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Where We Left Off...

Lab 3 — Building a 4-stage pipelined
SMIPS processor
Critical Path — Load-a

= Fetch - Decode - Execute =2
ReadDataCache 2> Writeback

Data Cache Miss?
= Stall until data returns from Main Memory



A Baaad Example

Ld-a, Ld-8, Ld-y, ...

If latency = 100 cycles from main
memory to cache, then:

* Initiate Ld-a request

= Stall for 100 cycles

= |Initiate Ld-B request

= Stall for 100 cycles

= And so on...



Key Insight

“Runahead” to see whether there are
memory accesses In the near future

With an instruction sequence Ld-a, Ld-f8
= Initiate memory request for Ld-a

= Continue execution
= [nitiate memory request for Ld-B
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DataCache Miss Occurs...

Backup the register file
Keep running instructions

Use INV as the result of any ops that:
= Are DataCache misses

» Depend on calculations involving DataCache
misses



Data Returns..

Cache Is updated from MainMem:
Restore the reqister file
Rerun the original “offending” instruction



Follow the Rules

Do NOT

= Update the DataCache while in Runahead
mode

= |nitiate Memory Requests that depend on
INV addresses

» Branch when predicate depends on INV
data

* Initiate Memory Requests that cause
collisions in DataCache
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Processor Side
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Cache Side

datak eap)

—

S

™ refi ]
o o relillResp A

" mem Bespld)
i

— IETHNICINAINET
¥
|dn!nﬂcq¢}
!—|
|
I
Nonblockmg f‘_“i—_ﬂ'lr"x, '
. ' main —
Data Cache ' ey A Lo,
. 1 r agdoEx
" cache_mode R
o~ Ve, .
l_. e
relillR ¢q
t_\_q_d___ u,-’; procReq(
(eearchable)
| ¥ .
| memBeqQ Cache Ram
i 1]
¥
Main Memory Arbiter and Main M em ory




Execution - Enter Runahead
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Execution - In Runahead
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Execution - Exit Runahead
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Design Explorations

Store Cache Optimization
Decisions when to exit runahead



Store Cache

Ld-a, St-B, Ld-B

Rather than return Ld- as INV, return
the value that was just stored.

Use 4-entry table, as in Branch Predictor



When to Exit Runahead?

When the “offending” miss returns? OR

When all memory requests that are
currently in-flight are processed?
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Key Parameters

Vary Latency of Main Memory

= As the latency increases, the impact of
runahead becomes more significant

= At small latencies, the penalty for
entering/exiting runahead can reduce
performance



Key Parameters

Vary Size of FIFOs

= As the FIFOs get larger, the processor Is
able to run further ahead and generate more
parallel memory requests.

= As the FIFOs get larger, the penalty for
exiting runahead becomes more severe.



Testing Strategy

Latencies of 1, 20, and 100 cycles
Fifos of length 2, 5, 8, 15
Standard benchmarks:; focus on vvadd

We'll focus on length 15 fifos here since
they allowed for the most extensive
runahead.



Results
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Results
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Results
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Conclusions

Runahead Is good.



Conclusions

Runahead is a cheap and simple way to
improve IPS.

The enter/exit runahead penalty Is small
enough that the IPS Is always
comparable to the Lab 3 processor.

The control structure is (fairly)
straightforward, with most improvements

done on the cache side.



Extensions

Aggressive Branch Prediction
= Don’t stall when branch predicate is INV

Save valid runahead computations

Aggressive Prefetching

» Predict addresses for Ld, St, when the given
address is INV.



