
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.375 Complex Digital Systems
Spring 2006 - Quiz - March 24, 2006

80 Minutes

NAME: SCORE:

Please write your name on every page of the quiz.

Not all questions are of equal difficulty, so look over the entire quiz and budget your time carefully.

Please carefully state any assumptions you make.

Enter your answers in the spaces provided below. If you need extra room for an answer or for
scratch work, you may use the back of each page but please clearly indicate where your answer is
located.

A list of useful equations is printed at the end of this quiz. You can detach this sheet for reference
and do not have to hand this in. We will not grade anything written on the equation sheet.

You will also receive a separate handout containing a copy of the relevant Bluespec lecture slides
and code. We will not grade anything written on the Bluespec slides.

You must not discuss the quiz’s contents with other students who have not yet taken
the quiz. If, prior to taking it, you are inadvertently exposed to material in a quiz —
by whatever means — you must immediately inform the instructor or a TA.

Points Score

Problem 1 25

Problem 2 25

Problem 3 25

Problem 4 25

6.375 Quiz, Spring 2006 Name: 2

Problem 1 : Logical Effort for Incrementer Carry Chain (25 total points)

The following diagram illustrates two different incrementer architectures. For all parts of this
question you should assume that the delay unit (τ) for this process is 10 ps and that the parasitic
delay of a minimum-sized inverter (Pinv) is 1.

sum[0]sum[1]sum[2]sum[3]sum[4]sum[5]sum[6]sum[7]

in[0]in[1]in[7] in[6] in[5] in[4] in[3] in[2]

Ripple-Carry Architecture

There was an error in the ripple-carry gate topology given in the quiz. The last two
NOR/NAND gates were accidently swaped. The correct topology is shown above. The error
would not have affected your answers to Part 1.A or Part 1.B. It would have changed your
answer to Part 1.C but full credit was awarded if you calculated the input caps using the
incorrect gate topology.

sum[1]sum[2]sum[3]sum[4]sum[5]sum[6]sum[7] sum[0]

in[1]in[2]in[3]in[4]in[5]in[6]in[7]

in[0]in[1]in[6] in[5] in[4] in[3] in[2]

Parallel-Prefix Architecture

Part 1.A : Critical paths for the adder architectures (5 points)

Draw a line through the critical path for both the ripple-carry and the parallel-prefix architectures.
When determining the critical path you can assume that XOR gates are slower than NAND/NOR
gates which are slower than inverters.

6.375 Quiz, Spring 2006 Name: 3

Part 1.B : Optimal delay of the adder architectures (10 points)

Use logical effort to calculate the optimal delay of the critical path for both architectures in picosec-
onds. You should ignore all gates which are not on the critical path! Do not using branching effort.
Ignore the fact that some gates have a fanout greater than one. The desired input capacitance of
the isolated carry chain is 6 fF (since we are ignoring gates which are not on the critical path this is
the input capacitance for a single gate). The load capacitance of every sum output is 60 fF. Show
all your work.

Ripple-Carry Architecture

F = GH = (4/3)3(5/3)3(4) × (60/6) = 43.89 × 10 = 438.9

P = (3 × 2pinv) + (3 × 2pinv) + 4pinv = 16

fopt = F 1/N = 438.91/7 = 2.385

Dopt = Nfopt + P = 7 × 2.385 + 16 = 32.69

Dabs = Doptτ = 326.9ps

Parallel-Prefix Architecture

F = GH = (4/3)2(5/3)2(4) × (60/6) = 19.75 × 10 = 197.5

P = (2 × 2pinv) + (2 × 2pinv) + 4pinv = 12

fopt = F 1/N = 197.51/5 = 2.878

Dopt = Nfopt + P = 5 × 2.878 + 12 = 26.39

Dabs = Doptτ = 263.9ps

Part 1.C : Gate sizing for the adder architectures (10 points)

Identify the optimum gate sizes for each gate in the critical path for both architectures. The gate
sizes should be in femtofarads of input capacitance.

