefix architectures.
When determining the critical path you can assume that XOR gates are slower than NAND/NOR
gates which are slower than inverters.

6.375 Quiz, Spring 2006 Name: 3

Part 1.B : Optimal delay of the adder architectures (10 points)

Use logical effort to calculate the optimal delay of the critical path for both architectures in picosec-
onds. You should ignore all gates which are not on the critical path! Do not using branching effort.
Ignore the fact that some gates have a fanout greater than one. The desired input capacitance of
the isolated carry chain is 6 fF (since we are ignoring gates which are not on the critical path this is
the input capacitance for a single gate). The load capacitance of every sum output is 60 fF. Show
all your work.

Part 1.C : Gate sizing for the adder architectures (10 points)

Identify the optimum gate sizes for each gate in the critical path for both architectures. The gate
sizes should be in femtofarads of input capacitance.

6.375 Quiz, Spring 2006 Name: 4

Problem 2 : RC Modeling of Register File Write Bitline (25 total points)

In this problem we will be revisiting the register file write bitline you analyzed in Lab 2. Remember
that the write bitline must drive the D input port of 32 flip-flops. The combined gate capacitance
of these flip-flops can be a significant load on the write bitline. The load on the write bitline is
further increased by wire capacitance, since flip-flops are usually large and thus often spread apart.
The following figure illustrates the write bitline including a reasonable final stage of the bitline
driver. For this problem we will only consider this final stage even though the real driver might
include many stages. As you determined in the lab assignment, each bitcell is 15.68 µm wide and
the input capacitance of the bitcell’s D port is 3 fF. The following figure illustrates the register file
write bitline. The bitline is routed on Metal 2. You can ignore any via resistance or capacitance.
Remember that the driver PMOS/NMOS sizes are in units of minimum NMOS transistor width
(0.36 µm). For example, the NMOS for the last stage of the bitline driver is 0.36 µm × 32 =
11.52 µm.

Input (D) Port (3fF)

Bit-Cell

15.68um15.68um

10 232

64

Last Driver Stage

Write Bit-Line

31

The following table lists various parameters for a 0.18 µm technology which you may find useful
when solving this problem. Remember that there is a list of equations at the end of this quiz.

Transistor Process Parameters Value

Desired ratio of PMOS/NMOS widths 2

PMOS gate capacitance per µm of transistor width 1.5 fF/µm

NMOS gate capacitance per µm of transistor width 1.5 fF/µm

PMOS drain capacitance per µm of transistor width 0.3 fF/µm

NMOS drain capacitance per µm of transistor width 0.3 fF/µm

PMOS effective on resistance 6.6 kΩµm

NMOS effective on resistance 3.3 kΩµm

Parameters for Metal 2 Wire Value

Wire resistance per unit length 0.4 Ω/µm

Wire capacitance per unit length 0.2 fF/µm

6.375 Quiz, Spring 2006 Name: 5

Part 2.A : Delay calculation with end-of-line driver (10 points)

Draw a simple RC model for the register file write bitline. Only include the final stage of the driver.
Use a lumped π wire model. Use the RC model to determine the delay of the write bitline. Express
your answer in RC time constants. This part is very similar to the question asked in Lab 2.

6.375 Quiz, Spring 2006 Name: 6

Part 2.B : Delay calculation with middle-line driver (15 points)

There is no reason we have to position the write bitline driver at one end of the bitline. In this
part we will evaluate moving the driver to the middle of the bitline. The following figure illustrates
the new design.

3116

32

64

15.68um

10 2 15

Last Driver Stage

Draw a new RC model for the register file write bitline. Use the RC model to determine the delay
of the write bitline. Express your answer in RC time constants. How does this new design compare
to the baseline design evaluated in Part 2.A? Does this approach help mitigate wire resistance,
wire capacitance, or both?

6.375 Quiz, Spring 2006 Name: 7

Problem 3 : Bluespec Synthesis (25 total points)

Consider the algorithm for binary multiplication presented in Lecture 7 (Introduction to Bluespec):

1001 // d = 4’d9

x 0101 // r = 4’d5

1001 // d << 0 (since r[0] == 1)

0000 // 0 << 1 (since r[1] == 0)

1001 // d << 2 (since r[2] == 1)

0000 // 0 << 3 (since r[3] == 0)

0101101 // product (sum of above) = 45

This algorithm is actually quite similar to the software multiplication algorithm you implemented
for SMIPS in Lab 1. For this problem we will explore implementing this as a hardware module in
Bluespec.

