
Group 1: 6.375 Final Project

Runahead Processor

Finale Doshi and Ravi Palakodety

May 16, 2006

1 Introduction

Data cache misses from can severely affect processor throughput if the processor stalls until
valid data becomes available. A runahead processor attempts to minimize the effects of
data cache misses by prefetching data needed by future instructions following a cache miss.
The processor continues to execute instructions after the cache miss using invalid data until
the requested data becomes available[1][2]. These prefetches are likely to be accurate, as
the instructions would have been executed anyway (assuming no branches). The longer the
processor is in runahead mode, the more runahead instructions that execute, and the more
prefetches that are called—reducing future cache misses.

While entering runahead mode is fairly straightforward—the processor continues to ex-
ecute instructions normally—we must take care in restoring the processor’s state once the
original miss returns. The following steps lead us through entering and exiting runahead,
pointing out the key factors that ensure that we exit runahead correctly:

1. A load or store instruction causes a data cache miss. Runahead execution begins.

2. The processor checkpoints the current state by making a backup copy of the register
file and program counter.

3. The processor continues to execute instructions using an invalid value for the pending
data cache request.

4. Future loads and stores may cause data cache misses; the cache also prefetches these
misses.

5. Writes to the data cache do not occur during runahead execution. Writes to the
register file that depend on an invalid value are marked invalid in the register file.
Computations that depend on invalid register entries are also marked invalid. Loads
and stores that depend on invalid addresses are not prefetched.

6. Runahead execution proceeds until the original data cache miss is fetched from memory.

1

7. We copy the backup register file into the real register file, and proceed from the check-
pointed instruction.

In this project, we implemented a runahead processor and analyzed the effects of memory
latencies and inter-module fifo lengths on its performance. We also explored variants on
leaving runahead and caching stores.

2 High Level Design

Figure 1 shows a high-level cloud-diagram of the runahead processor. The three main pro-
cessor rules—pc-gen, exec, and writeback—perform essentially the same function as our
familiar three-stage processor: pc-gen updates the program counter and requests the next
instruction; exec decodes the instruction, performs ALU operations, and sends requests to
the data cache; and writeback writes ALU ops and data memory responses into the register
file.

Some of exec’s and writeback’s operations are tailored to the processor. For ex-
ample, exec will not send load requests with invalid addresses to the data cache. The
writeback rule is responsible for notifying the processor of when to enter runahead, and the
check-response-q rule notifies the processor when to exit runahead. To reduce clutter, we
do not show the stall and discard rules for handling read-after-write hazards and clearing
of the pcQ after taken branches.

The stop-, start-, and stall-runahead rules are mutually exclusive with the three nor-
mal ‘processing’ rules (and indeed with each other). Whenever the mode changes, these rules
ensure that the processor’s state is correctly backed-up and restored. The stall-runahead

rule is responsible for stalling the processor if a runahead branch depends on an invalid pred-
icate (and, as we do design exploration, for any other situation where the processor must
stall due to invalid data).

Within the cache, all rules are mutually exclusive. The main rule sets the mode for each
rule to fire. Responses from the main memory are treated as most urgent; the refill-resp

rule takes data from main memory and updates the cache. access responds to requests from
the processor and sends requests to the main memory. The refill-req rule fires only when
we have a collision with a dirty cache-line, and the original data needs to be stored back to
main memory before the current request is made.

3 Testing Strategy

Our first goal was to ensure correctness of both the processor and the cache. In addition to
asm-tests and the benchmarks, we wrote a test of load-store scenarios on valid addresses (we
do not perform loads and store on invalid addresses). Listed below are the tests and their
expected (and observed) outcomes.

• Load-a : hit. Do not enter runahead and requests handled normally.

2

access

refillResp

main

pc

backupPC

pcGen exec

Rfile

writeback
check for

end of runahead

inRunahead

stop
runahead

start
runahead

stall
runahead

refillReq

wait_for_token

Runahead Processor

 Design Diagram

(searchable)

memReqQ

Data Cache
Nonblocking

Main Memory Arbiter and Main Memory

(standard memory interface)
Instruction Cache, blocking

instReqQ

wbQ

memRespQ

(searchable)

instRespQ

Rfile backup

(marks valid)

pcQ

dataRespQ

Bpred Table

dataReqQ

Cache Ram

procReqQ

cache_mode

Figure 1: Cloud Diagram of Runahead Processor

3

• Load-a : miss. If requested cache-line is valid and dirty, then the value currently
stored in that cache-line is written to memory. Enter runahead and return ‘req-missed.’

• Load-a, Load-a : both miss. Enter runahead after the first load but do not initiate
the second load request. Both loads return to the processor (in runahead mode) as
‘req-missed.’

• Load-a, Load-b : both miss; b writes to same cache-line as a. Enter runahead
after the first load. In the baseline, we only initiate one request per cache-line. Thus
we avoid the possibility of the first load being overwritten before the processor switches
out of runahead mode which would lead to an infinite loop. Thus the second load is
not prefetched. (Optimizations may adjust the timing to allow the second load to be
prefetched for future operations.)

• Store-a, Load-a : store misses. Enter runahead on the store and send a prefetch
request for that address; load does not generate an additional prefetch. An optimization
will store the value of the data into the store cache for future runahead loads.

• Load-a, Store-a, Load-a : first load misses. Enter runahead on the first load;
no additional prefetches. If optimized, store the data in the store cache. The second
load takes the data from the store cache.