Ripple-Carry
(correct topology)

Gate Cin (fF)

NAND2 6.0

NOR2 10.7

NAND2 15.4

NOR2 27.5

NAND2 39.3

NOR2 70.3

XOR2 100.6

Cout 60

Ripple-Carry
(incorrect topology)

Gate Cin (fF)

NAND2 6.0

NOR2 10.7

NAND2 15.4

NOR2 27.5

NOR2 39.3

NAND2 56.3

XOR2 100.6

Cout 60

Parallel-Prefix

Gate Cin (fF)

NAND2 6.0

NOR2 13.0

NAND2 22.4

NOR2 48.3

XOR2 83.4

Cout 60

6.375 Quiz, Spring 2006 Name: 4

Problem 2 : RC Modeling of Register File Write Bitline (25 total points)

In this problem we will be revisiting the register file write bitline you analyzed in Lab 2. Remember
that the write bitline must drive the D input port of 32 flip-flops. The combined gate capacitance
of these flip-flops can be a significant load on the write bitline. The load on the write bitline is
further increased by wire capacitance, since flip-flops are usually large and thus often spread apart.
The following figure illustrates the write bitline including a reasonable final stage of the bitline
driver. For this problem we will only consider this final stage even though the real driver might
include many stages. As you determined in the lab assignment, each bitcell is 15.68 µm wide and
the input capacitance of the bitcell’s D port is 3 fF. The following figure illustrates the register file
write bitline. The bitline is routed on Metal 2. You can ignore any via resistance or capacitance.
Remember that the driver PMOS/NMOS sizes are in units of minimum NMOS transistor width
(0.36 µm). For example, the NMOS for the last stage of the bitline driver is 0.36 µm × 32 =
11.52 µm.

Input (D) Port (3fF)

Bit-Cell

15.68um15.68um

10 232

64

Last Driver Stage

Write Bit-Line

31

The following table lists various parameters for a 0.18 µm technology which you may find useful
when solving this problem. Remember that there is a list of equations at the end of this quiz.

Transistor Process Parameters Value

Desired ratio of PMOS/NMOS widths 2

PMOS gate capacitance per µm of transistor width 1.5 fF/µm

NMOS gate capacitance per µm of transistor width 1.5 fF/µm

PMOS drain capacitance per µm of transistor width 0.3 fF/µm

NMOS drain capacitance per µm of transistor width 0.3 fF/µm

PMOS effective on resistance 6.6 kΩµm

NMOS effective on resistance 3.3 kΩµm

Parameters for Metal 2 Wire Value

Wire resistance per unit length 0.4 Ω/µm

Wire capacitance per unit length 0.2 fF/µm

6.375 Quiz, Spring 2006 Name: 5

Part 2.A : Delay calculation with end-of-line driver (10 points)

Draw a simple RC model for the register file write bitline. Only include the final stage of the driver.
Use a lumped π wire model. Use the RC model to determine the delay of the write bitline. Express
your answer in RC time constants. This part is very similar to the question asked in Lab 2.

Students received 5 points for correctly drawing the RC model and 5 points for correctly
performing the delay calculation. Students were not penalized if they reported their delay as
a “unit-less” delay instead of reporting it in picoseconds.

Cbitline
2

Cbitline
2

Rdriver

Cdriver,drain Cload

Rwire

Rdriver = 3.3kΩµm/11.52µm = 0.286kΩ

Cdriver,drain = 96 × 0.36µm × 0.3fF/µm = 10.4fF

Lwire = 32 × 15.68µm = 501.75µm

Rwire = 501.75µm × 0.4Ω/µm = 0.2kΩ

Cbitline,wire = 501.75µm × 0.2fF/µm = 100.4fF

Cbitline,gate = 31 × 3fF = 93fF

Cbitline = Cbitline,wire + Cbitline,gate = 193.4fF

Cload = 3fF

Time Constant = Rdriver × (Cdriver,drain + Cbitline/2)

+ (Rdriver + Rwire) × (Cbitline/2 + Cload)

= 30.6ps + 48.6ps = 79ps

6.375 Quiz, Spring 2006 Name: 6

Part 2.B : Delay calculation with middle-line driver (15 points)

There is no reason we have to position the write bitline driver at one end of the bitline. In this
part we will evaluate moving the driver to the middle of the bitline. The following figure illustrates
the new design.