The following module implements this algorithm using two shifters to form an iterative multiplier:

interface I_mult;

method Action start(Bit#(16) x,Bit#(16) y);

method Bit#(32) result();

endinterface

module mkMult (I_mult);

Reg#(Bit#(32)) product <- mkReg(0);

Reg#(Bit#(32)) d <- mkReg(0);

Reg#(Bit#(16)) r <- mkReg(0);

rule cycle (r != 0);

if (r[0] == 1)

product <= product + d;

d <= d << 1;

r <= r >> 1;

endrule

method Action start(Bit#(16) x, Bit#(16) y) if (r == 0);

d <= zeroExtend(x);

r <= y;

product <= 0;

endmethod

method Bit#(32) result() if (r == 0);

return product;

endmethod

endmodule

6.375 Quiz, Spring 2006 Name: 8

Diagram the hardware that the Bluespec compiler should produce for this module, including inter-
face ports. Clearly circle and label which parts correspond to the rule, the scheduler, the start and
result methods. Label which wire or wires correspond to CAN FIRE cycle and WILL FIRE cycle,
as well as all ports corresponding to method ready and enable signals.

6.375 Quiz, Spring 2006 Name: 9

Problem 4 : Rule Scheduling in Bluespec (25 total points)

In this problem we will explore the behavior of the pipeline used in Lab 3 and presented in class.
The reference code has been included in a separate handout.

In order to gain fine-grained control over the scheduling, it is often desirable to split large rules
with case statements into multiple rules. Consider the execute rule. It only interacts with the
dataReqQ on a memory operation, so one natural partitioning is to create an execMem rule which
handles Load and Store operations.

Similarly the execute rule only interacts with the pc when the current instruction is a branch.
Therefore one design choice might be to separate the handling of branch instructions into a separate
rule. However this choice is actually too restrictive. In point of fact, the execute stage only sets pc
on a taken branch. Consider the design where execute is split into four rules, execALU, execMem,
execBr NotTaken, and execBr Taken.

For reference, here is the code for the execBr NotTaken and the execBr Taken function.

function Bool isBranch(Instr i);

// Returns True if i is a Branch

endfunction

function Bool branchTaken(Instr i);

// If given a branch instruction, returns True if the branch is taken,

// otherwise returns False.

// Note that in some cases this involves reading the RegFile.

endfunction

rule execBr_NotTaken (instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag == epoch

&&& unpack(ld.data) matches .inst

&&& !stallfunc(inst)

&&& isBranch(inst)

&&& !branch_taken(inst));

pcQ.deq();

instRespQ.deq();

endrule

6.375 Quiz, Spring 2006 Name: 10

rule execBr_Taken (instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag == epoch

&&& unpack(ld.data) matches .inst

&&& !stallfunc(inst)

&&& isBranch(inst)

&&& branch_taken(inst));

Addr next_pc;

case (inst) matches

tagged J .it :

next_pc = { pcQ.first()[31:28], it.target, 2’b0 };

tagged JR .it :

next_pc = rf.rd1(it.rsrc);

tagged JAL .it :

begin

wbQ.enq(WB_ALU {dest: 31, data: pcQ.first()});

next_pc = { pcQ.first()[31:28], it.target, 2’b0 };

end

tagged JALR .it :

begin

wbQ.enq(WB_ALU {dest: it.rdst, data: pcQ.first()});

next_pc = rf.rd1(it.rsrc);

end

//BLEZ, BGTZ, BTZ, BGEZ, BEQ, BNE

default:

next_pc = pcQ.first() + (sext(it.offset) << 2);

endcase

pc <= next_pc;

epoch <= epoch + 1;

pcQ.deq();

instRespQ.deq();

endrule

6.375 Quiz, Spring 2006 Name: 11

After splitting this system the rules have the following resource usage. (Note that the FIFO clear
methods are unused.)