• Store-a, Store-a, Load-a : first store misses. Enter runahead on the first
store; no additional prefetches. If optimized, store the value of the first store in the
store-cache. The second store updates the store-cache—this is important because the
validity of the data may have changed. The load takes its data from the store-cache.

The baseline processor does not attempt to optimize any of these operations. However, we
varied latencies and FIFO sizes to ensure that all of the cache states were executed correctly
(in particular, we wanted to test situations where a second miss to the same address arrived
while the original miss was being processed). To avoid instruction cache misses, we wrapped
our test in a for-loop that filled the instruction cache on the first iteration. We characterized
performance on the second iteration.

Next, we evaluated the performance of our baseline runahead processor against the basic
three-stage processor, runahead processor with a special store-cache, and a runahead pro-
cessor that waited for all prefetches to return before completing runahead (see Section 5 for
details on our design exploration). The vvadd benchmark contained many independent loads
and relatively few intermediate operations—this was a case where our runahead processor
should have outperformed the baseline.

The remaining benchmarks served as tests to see how the variants performed in more
‘normal’ situations. In each performance test, we measured the IPS, as well as area and
total memory requests (Section 6). Since the instruction cache was a standard blocking
cache, each benchmark was run on two sets of data. Statistics were recorded on the second
iteration. Thus, the instruction cache was already pre-loaded but the data-cache missed on
all data requests.

4

4 Baseline Microarchitecture

In this section we detail the processor and cache rules introduced in Section 2.

4.1 Runahead Processor

4.1.1 State

In addition to the pc register, register file, and wait-for-token register in the baseline
three-stage processor, the runahead processor contains the following state elements:

• Backup PC Register. The backup-pc register stores the pc of the offending instruc-
tion that causes us to enter runahead.

• Modified Writeback Queue. Elements in the writeback queue wbQ contain up to
four parts: (1) the instruction’s pc (all requests), (2) the register address where data
should be stored (load and alu-op requests), and (3) a data value to be written and
(4) its validity (alu-op requests only). The pc is written to the backup pc register if
the writeback rule determines that the instruction has caused the processor to enter
runahead mode.

• Restorable Register File with Valid Bits. Instead of an array of data flip-flops,
the register file is now an array of three sets of flip-flops: data, backup data, and
valid bit. rf.backup() and rf.restore() methods copy data between the data and backup
registers. Note that each backup flip-flop only needs to read and write to one data
register. Thus, each data register can be floorplanned next to its ‘backup buddy,’ so
checkpoints and restores will be completed in one cycle (instead of copying words one
at a time to a separate register file.)

• Mode Register. The processor can be in one of five modes: normal-processing,
starting-runahead, runahead-processing, stopping-runahead, and runahead-stalling.

• Branch Predictor Table. Although not the focus of our project, our baseline design
includes a simple branch predictor table with four { current address, next address }
entries. A branch is predicted taken if the current address is in the table.

4.1.2 Rules

Modes and Conflicts The mode determines what rules can fire:

• Normal-Processing: pc-gen, exec, writeback (sequentially composable; writeback <

exec < pc-gen to ensure proper pipelining)

• Starting-Runahead: start-runahead only.

• Runahead-Processing: pc-gen, exec, writeback, check-response-q; check-response-q
and writeback are mutually exclusive.

5

Table 1: State Element usage by Processor Rules; R indicates read, W indicates write

Rule/State Element R
eg

is
te

r
F
il
e

p
c
-
r
e
g
i
s
t
e
r

b
a
c
k
u
p
P
C
-
r
e
g
i
s
t
e
r

m
o
d
e
-
r
e
g
i
s
t
e
r

p
c
Q

w
b
Q

i
n
s
t
R
e
q
Q

i
n
s
t
R
e
s
p
Q

d
a
t
a
R
e
q
Q

d
a
t
a
R
e
s
p
Q

pc-gen R/W R enq enq
exec R W R/W deq enq,R deq enq
writeback W W R/W deq deq
check-response-q R/W deq
start-runahead W R/W
stall-runahead R/W
stop-runahead W deq R/W clr deq enq

• Stopping-Runahead: stop-runahead only.

• Runahead-Stalling: stall-runahead and check-response-q.

Table 1 shows the methods called by each rule.

Detailed Rule Descriptions We first have the standard three rules: pc-gen, exec, and
writeback. The pc-gen rule sends a data request to the instruction cache, increments the
pc, and places it on the pcQ to the exec rule. We use tokens to keep track of taken branches,
but they are not shown here for clarity reasons. We also have stall and discard rules for
handling read-after-write hazards and clearing of the pcQ after taken branches. As these
were unmodified from the standard three-stage processor, they are not presented here.

rule pc-gen(mode_proc == NormalProcessing);

instReqQ.enq(pc);

pc_plus4 = pc + 4;

pc_pred = bpred.getPred(pc);

if(pc_pred.isValid == true)

begin

pcreg <= pc_pred;

pcQ.enq(pc_pred);

end

else

begin

pcreg <= pc_plus4;

6

pcQ.enq(pc_plus4);

end

endrule

The exec rule takes the instruction response from the instruction cache, and executes the
rule. For example, ALU operations are evaluated, with the results placed in the wbQ. Loads
and stores initiate data requests to the non-blocking data cache, and branches are resolved
in this rule. The runahead modifications involve the addition of a valid bit to the register
file. We maintain the following invariants:

Invariant. During normal-processing mode, all entries in the register file are valid (During
runahead-processing mode, some entries in the register file may contain bogus data.)

