Runahead
Processor

Finale Doshi
Ravi Palakodety

QOutline

Motivation

High Level Description
Microarchitecture
Results

Conclusions

Where We Left Off...

Lab 3 — Building a 4-stage pipelined
SMIPS processor
Critical Path — Load-a

= Fetch - Decode - Execute =2
ReadDataCache 2> Writeback

Data Cache Miss?
= Stall until data returns from Main Memory

A Baaad Example

Ld-a, Ld-8, Ld-y, ...

If latency = 100 cycles from main
memory to cache, then:

* Initiate Ld-a request

= Stall for 100 cycles

= |Initiate Ld-B request

= Stall for 100 cycles

= And so on...

Key Insight

“Runahead” to see whether there are
memory accesses In the near future

With an instruction sequence Ld-a, Ld-f8
= Initiate memory request for Ld-a

= Continue execution
= [nitiate memory request for Ld-B

QOutline

Motivation

High Level Description
Microarchitecture
Results

Conclusions

DataCache Miss Occurs...

Backup the register file
Keep running instructions

Use INV as the result of any ops that:
= Are DataCache misses

» Depend on calculations involving DataCache
misses

Data Returns..

Cache Is updated from MainMem:
Restore the reqister file
Rerun the original “offending” instruction

Follow the Rules

Do NOT

= Update the DataCache while in Runahead
mode

= |nitiate Memory Requests that depend on
INV addresses

» Branch when predicate depends on INV
data

* Initiate Memory Requests that cause
collisions in DataCache

QOutline

Motivation

High Level Description
Microarchitecture
Results

Conclusions

Processor Side

7 inRunahead
Runahead Processor "
Dresign L¥ngram r_.-_'--'j 1.."... q__-. _."F — L
— slart y 5':'? 3
{ runashead [Tunahea '
- ! kN S ~ _"L. A
- Riile backup S N N
wait_for token | = N A | - ' stall ""F-““f_
. r 1 - y [mnahead J
(marks valid) I Sy
Bpred Table - . Eiile
L~ backopPC -
} | - v
. : r A — e |- e L=
- Y - oo b=, =) Y = check for ™
pe - | pclen T T E_ FREE | = ! writeback ~ | end of runahead ~
& - "\-h__'n__ F. %, . P L -""g__ ____.-_\, .-_.- Lo -x- d__..ﬁ-_._ .--._,
1 | - - . T * —
" peQ W
{searchab|g)
i |
r r y |
: |
mEtE eql) dutaR eqQ |. 1

I |dnta.Fl. capi)|
I

nstKespl)
]

{ I—I

Cache Side

datak eap)

—

S

™ refi]
o o relillResp A

" mem Bespld)
i

— IETHNICINAINET
¥
|dn!nﬂcq¢}
!—|
|
I
Nonblockmg f‘_“i—_ﬂ'lr"x, '
. ' main —
Data Cache ' ey A Lo,
. 1 r agdoEx
" cache_mode R
o~ Ve, .
l_. e
relillR ¢q
t__q_d___ u,-’; procReq(
(eearchable)
| ¥ .
| memBeqQ Cache Ram
i 1]
¥
Main Memory Arbiter and Main M em ory

Execution - Enter Runahead

Processor : Cache Memory
Mode = Normal : I Mode = Nomal r

DalaReq

DalaReq : M Migs!

DataReq . - I'.'I-Im:lt = Runahead
[Feq’s after e
lirst mss Maind em R eq
o o reapc))
while mode '} M Esalamp
ks changed ‘ FrocReqQ

- i

. . emd indlialMins
Made = Runabead .

handle other requests
following runabead miles

1

b

DalaReq

Execution - In Runahead

Frocessor g Cache P Memory

- 1 1 - - 1 |
Mode = Runahead S Mode = Runashead s
L b
1 1 I I
DataMeq i i i i
| 1 1 1
1 ¥ . | 1
i i Hit; =end back daia i i
1]]
T : i]
il 1 1 1 1
1]] 1
1 1 | i
LratlaFoq X ! ! !
1 1 1 |
| 1 i |
: : w Mize send back miss : :
¥ 1 1 1
- .. Supposc dirnty: L
0 PrecReql) enqg sore (I
1] I |
i i Slaindlem Koq slore i i
1]) 1
i i ! |