pcGen discard execALU execMem

pc.read epoch.read epoch.read epoch.read

epoch.read pcQ.deq instRespQ.first instRespQ.first

pc.write instRespQ.deq instRespQ.deq instRespQ.deq

pcQ.enq pcQ.deq pcQ.first

instReqQ.enq wbQ.enq pcQ.deq

wbQ.find1,2 wbQ.enq

rf.rd1,2 wbQ.find1,2

rf.rd1,2

dataReqQ.enq

execBr Taken execBr NotTaken writeback

epoch.read epoch.read wbQ.first

instRespQ.first instRespQ.first wbQ.deq

instRespQ.deq instRespQ.deq dataRespQ.first

pcQ.first pcQ.deq dataRespq.deq

pcQ.deq wbQ.find1,2 rf.wr

wbQ.enq

wbQ.find1,2

rf.rd1,2

dataReqQ.enq

epoch.write

pc.write

6.375 Quiz, Spring 2006 Name: 12

Part 4.A : Method scheduling 1 (6 points)

Suppose you want your system to have the following scheduling behavior when multiple rules
execute in the same clock cycle:

pcGen < execBr Taken < writeback

These rules interact through various modules such as the pc and pcQ. For each of these modules,
give the method relationship necessary to meet the above scheduling behavior. For modules where
the order is irrelevent or determined by factors outside of the processor write N/A. We’ve done pc,
you do the rest.

pc: read < write epoch: rf:

pcQ:

instReqQ: instRespQ:

wbQ:

dataReqQ: dataRespQ:

Part 4.B : Method scheduling 2 (7 points)

Perform the same reasoning, but for the following scheduling property:

writeback < execBr Taken < pcGen

pc: epoch: rf:

pcQ:

instReqQ: instRespQ:

wbQ:

dataReqQ: dataRespQ:

6.375 Quiz, Spring 2006 Name: 13

6.375 Quiz, Spring 2006 Name: 14

Part 4.C : Dynamic Behavior (12 points)

Consider the following three variants of a processor:

• Behaves as if: pcGen < execBr NotTaken, execBr Taken < writeback

• Behaves as if: writeback < execBr NotTaken, execBr Taken < pcGen

• Behaves as if: writeback < execBr NotTaken < pcGen < execBr Taken

While running a program these processors reach the following state:

6.375 Quiz, Spring 2006 Name: 15

For each variant, answer the following. A) What rules (of those shown) will the scheduler choose
to fire and why. B) What is the longest combinational path in the system (including the parts not
shown)?

pcGen < execBr_NotTaken, execBr_Taken < writeback

A)

B)

writeback < execBr_NotTaken, execBr_Taken < pcGen

A)

B)

writeback < execBr_NotTaken < pcGen < execBr_Taken

A)

B)

6.375 Quiz, Spring 2006 Name: 16

Equation Sheet

Equation or Symbol Description

g Gate logical effort

h = Cout/Cin Gate electrical effort

f = gh Gate effort

p Gate parasitic delay

pinv Parasitic delay of minimum-sized inverter

τ Delay unit

d = f + p Delay in units of τ

dabs = dτ Absolute delay in seconds

G =
∏

gi Path logical effort

H = Cout/Cin Path electrical effort

F = GH Path effort

D =
∑

di =
∑

gihi +
∑

pi Path delay

fopt = F 1/N Optimal stage effort

Dopt = Nfopt + P Optimal path delay

Cin,opt,i = Cout,i × gi/fopt Optimal input capacitance for stage i

Delay =
∑n

i=0

(

∑j=i
j=0

Rj

)

Ci Penfield-Rubenstein wire-delay model

Rd Effective driver resistance

Rw Total wire resistance

Cw Total wire capacitance

Delay ∝ Rd × Cw/2 + (Rd + Rw) × (Cw/2 + Cload) Simple lumped π model

Number of inputs

Gate Type 1 2 3 4 5 n

Inverter Logical Effort 1

NAND Logical Effort 4/3 5/3 6/3 7/3 (n + 2)/3

NOR Logical Effort 5/3 7/3 9/3 11/3 (2n + 1)/3

XOR/XNOR Logical Effort 4 12 32

Inverter Parasitic Delay pinv

NAND Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv

NOR Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv

XOR/XNOR Parasitic Delay 4pinv 4pinv 4pinv 4pinv 4pinv