Invariant. The processor may never change memory values during runahead-processing
mode—it may only swap data between the cache and main memory.

Invariant. The processor may request loads and stores to addresses if and only if all the
values used the compute that address were marked valid. (Thus, even in runahead mode, the
processor never prefetches data that it may not need.)

Operations involving invalid data have special results. ALU operations involving invalid
data have invalid results placed in the wbQ. Loads and stores whose addresses depend on
invalid data do not initiate data cache requests. When the predicate for a branch involves
invalid data, and we enter the runahead-stalling mode. Again, as the resolution of taken
branches is identical to normal-processing mode.

Note: The pseudocode below includes many functions whose purpose should be obvious
from their names; the actual code fully implements these functions.

rule exec(DontStall && (mode_proc == runahead-processing ||

mode_proc == normal-processing);

pcQ.deq(); instRespQ.deq();

case (instRespQ.first()) matches

tagged (LW or ST):

if (addr.isValid()) dataReqQ.enq(DataReq(...));

wbQ.enq(WB_LD or WB_ST);

tagged (ALU_OP):

wbQ.enq(WB_ALU{ops.isValid(), dest, result});

tagged (BRANCH_OP):

if (pred.isValid()) resolve_branch();

else mode_proc <= runahead-stalling;

checkBranchPrediction();

updateBpredTable();

endrule

7

The writeback and check-response-q rules underwent the most significant changes in
our runahead processor. The writeback rule in normal mode takes the first item off the
wbQ. If the item is a WB-ALU, the data in the item is written to the appropriate destination
in the register file. If the item is a WB-LD or WB-ST, the first item in the wbQ is matched to
the first item in the dataRespQ. The appropriate action is then taken (writeback the data
from the load response, and do nothing on a store response). Finally the rule removes the
first element of the wbQ, and if that element was a store or load, removes the first element
of the dataRespQ as well.

Data responses have a two major tags: isRunahead, and isValid. While in normal mode,
the processor expects all data to come back with (isRunahead == False) and (isValid ==

True). This corresponds to a hit in the data cache. The writeback rule is the processor’s
check on whether a miss has occurred, in which case, the processor must enter runahead
mode. This check allows us to maintain the following invariants:

Invariant. The isRunahead-tag of all data responses matches the mode (normal or runa-
head) of the processor. As soon as a mismatch is found, the processor changes its mode.

Invariant. When the processor enters starting-runahead mode, all instructions prior to the
offending load/store have been completely processed.

Invariant. During runahead execution, we never initiate an invalid prefetch (a prefetch that
we may not need).

Invariant. When the processor enters stopping-runahead mode, all instructions in the pipeline
are cleared and the offending load/store is the first to be executed.

For example, if the processor is in normal-processing mode, and receives a data re-
sponse that has (isRunahead == True), the processor needs to switch to starting-runahead
mode. While in runahead-processing mode, all data responses will return immediately as
either hits or invalid misses, with the tag (isRunahead == True). When the original of-
fending miss returns from main memory, its response will be placed in the dataRespQ with
a tag (isRunahead == False). Thus, the mismatch between the processor’s mode and the
isRunahead-data response will trigger a state change, switching the processor back to normal
mode.

The check to switch from normal-processing mode to starting-runahead mode is placed
in the writeback rule. A separate rule, check-response-q is used to check for switches
from runahead-processing mode back to normal-processing mode (via stopping-runahead).
The check-response-q rule is forced to have greater urgency than writeback to ensure
that we will exit runahead-processing as soon as the mode-changing response arrives.

Another important observation that is not quite obvious is:

Invariant. The processor mode can only switch based on the first item of the dataRespQ.

Thus, on the normal to runahead switch, all data that needs to be in the register file
prior to backup is present.

8

rule check-response-q (dataRespQ.first() matches DataResp .dr &&&

dr.isRunahead == False &&

(mode_proc == runahead-processing ||

mode_proc == runahead-stalling));

mode_proc <= stopping-runahead;

dataRespQ.deq();

endrule

rule writeback(mode_proc == normal-processing ||);

mode_proc == runahead-processing);

wbQ.deq();

case (wbQ.first()) matches

tagged WB_ALU:

rf.wr(data, dest);

tagged WB_LD:

if (ld.isRunahead && !runaheadMode_proc)

mode <= starting-runahead;

backupPC <= wbQ.first().pc;

else

rf.wr(data, dest);

tagged WB_ST:

if (st.isRunahead && !runaheadMode_proc)

mode <= starting-runahead;

backupPC <= wbQ.first().pc;

endrule

Finally, we have three rules involved in the switching between normal/runahead modes.
start-runahead backs up the register file (checkpointing), and then allows the processor to
continue execution.

rule start-runahead(mode_proc == starting-runahead);

mode_proc <= runahead-processing;

regFile.backup();

endrule

The stop-runahead rule clears the pcQ, instRespQ, and wbQ. It also restores the register
file. Clearing of the pcQ and instRespQ happens with 1-for-1 dequeues, to ensure correctness
before starting normal mode. Finally, exec might issue a data request at the same time
check-response-q is ending runahead. Thus, an extra memory request can leak onto the
dataReqQ on the cache side. The stop-runahead rule issues an extra request to the data
cache, instructing it to clear its reqQ. After these steps are completed, normal mode begins.