1 1 i i [™
., ProcReqd eng load L
! ! MainMdMem REeq load ! !
DataReq Lo b
1 1 T 1

i i i | -
T]]]
] i [I i
|+ Miss: send back miss b
- ., Suppose in ProcReqQ): L
i i do nothing mare I i
1] I I
1]] I
1 1 | I

Execution - Exit Runahead

Froccizar

| Mode = Funahead

DataReq

-
DataReq

Req's -t
continue DataReq

until Mode
Focap reaches
head of resp

Mode = StopRunahead

smpty pet), insdRespl)
redare initial stale

send done-restore loken

| Mode = Normal

Datakeq

-] s -

Cache

l Mode = Runahead J

immediaie
hit'miss resp

Initial mies returne’

= Bend Mode = Normal Resp

™
Stop responding 1o req’s
Wail for

= done¢-restore token

= Mode = ¥ onmal

resume normal req handling

Memory

i ain & em Pesp

Design Explorations

Store Cache Optimization
Decisions when to exit runahead

Store Cache

Ld-a, St-B, Ld-B

Rather than return Ld- as INV, return
the value that was just stored.

Use 4-entry table, as in Branch Predictor

When to Exit Runahead?

When the “offending” miss returns? OR

When all memory requests that are
currently in-flight are processed?

QOutline

Motivation

High Level Description
Microarchitecture
Results

Conclusions

Key Parameters

Vary Latency of Main Memory

= As the latency increases, the impact of
runahead becomes more significant

= At small latencies, the penalty for
entering/exiting runahead can reduce
performance

Key Parameters

Vary Size of FIFOs

= As the FIFOs get larger, the processor Is
able to run further ahead and generate more
parallel memory requests.

= As the FIFOs get larger, the penalty for
exiting runahead becomes more severe.

Testing Strategy

Latencies of 1, 20, and 100 cycles
Fifos of length 2, 5, 8, 15
Standard benchmarks:; focus on vvadd

We'll focus on length 15 fifos here since
they allowed for the most extensive
runahead.

Results

IFS

IF3

IFS

s

7
10

Performance with Latency 1

cycles, fifo size 15

)

mecian

7
10

rrutigly

Performance with Latency 20 cycles, fifo size 15

gsort

toweers

- hazeline
[e
- store-cache

[wajt-for-prefetch

- scand wap

wwacdd

- baseline
- runabieadd

s

median

7
10

rultigly

Ferformance with Latency 100 cycles, fifo size 15

gsort

towers

[store-cache
[wait-far-prefetch

- s and wdp

waddd

- baseline
I e

rnedian

rultigly

gsort

towers

B - tore-cache
[wait-for-prefetch

- sCand wdp

T |

Results

w110 IFS ws. Latency for WVector Addition Benchrmark
? I 1 I I I 1 I 1 I
b — — haseline]
runahea
G -
i
S
4+ ' =
o
=
3t ", .
.
T e—
2 e .
- —_ —
1} T — .
|:| l | l l l | l | l
0 10 200 a0 40 a0 kil 70 a0 A0 100

Latericy

Results

1

Initial MizsesiTotal Misses for Runahead Processor, Fifo Size 13, Various Latencies

by

—r

09+ -

0.8

0.7

0.5

0.2

0.4

Initial MissesiTotal bMisses

0.3

0.2

0.1

median

= == multiply
== qgsom
o towers [

wyadd

]]]]] &

10

-
= &

a0

40

a0 a1l 70 60 30 100
Latency

QOutline

Motivation

High Level Description
Microarchitecture
Results

Conclusions

Conclusions

Runahead Is good.

Conclusions

Runahead is a cheap and simple way to
improve IPS.

The enter/exit runahead penalty Is small
enough that the IPS Is always
comparable to the Lab 3 processor.

The control structure is (fairly)
straightforward, with most improvements

done on the cache side.

Extensions

Aggressive Branch Prediction
= Don’t stall when branch predicate is INV

Save valid runahead computations

Aggressive Prefetching

» Predict addresses for Ld, St, when the given
address is INV.