3116

32

64

15.68um

10 2 15

Last Driver Stage

Draw a new RC model for the register file write bitline. Use the RC model to determine the delay
of the write bitline. Express your answer in RC time constants. How does this new design compare
to the baseline design evaluated in Part 2.A? Does this approach help mitigate wire resistance,
wire capacitance, or both?

Students received 5 points for correctly drawing the RC model, 7 points for correctly perform-
ing the delay calculation, and 3 points for correctly answering whether this approach helps
mitigate wire resistance, wire capacitance, or both. It was not terribly clear in the problem
text, but the intent was for the students to calculate the time constant for driving the last bit
of the bitline (as was the case in Lab 2 and in the previous part).

After studying this problem, the staff have determined that we provided the students with
insufficient information to correctly solve this problem. We did not explain in lecture how to
deal with “branching” when using the Penfield-Rubinstein approximation. All the students
who attempted this question either significantly over-estimated or under-estimated the time
constant. In this solution we first show how to correctly estimate the time constant, then we
show the two (incorrect) approaches used by the students. Although incorrect, as long as the
student attempted the delay calculation in a reasonable way we awarded the full 7 points.

Cdriver,
drain

Cbitline
4

Cbitline
4

Rwire
2

Cload Cbitline
4

Cbitline
4

Rwire
2

Cload

Rdriver

This is a bit of an approximation since we are using the same Cbitline as in the previous part,
but it should still be a good approximation.

6.375 Quiz, Spring 2006 Name: 7

We can simplify this RC model as follows where R1 = Rdriver, R2 = Rwire/2, C1 =
Cbitline/2 + Cdriver,drain, and C2 = Cbitline/4 + Cload.

C1

R2
R1

C2 C2

R2

There are two approaches to estimate the time constant. The first uses the Penfield-
Rubinstein approximation. In lecture, we only illustrated using the Penfield-Rubinstein ap-
proximation for RC chains, but in this example we must work with an RC tree. The classic
paper by Rubinstein, Penfield, and Horowitz entitled “Signal Delay in RC Tree Networks”
explains how to estimate the delay of these type of RC trees. This paper is available in the
course locker (/mit/6.375/doc/rubinstein-penfield.pdf). One of the primary results
from the paper is that the time constant for a specific path from an input node to an output
node i can be roughly approximated with the following equation.

Time Constant =
∑

k

RkiCk

where the summation is over all nodes in the tree and Rki is defined as the resistance of the
portion of the path between the input and node i that is common with the path between the
input and node k. The key points is that we do include capacitances which are off the path
of interest but we do not include resistances which are off the path of interest. So using the
Penfield-Rubinstein equation, the time constant for driving the final bitcell is approximately
as follows.

Time Constant = R1C1 + (R1 + R2)C2 + R1C2

= R1C1 + (2R1 + R2)C2

An alternative method exploits the fact that both branches of the RC tree are symmetric.
Each branch gets exactly half of the drive current. Essentially it is as if we were driving
each half of the bitline with a driver whose effective resistance is twice the original effective
resistance. The following figure illustrates an equivalent RC model.

C1
2

C2

R22 x R1

The approximated time constant for this equivalent circuit is the same as for the Penfield-
Rubinstein approximation.

Time Constant = 2R1C1/2 + (2R1 + R2)C2

= R1C1 + (2R1 + R2)C2

6.375 Quiz, Spring 2006 Name: 8

For both of these solution we can rewrite our result to look more like the result we found in
Part 2.A.

Time Constant = R1C1 + (2R1 + R2)C2

≈ Rdriver × (Cdriver,drain + Cbitline/2)

+ (Rdriver + Rwire/4) × (Cbitline/2 + Cload)

= 30.1ps + 33.5ps = 63.6ps

Driving the bitline from the middle helps mitigate the impact of wire resistance. We can
also determine this intuitively by considering two scenarios. In the first scenario, the wire
capacitance is very large relative to the wire resistance. In this scenario you should be able
to qualitatively see that driving the bitline from the middle will not really help the delay.
Since the wire resistance is small, we can just lump all of the wire capacitance together - it
does not matter where we drive the load from. In the second scenario, the wire resistance is
very large relative to the wire capacitance. Now you should be able to see that driving the
bitline from the middle will definitely help reduce the delay since it helps reduce the resistive
path through which the driver charges up the load capacitance. The intuition then is that
distributed drivers help mitigate wire resistance and are not really useful for mitigating wire
capacitance.