rule stop-runahead(mode_proc == stopping-runahead);

- deq pcQ and instRespQ one for one until empty

9

- clear wbQ

- restore regFile and pc; all entries are valid

- send ‘completed-restore’ token to data cache

endrule

stall-runahead is invoked when a branch involves an invalid predicate or if the program
completes while in runahead mode. The stall-runahead rule basically waits for the initial
miss to return and check-response-q to fire (ending runahead mode).

rule stall-runahead(mode_proc == runahead-stalling);

mode_proc <= runahead-stalling;

endrule

4.2 Cache

4.2.1 State

We have built two non-blocking, direct-mapped caches: one specialized for the runahead
processor, and one for the standard three-stage baseline modelled after Kroft [3] (so when we
compare results, we do not compound the impact of a non-blocking cache with the impact of
runahead processing). Both caches implement a major-minor FSM structure modelled after
the provided blocking cache. In this section, we focus on the cache tailored to runahead
operations. This cache contains the following state elements:

• Cache RAM. Stores the cache data, including a valid bits, dirty bits, and memory
addresses.

• State. The cache has a simple FSM structure with each rule corresponding to a state.
The states are main, refill-resp, access, refill-req, and wait-for-token.

• Mode. The mode register stores whether the cache is in runahead or normal mode.

• ProcReqQ. The procReqQ keeps track of all requests currently in flight between main
memory and the cache. The queue has two uses: first, an isInitialMiss tag marks
the offending request that caused us to enter runahead. Second, by searching the
procReqQ, we avoid making repeated requests to the same address.

• HaveSetInitialMiss. Keeps track of whether we have seen an initial miss yet. This
register is important because the procReqQ may still have prefetches in-flight when we
exit runahead operation; when we get a miss we must check if it is the first offending
miss.

Table 2 shows the methods called by each rule.

10

Table 2: State Element usage by Cache Rules; R indicates read, W indicates write

Rule/State Element C
ac

h
e

R
A

M

s
t
a
t
e
-
r
e
g
i
s
t
e
r

m
o
d
e
-
r
e
g
i
s
t
e
r

h
a
v
e
S
e
t
I
n
i
t
i
a
l
M
i
s
s

r
e
q
Q

r
e
s
p
Q

p
r
o
c
R
e
q
Q

m
e
m
R
e
q
Q

m
e
m
R
e
s
p
Q

main R/W R R
access R R/W R/W R/W deq enq enq,R enq
refill-req R/W R/W deq enq enq
refill-resp W R/W W W enq deq deq
wait-for-token R/W deq

4.2.2 Rules

Since each rule corresponds to an FSM state, they are mutually exclusive. Rules never fire
in parallel. The major FSM chooses which rule to enable, access or refill-resp, with
refill-resp getting greater priority, if it is ready.

rule main(stage == Main)

if (mainMainRespQ.notEmpty()) stage <= RefillResp;

else if (reqQ.notEmpty()) stage <= Access;

else stage <= Main;

endrule

The access rule determines whether a given request is a hit or a miss. The access rule
enacts the following invariant:

Invariant. All requests are given immediate responses. In the case of a miss, an imme-
diate invalid response is given with a isRunahead == True tag. In the case of a hit, the
isRunahead tag matches the mode of the cache. Note that immediate responses imply that
responses are always returned in-order.

The access rule uses an SFIFO called procReqQ to keep track of in-flight main memory
requests. If a memory request is already in flight, we do not initialize a second one. Fur-
thermore, the procReqQ keeps track of which memory request is the initial miss. That is,
requests are enqueued onto the procReqQ with a tag stating whether it is an initial miss. This
information will prove useful in the refill-resp rule. A register—haveSetInitialMiss—
is used to decide whether a miss is an initial miss or not. Finally, dirty collisions require
a two-step process where a store request is sent to main memory, writing back the dirty
data, followed by a load request, to fill in the appropriate cache line. The second step is
implemented in refill-req. Thus, another invariant is:

11

Invariant. The procReqQ contains all prefetches in flight. In runahead mode, exactly one
element in the procReqQ is marked with isInitialMiss. In normal mode, no elements are
marked with isInitialMiss.

rule access(stage == Access)

if (isHit(req))

RespQ.enq (isRunahead = runaheadMode_cache;

isValid = True; value = value);

stage <= Main;

if (isMiss(req))

RespQ.enq (isRunahead = True;

isValid = False; value = xxx);

runaheadMode_cache <= True;

if (dirty collision)

mainMemReq.enq(store current value to its address);

procReqQ.enq(store-req);

stage <= refill-req;

else if (req’s cache line index is not currently in flight

|| is initial miss)

mainMemReq.enq(req)

if (haveSetInitialMiss) //Not an initial miss

procReqQ.enq(req)

haveSetInitialMiss <= True;

stage <= Main;

else

procReqQ.enq(req, isInitialMiss) //An initial miss

haveSetInitialMiss <= True

stage <= Main;

endrule

rule refill-req(stage == refill-req);

mainMemReq.enq(req)

if (haveSetInitialMiss)

procReqQ.enq(req)

haveSetInitialMiss <= True;

else

procReqQ.enq(req, isInitialMiss)

haveSetInitialMiss <= True;

stage <= Main;

endrule

The refill-resp rule handles responses from main memory. When the initial miss
that caused runahead returns, refill-resp sends it to the processor dataRespQ with a

12

tag (isRunahead = False). This tells the processor to switch back to normal mode, from
the rule check-response-q detailed above. Furthermore, the in-flight responses generated
during runahead are loaded into the cache, without sending responses back to the processor.

In the case of an initial miss returning from main memory, part of the stop-runahead
procedure requires overt clearing of the reqQ. This is done in the state wait-for-token,
where the dummy request was detailed in the processor’s stop-runahead procedure.

rule refill-resp(stage == refill-resp);

mainMemRespQ.deq(); procReqQ.deq()

- do nothing on a store response

- if load response

- update cache

if (initialMiss(mainMemResp)

respQ.enq(isRunahead: False , response);

stage <= WaitForToken;

runaheadMode <= False;

haveSetInitialMiss <= False;

else

stage <= Main;

endrule

rule wait-for-token(stage == wait-for-token);

reqQ.deq();

if (reqHasToken)

stage <= Main;

else

stage <= WaitForToken;

endrule

4.3 Example Scenarios

The following diagrams show example processor-cache scenarios, illustrating how three tokens—
isInitialMiss in the cache’s procReqQ, isRunahead in the respQ, and done-restore in
the reqQ—ensure that the entering and exiting runahead occur correctly.

Figure 2 shows what occurs when the cache receives the initial miss. The cache immedi-
ately enqueues a ‘isRunahead’ response in the RespQ to the processor and memory request
to the main memory. It also enqueues the request with an ‘isInitialMiss’ tag into the
procReqQ. Meanwhile, the processor is already ‘running ahead’ in the sense that it is sending
more data requests—the cache will handle these with the standard runahead approach (see
Figure 4).

Eventually, the ‘isRunahead’ response reaches the front of the RespQ and the processor
enters runahead mode. Note that the processor enters runahead mode after the cache since
the RespQ decouples the two modules. Since future (runahead) cache responses are enqueued

13

after the initial ‘isRunahead’ response, however, the responses are still received in the correct
order and mode from the processor’s perspective.

Mode = Runahead

Mode = Runahead

Miss!

MissResp

MainMemReq

following runahead rules
handle other requests

DataReq

DataReq

DataReq

DataReq

Processor Cache Memory

Mode = Normal Mode = Normal

is changed ProcReqQ
enq initialMiss

Req’s after
first miss
wait in reqQ
while mode

Figure 2: A diagram showing processor-cache-memory communication when the initial miss
occurs.

14

DataReq

DataReq

DataReq

send done-restore token

DataReq

Processor Cache Memory

Mode = Runahead

Req’s
continue
until Mode
Resp reaches
head of respQ

Mode = Runahead

Mode = StopRunahead

Initial miss returns!

Stop responding to req’s
Wait for

done-restore token

empty pcQ, instRespQ
restore initial state

Mode = Normal
Mode = Normal

resume normal req handling

mainMemResp

Send Mode = Normal Resp

immediate
hit/miss resp

Figure 3: A diagram showing processor-cache-memory communication when the initial miss
returns from memory.

Exiting runahead (Figure 3) is a little more complicated than entering runahead. The exit
process begins when the request marked ‘isInitialMiss’ reaches the front of the procReqQ.
At this point, refill-resp sends a ‘!isRunahead’ flag down the resqQ to the processor.
However, until the flagged response reaches the front of the respQ, the processor may continue
to send data requests to the cache. The cache discards these requests.

When the processor receives the ‘!isRunahead’ flag, it moves into stop-runahead mode
to restore the system. After the restore is complete—which includes draining the pcQ and
instRespQ—the stop-runahead rule sends a ‘done-restore’ req through the ReqQ to the
cache. The cache resumes normal operation.

15

Processor Cache Memory

DataReq

Mode = Runahead Mode = Runahead

DataReq

DataReq

Hit: send back data

do nothing more

Miss: send back miss

MainMemReq load

MainMemReq store

Miss: send back miss

Suppose dirty:
ProcReqQ enq store

ProcReqQ enq load

Suppose in ProcReqQ:

Figure 4: A diagram showing processor-cache-memory communication for various scenarios
during runahead mode.

Figure 4 shows three request scenarios during runahead mode. The first is a hit; the
data is immediately sent back to main memory. The second is a dirty miss. In this case, the
original data is first sent back to main memory. Both the store request and the load request
go in the procReqQ. The final request is a miss to an address that is already in flight. The
cache immediately responds to the processor but doesn’t initiate any memory requests.

5 Design Exploration

We considered two strategies to improve runahead performance. The first was a temporary
store-cache for recording the values of stores made during runahead (recall that we do not
want to change the state of the real memory in runahead mode). The second strategy was to

16

wait for all prefetches—not just the initial miss—to return before exiting runahead, which
might reduce the number of times we had to enter runahead.

The cross-product of these strategies gave us a total of five variations:

• Standard processor (baseline)

• Runahead processor

• Runahead processor with store cache

• Runahead processor that waits for prefetches

• Runahead processor that waits for prefetches, has store cache

All variations included a branch predictor and used a non-blocking cache (including the
standard processor; we built a standard non-blocking cache for it to use).