Let us now consider the two solutions most students provided and explain why they are
incorrect. The first solution includes the time constant for the left-hand branch in the ap-
proximation.

Time Constant = R1C1 + (R1 + R2)C2 + (R1 + R2)C2

= R1C1 + 2(R1 + R2)C2

≈ Rdriver × (Cdriver,drain + Cbitline/2)

+ (Rdriver + Rwire/2) × (Cbitline/2 + Cload)

= 30.1ps + 38.5ps = 68.6ps

This is an overly pessimistic approximation. Imagine if the branches were not symmetric
and the resistance of the left-hand branch was very large. This would result in a large time
constant for driving the right-hand branch since we are factoring in how long it takes to
charge up the left-hand branch. The second solution provided by students completely ignored
the left-hand branch.

Time Constant = R1C1 + (R1 + R2)C2

≈ Rdriver × (Cdriver,drain + Cbitline/2)

+ (Rdriver + Rwire/2) × (Cbitline/4 + Cload)

= 30.1ps + 19.8ps = 49.9ps

This is an overly optimistic approximation. This approach ignores the fact that some of the
current to charge up the right-hand branch is being diverted to charge up the left-hand branch.
The Penfield-Rubinstein approximation helps properly account for the left-hand branch with-
out being overly pessimistic or optimistic.

6.375 Quiz, Spring 2006 Name: 9

Problem 3 : Bluespec Synthesis (25 total points)

Consider the algorithm for binary multiplication presented in Lecture 7 (Introduction to Bluespec):

1001 // d = 4’d9

x 0101 // r = 4’d5

1001 // d << 0 (since r[0] == 1)

0000 // 0 << 1 (since r[1] == 0)

1001 // d << 2 (since r[2] == 1)

0000 // 0 << 3 (since r[3] == 0)

0101101 // product (sum of above) = 45

This algorithm is actually quite similar to the software multiplication algorithm you implemented
for SMIPS in Lab 1. For this problem we will explore implementing this as a hardware module in
Bluespec.

The following module implements this algorithm using two shifters to form an iterative multiplier:

interface I_mult;

method Action start(Bit#(16) x,Bit#(16) y);

method Bit#(32) result();

endinterface

module mkMult (I_mult);

Reg#(Bit#(32)) product <- mkReg(0);

Reg#(Bit#(32)) d <- mkReg(0);

Reg#(Bit#(16)) r <- mkReg(0);

rule cycle (r != 0);

if (r[0] == 1)

product <= product + d;

d <= d << 1;

r <= r >> 1;

endrule

method Action start(Bit#(16) x, Bit#(16) y) if (r == 0);

d <= zeroExtend(x);

r <= y;

product <= 0;

endmethod

method Bit#(32) result() if (r == 0);

return product;

endmethod

endmodule

6.375 Quiz, Spring 2006 Name: 10

Diagram the hardware that the Bluespec compiler should produce for this module, including inter-
face ports. Clearly circle and label which parts correspond to the rule, the scheduler, the start and
result methods. Label which wire or wires correspond to CAN FIRE cycle and WILL FIRE cycle,
as well as all ports corresponding to method ready and enable signals.

Some students included the CLK and RST as inputs. This was not required, but of course,
not penalized. The CLK and RST are implicit in the diagram solution. Other students
decided to represent register enables as an extra level of muxing. This is also acceptable,
and in many cases easier to reason about. The compiler found a small optimization on the
product enable signal that no student found, but of course this is unnecessary.

6.375 Quiz, Spring 2006 Name: 11

Problem 4 : Rule Scheduling in Bluespec (25 total points)

In this problem we will explore the behavior of the pipeline used in Lab 3 and presented in class.
The reference code has been included in a separate handout.