5.1 Design Variations

Store-Cache. The store cache is a small module in the cache that stores the data from
runahead store requests (our normal runahead processor just throws the data away). It also
stores whether the data is valid. Thus, if a load depends on data from a previous store,
that data can be returned to the processor for future operations. If the stored data is valid,
then the load will return valid data. The processor can use the data to run farther ahead
and produce more prefetches. If the stored data is invalid, the load will return invalid along
with the data. The processor knows that the data is corrupted, and may choose to stall,
preventing useless prefetches.

In implementation, the store cache strongly resembles our four-element branch predictor
table: it contains a RAM of valid bits and a RAM of { address, data } pairs, both indexed
by the lower order address bits. The valid bits can take on three values: neverWritten,
valid, and invalid. Loads and stores are handled as follows:

• Stores. All stores during runahead are stored into the store cache based on the least
significant bits of the address (old address-data pairs, if present, are overwritten).

• Loads. All loads during runahead—whether they are hits or misses—first query the
store-cache. The store cache either returns the matching address-data pair and ap-
propriate valid bit or a bogus address-data pair with a neverWritten valid bit. If a
neverWritten is returned, then the load checks the actual cache ram and returns the
appropriate hit/miss. If valid or invalid is returned, the load returns the data from
the store cache and the matching valid bit to the processor.

17

Waiting for Prefetches. Instead of exiting runahead when the initial miss returns, this
cache waits for all prefetches currently in flight to return before notifying the processor to exit
runahead. When the initial initial miss returns, the cache goes into a wait-for-prefetches

state. New processor requests are discarded while the cache waits for the procReqQ to empty
(all prefetches to return). Waiting for prefetches increases the runahead period by a time
proportion to the main memory throughput. However, by ensuring that all the requests are
updated in the cache, we aimed to prevent a premature return to runahead (note that since
we deque fifos one for one, exiting runahead can be a particularly costly for long fifos).

5.2 Design Parameters

Prefetching usually shows the most performance improvement at the L2 cache level, where
memory latencies can be hundreds of cycles. Cache misses from the L1 cache typically
only cost tens of cycles, so we would generally not expect prefetching to show as much
improvement—the cost of entering and exiting runahead is too large compared to the number
of prefetches made. We did not implement an L2 cache; however, we simulated the effects
of larger costs by varying the latency of our main memory requests.

Fifo sizing is also important: longer fifos decouple modules and rules and allow them
to operate more independently. This decoupling is crucial for the non-blocking cache: if
the procReqQ and reqQ fill, then the processor must stall until a response comes back from
main memory. On the other hand, long queues allow the processor and cache to continue
sending requests without waiting for a response. In fact, a long queue with a non-blocking
cache effectively performs a simple kind of runahead: even if the response to a miss has not
returned, the processor can continue to put items in the wbQ and reqQ.

For each of our design variants, we tested three levels of latency—1, 20, and 100 cycles—
and four fifo lengths—2, 5, 8, and 151 items—for a total of twelve parameter configurations
per variant. The relevant fifos were the reqQ, respQ, wbQ, procReqQ, and memRespQ (the
instruction cache is preallocated prior to running the benchmarks, so its fifo sizing should
not impact runahead performance).

6 Results

We found that the runahead processor outperforms the standard processor by up to a factor
of 6.9 (fifo length 15, latency 100, vvadd benchmark). The benefits are most pronounced
when the test program involves many independent loads and stores, and the latencies are
long. In this section, we first describe the performance of the runahead processor and our
explorations in terms of the executed instructions per second (IPS). Then we discuss the
impact of runahead processing on secondary metrics such as area, cycle time, fetch traffic.

1The compiler had trouble synthesizing a wbQ longer than eight elements, so in the fifo-15 run, all fifos

except the wbQ were resized. Since the it was the procReqQ sizing that was most crucial, we were still able

to see many of the expected effects.

18

6.1 IPS Performance

Figures 5, 6, 7, and 8 chart the instructions per second as the fifo length was varied. For all
of the benchmarks, the baseline processor did best when the latency is low—in these cases,
the penalty for a cache miss was small compared to the cost of entering runahead. The
baseline processor also does better as the fifo lengths get longer because a long fifo decouples
the processor and cache rules. The exec rule can continue firing after a cache miss until the
dataReqQ and wbQ’s are full, a form of pseudo-runahead.

As the latencies get longer, however, the benefits of runahead become more evident. For
example, when the fifo is of size eight and there are many independent loads (vvadd), the IPS
of the baseline processor drops to 12.9 percent of its latency-1 value when the latency is raised
to 100 cycles. In contrast, the IPS for the runahead processor stays at 96.9 percent of its
latency-1 value. The benefits are less clear with shorter fifos, however—once the procReqQ is
full, the runahead processor cannot continue prefetching, regardless of the memory latency.

All of the runahead variants performed at approximately the same level. The IPC’s for
both basic runahead and the runahead with store-cache were exactly the same; the differences
in the bars come from the fact that store-cache version was optimized to a slightly smaller
cycle time. Thus, for our benchmarks, the store cache did not truly improve performance.

The wait-for-prefetch versions had lower IPC’s and lower corresponding IPS’s. The
penalty for stopping runahead was long enough that the cache could receive additional
prefetches during that period and still store them before the processor required them; wait-
ing for the prefetches to return only prolonged the penalty for stopping runahead.

19

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 1 cycles, fifo size 2
IP

S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 20 cycles, fifo size 2

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 100 cycles, fifo size 2

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

Figure 5: Instructions per Second for FIFO length 2.

20

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 1 cycles, fifo size 5
IP

S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 20 cycles, fifo size 5

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 100 cycles, fifo size 5

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

Figure 6: Instructions per Second for FIFO length 5.

21

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 1 cycles, fifo size 8
IP

S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 20 cycles, fifo size 8

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 100 cycles, fifo size 8

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

Figure 7: Instructions per Second for FIFO length 8.

22

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 1 cycles, fifo size 15
IP

S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 20 cycles, fifo size 15

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

median multiply qsort towers vvadd
0

2

4

6

8

10
x 10

7 Performance with Latency 100 cycles, fifo size 15

IP
S

baseline

runahead

store−cache

wait−for−prefetch

sc and w4p

Figure 8: Instructions per Second for FIFO length 15.

23

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

7

IP
S

Latency

IPS vs. Latency for Vector Addition Benchmark

baseline

runahead

Figure 9: Instructions per Second vs. Latency for Baseline Normal, Runahead Processors
with FIFO Size 15.

Since there was little variation in the performance of the design exploration alternatives,
the next plot focuses on the baseline and standard runahead processor. Figure 9 shows
more clearly the benefits of runahead as the latencies get long on the vvadd benchmark.
As expected, the baseline processor’s performance drops with increasing latency (although it
has a non-blocking cache, it can only pile two extra program counters into the pcQ before the
system needs to stall). However, the runahead processor’s performance actually increases
with latency.

6.2 Secondary Metrics

While improving IPS was our primary objective, we also evaluated the effect of runahead
processing on processor-cache area, cycle time, and fetch traffic.

Area The backup register file is the most significant addition to runahead processor area.
Table 3 compares the processor areas of each of our design variants; overall the runahead
processor requires about twenty percent more area than the baseline. On the processor side,
the store cache increased area by about five percent. We used the standard floorplanning to
produce the area numbers. The fifos caused the most signficant area increase of up to thirty
percent.

Within the cache, the fifo sizes impacted the control logic area more signficantly than
the store cache (Figure 10). The store cache increased the area by between eight and thirty
percent, but increasing the fifo lengths more than doubled the size of the controller. Thus,
although the store cache had no signficant effect on our benchmarks, it may be worth keeping

24

Table 3: Total Processor Area in µm2 (fraction of baseline Fifo-2)
Variant Fifo-2 Fifo-5 Fifo-8, Fifo-15
baseline 455522.8 (1.00) 475721.8 (1.04) 491345.3 (1.07)
runahead 543424.9 (1.19) 569130.7 (1.24) 693736.5 (1.52)
store-cache 569130.7 (1.24) 592352.8 (1.30) 698751.0 (1.53)
wait for prefetches 543424.9 (1.19) 569130.7 (1.24) 693736.5 (1.52)
both 569130.7 (1.24) 592352.8 (1.30) 698751.0 (1.53)

2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

C
ac

he
 A

re
a

in
 u

m
2

Fifo Length

Cache Area as a Function of Fifo Length, Store Cache

Baseline

Store−Cache

Figure 10: Cache controller area for runahead baseline and store-cache variant as a function
of fifo size.

since it has very little impact on design area. The area penalty of the long fifos may be
mitigated by choosing which fifos to size more carefully: clearly a longer procReqQ allows
more prefetches to be in flight and thus allows the processor to take full advantage of going
into runahead. However, we should be able to make the request and response queues to the
processor much shorter since these queues are less affected by the memory latency.

Cycle Time The runahead logic also increases our cycle time. As seen in Table 4, the
logic increases the time by about ten percent. All modules were routed with a target time
of 5 ns. Interestingly enough, the store cache variants had a slightly faster cycle time. We
believe that the optimizer may have worked harder to meet the target time for the more
complex system, resulting in a better optimization. Also, the fifo length is not always on the
critical path so it does not always impact the cycle time. Overall, the designs with shorter
fifos are slightly faster, but the penalty for using larger fifos in terms of time is cancelled by

25

Table 4: Cycle Time in Nanoseconds (fraction of baseline Fifo-2)
Variant Fifo-2 Fifo-5 Fifo-8, 15
baseline 5.81 (1.00) 5.83 (1.00) 5.79 (1.00)
runahead 6.52 (1.12) 6.59 (1.13) 6.52 (1.12)
store-cache 6.24 (1.07) 6.23 (1.07) 6.40 (1.10)
wait for prefetches 6.52 (1.12) 6.59 (1.13) 6.52 (1.12)
both 6.24 (1.07) 6.23 (1.07) 6.40 (1.10)

the overall performance benefits. The fifo-15 numbers were the same as the fifo-8 numbers
since the critical path did not include the data cache and both used the same size wbQ.

Although all of the runahead versions had approximately the same cycle time, the critical
paths in each case varied widely. The critical path for the normal baseline processor took
place when updating the branch predictor table in exec; whereas the standard runahead
and the wait-for-prefetch version’s critical paths went from the data request queue to the
pc-register in pc-gen. The store-cache variants’ critical paths went from the wbQ to the
pc-register and from the dataRespQ to the wbQ. On the processor side, the four variants
had very few differences, so it is unclear how the optimizations worked to produce these
results.

Fetch Traffic Finally, we measured the fetch traffic for all of our designs. Since the variants
were virtually indistinguishable in performance, we focus here on the standard runahead
processor with size-15 fifos. Due to our invariant of only prefetching data that we will need
(and searching the procReqQ for requests already in flight), we never make any unnecessary
prefetches2. However, depending on the latencies, we may have to enter and exit runahead
multiple times, and exiting runahead typically had a penalty of 5-10 cycles.