In order to gain fine-grained control over the scheduling, it is often desirable to split large rules
with case statements into multiple rules. Consider the execute rule. It only interacts with the
dataReqQ on a memory operation, so one natural partitioning is to create an execMem rule which
handles Load and Store operations.

Similarly the execute rule only interacts with the pc when the current instruction is a branch.
Therefore one design choice might be to separate the handling of branch instructions into a separate
rule. However this choice is actually too restrictive. In point of fact, the execute stage only sets pc
on a taken branch. Consider the design where execute is split into four rules, execALU, execMem,
execBr NotTaken, and execBr Taken.

For reference, here is the code for the execBr NotTaken and the execBr Taken function.

function Bool isBranch(Instr i);

// Returns True if i is a Branch

endfunction

function Bool branchTaken(Instr i);

// If given a branch instruction, returns True if the branch is taken,

// otherwise returns False.

// Note that in some cases this involves reading the RegFile.

endfunction

rule execBr_NotTaken (instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag == epoch

&&& unpack(ld.data) matches .inst

&&& !stallfunc(inst)

&&& isBranch(inst)

&&& !branch_taken(inst));

pcQ.deq();

instRespQ.deq();

endrule

6.375 Quiz, Spring 2006 Name: 12

rule execBr_Taken (instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag == epoch

&&& unpack(ld.data) matches .inst

&&& !stallfunc(inst)

&&& isBranch(inst)

&&& branch_taken(inst));

Addr next_pc;

case (inst) matches

tagged J .it :

next_pc = { pcQ.first()[31:28], it.target, 2’b0 };

tagged JR .it :

next_pc = rf.rd1(it.rsrc);

tagged JAL .it :

begin

wbQ.enq(WB_ALU {dest: 31, data: pcQ.first()});

next_pc = { pcQ.first()[31:28], it.target, 2’b0 };

end

tagged JALR .it :

begin

wbQ.enq(WB_ALU {dest: it.rdst, data: pcQ.first()});

next_pc = rf.rd1(it.rsrc);

end

//BLEZ, BGTZ, BTZ, BGEZ, BEQ, BNE

default:

next_pc = pcQ.first() + (sext(it.offset) << 2);

endcase

pc <= next_pc;

epoch <= epoch + 1;

pcQ.deq();

instRespQ.deq();

endrule

6.375 Quiz, Spring 2006 Name: 13

After splitting this system the rules have the following resource usage. (Note that the FIFO clear
methods are unused.)

pcGen discard execALU execMem

pc.read epoch.read epoch.read epoch.read

epoch.read pcQ.deq instRespQ.first instRespQ.first

pc.write instRespQ.deq instRespQ.deq instRespQ.deq

pcQ.enq pcQ.deq pcQ.first

instReqQ.enq wbQ.enq pcQ.deq

wbQ.find1,2 wbQ.enq

rf.rd1,2 wbQ.find1,2

rf.rd1,2

dataReqQ.enq

execBr Taken execBr NotTaken writeback

epoch.read epoch.read wbQ.first

instRespQ.first instRespQ.first wbQ.deq

instRespQ.deq instRespQ.deq dataRespQ.first

pcQ.first pcQ.deq dataRespq.deq

pcQ.deq wbQ.find1,2 rf.wr

wbQ.enq

wbQ.find1,2

rf.rd1,2

dataReqQ.enq

epoch.write

pc.write

6.375 Quiz, Spring 2006 Name: 14

Part 4.A : Method scheduling 1 (6 points)

Suppose you want your system to have the following scheduling behavior when multiple rules
execute in the same clock cycle:

pcGen < execBr Taken < writeback

These rules interact through various modules such as the pc and pcQ. For each of these modules,
give the method relationship necessary to meet the above scheduling behavior. For modules where
the order is irrelevent or determined by factors outside of the processor write N/A. We’ve done pc,
you do the rest.

pc: read < write epoch: read < write rf: rd{0,1} < wr

pcQ: enq < first, deq

instReqQ: N/A instRespQ: N/A

wbQ: find{1,2}, enq < first, deq

dataReqQ: N/A dataRespQ: N/A

Part 4.B : Method scheduling 2 (7 points)

Perform the same reasoning, but for the following scheduling property:

writeback < execBr Taken < pcGen

pc: write < read epoch: write < read rf: wr < rd{1,2}

pcQ: first, deq < enq

instReqQ: N/A instRespQ: N/A

wbQ: first, deq < find{1,2}, enq

dataReqQ: N/A dataRespQ: N/A

6.375 Quiz, Spring 2006 Name: 15

Part 4.C : Dynamic Behavior (12 points)

Consider the following three variants of a processor:

• Behaves as if: pcGen < execBr NotTaken, execBr Taken < writeback

• Behaves as if: writeback < execBr NotTaken, execBr Taken < pcGen

• Behaves as if: writeback < execBr NotTaken < pcGen < execBr Taken

While running a program these processors reach the following state:

6.375 Quiz, Spring 2006 Name: 16

For each variant, answer the following. A) What rules (of those shown) will the scheduler choose
to fire and why. B) What is the longest combinational path in the system (including the parts not
shown)?

pcGen < execBr NotTaken, execBr Taken < writeback

A) The execBr rules will not be able to fire because of the stall signal, since wbQ.find <
wbQ.deq. The writeback rule will fire, so the wbQ will be empty and the execBr Taken rule
will fire on the next cycle.

B) If you work with non-combinational memories, as we did in the lab, then the paths are
as follows. pc->pcGen->instReqQ, instRespQ/RF->execs->dataReqQ, and dataRespQ->rf.
If, on the other hand you assume the memories are combinational, then this will act like an
unpipelined machine, with the longest path going through the whole machine, including the
memories.

writeback < execBr NotTaken, execBr Taken < pcGen

A) The writeback rule will fire first, and dequeue the wbQ. Therefore there is no stall for the
execBr rules, and the execBr Taken rule will fire, since it will read r4 == r5 == 64.

B) The longest path in this system flows from the writeback rule, through the register file and
through the execute rules. Then, since the execute rule updates the PC, the path continues
through the pcGen rule and to the instReqQ and pcQ.

writeback < execBr NotTaken < pcGen < execBr Taken

A) This situation is the same as the previous, since we are not considering the pcGen rule
(it is not in the diagram).

B) The longest path goes from the writeback rule, through the register file and through the
execute rules. However, since the new PC is no longer bypassed to the pcGen rule, that part
of the path is no longer present. In fact in this system it would not be surprising if the ALU
were the longest path.

6.375 Quiz, Spring 2006 Name: 17

Equation Sheet

Equation or Symbol Description

g Gate logical effort

h = Cout/Cin Gate electrical effort

f = gh Gate effort

p Gate parasitic delay

pinv Parasitic delay of minimum-sized inverter

τ Delay unit

d = f + p Delay in units of τ

dabs = dτ Absolute delay in seconds

G =
∏

gi Path logical effort

H = Cout/Cin Path electrical effort

F = GH Path effort

D =
∑

di =
∑

gihi +
∑

pi Path delay

fopt = F 1/N Optimal stage effort

Dopt = Nfopt + P Optimal path delay

Cin,opt,i = Cout,i × gi/fopt Optimal input capacitance for stage i

Delay =
∑n

i=0

(

∑j=i
j=0

Rj

)

Ci Penfield-Rubenstein wire-delay model

Rd Effective driver resistance

Rw Total wire resistance

Cw Total wire capacitance

Delay ∝ Rd × Cw/2 + (Rd + Rw) × (Cw/2 + Cload) Simple lumped π model

Number of inputs

Gate Type 1 2 3 4 5 n

Inverter Logical Effort 1

NAND Logical Effort 4/3 5/3 6/3 7/3 (n + 2)/3

NOR Logical Effort 5/3 7/3 9/3 11/3 (2n + 1)/3

XOR/XNOR Logical Effort 4 12 32

Inverter Parasitic Delay pinv

NAND Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv

NOR Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv

XOR/XNOR Parasitic Delay 4pinv 4pinv 4pinv 4pinv 4pinv