Figure 11 shows fraction of request that were initial misses for the standard runahead
processor across the five benchmarks. Equivalently, the figure shows what fraction of misses
initiated a runahead operation. For low latencies, few prefetches can be made before the ini-
tial miss arrives, and thus most misses initiate a runahead period. However, as the latencies
get longer, more prefetches can be made, and we have to enter runahead less often.

The vvadd and median continue to improve (that is, enter runahead less often) as the
latency increases. This matches exactly the initial aim of runahead: as the latency penalty
increases, we should queue more prefetches to decrease the total number of misses. In
contrast, multiply and qsort level out somewhere before latency 20. Here, the processor
entered the stall-runahead state because it hit a branch that depended in invalid data.
More aggressive branch prediction may allow the processor to overcome this hurdle and keep
processing, at the risk of increasing overall fetch traffic with prefetches that do not prove
to be useful (if the wrong branch was taken). Finally, the towers benchmark produced no

2In our benchmarks, we confirmed that the runahead processor makes exactly the same number of memory

requests as the baseline normal processor.

26

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
iti

al
 M

is
se

s/
T

ot
al

 M
is

se
s

Latency

Initial Misses/Total Misses for Runahead Processor, Fifo Size 15, Various Latencies

median
multiply
qsort
towers
vvadd

Figure 11: Initial Misses/Total Requests for Baseline Runahead Processor across Bench-
marks, Latency.

cache misses, so taking a fraction of misses does not make sense.

7 Conclusions and Future Work

When cache latencies are high, the runahead processor appears to have significant advantages
over a standard processor. For programs that involve many independent loads and stores,
queuing prefetches after a miss can result in performance boosts by a factor of up to 6.9.
Since performance is sensitive to the latency and fifo length parameters, these should be
tuned to each system with care.

This project studied two variants: using a store-cache and waiting for prefetches. Waiting
for prefetches actually decreased performance, and the store-cache had no effect. Since the
store-cache adds only five percent more area, however, it may be useful to keep for special
situations. However, there are many other design variations that deserve attention:

• Backup Register File Configuration. If the backup register file is a separate mod-
ule, then the backup and restore times are bounded by the number of the read/write
ports. Depending on how often we enter runahead, however, the runahead penalty
may be offset by better floorplanning options and short drive lines. Other register
file explorations include using a backup register file that is smaller than the original
register file, and store only elements that are overwritten with invalid data. While this
will save register area, we may pay a time penalty due to a limited number of ports and
invalid computations. Finally, although research suggests that it is not a big win[4],

27

it may be worth trying to ‘save’ the valid computations that occur during runahead
instead of reexecuting them.

• Value Prediction. Currently we do not execute requests with invalid addresses,
maintaining the invariant that we only prefetch data that we will need in the future. A
more aggressive strategy would use address value prediction to guess load addresses[5].
Prediction strategies could also be used to guess branches even when the predicate is
invalid.

• Prefetching with Collisions. The most conservative strategy, implemented in our
project, only allows one prefetch per cache index. An associative cache may partially
mitigate the effect of colliding cache lines; however, a more aggressive strategy would
prefetch all data, regardless of collisions. A combination of fifo sizing and cache arbiter,
as well as good understanding of system latencies, would allow the processor to use
the data from the first prefetch before the colliding prefetch overwrites it.

• Cache Size and Type. The size of the cache determines how accurate the prefetching
needs to be. With smaller caches and non collision-free prefetches, useless prefetches
may remove useful prefetches from the cache. Associative and direct-store caches may
also improve performance.

Finally, although the runahead processor provides an elegant, relatively low-overhead
solution to improving performance during a cache miss, other options exist to reduce the
impact of cache misses, including active prefetching (looking ahead in the program instead
of waiting for the initial miss) and out-of-order processing (allowing multiple operations
to execute in parallel). A comprehensive evaluation of runahead processing should include
comparisons to these alternatives.

References

[1] J. Dundas and T. Mudge, “Improving data cache performance by pre-executing instruc-
tions under a cache miss,” in ICS ’97: Proceedings of the 11th international conference
on Supercomputing, (New York, NY, USA), pp. 68–75, ACM Press, 1997.

[2] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An alternative
to very large instruction windows for out-of-order processors,” in HPCA ’03: Proceed-
ings of the 9th International Symposium on High-Performance Computer Architecture,
(Washington, DC, USA), p. 129, IEEE Computer Society, 2003.

[3] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in ISCA ’81: Pro-
ceedings of the 8th annual symposium on Computer Architecture, (Los Alamitos, CA,
USA), pp. 81–87, IEEE Computer Society Press, 1981.

28

[4] O. Mutlu, H. Kim, J. Stark, and Y. N. Patt, “On reusing the results of pre-executed
instructions in a runahead execution processor,” IEEE Comput. Archit. Lett., vol. 4,
no. 1, p. 2, 2005.

[5] O. Mutlu, H. Kim, and Y. N. Patt, “Address-value delta (avd) prediction: Increasing the
effectiveness of runahead execution by exploiting regular memory allocation patterns,”
in MICRO 38: Proceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture, (Washington, DC, USA), pp. 233–244, IEEE Computer Society, 2005.

29

