
SMIPS Multimedia Extension

Group 2
Myron King

Asif Khan



Motivation: Do we really need a Multimedia Extension at all?

- Intel’s success with MMX and SSE

- The entire GPU industry (ATI, Nvidia, Intel)

- The nascent PPU industry (Ageia, Sony)

- MIPS MDMX from SGI

- Sony’s in-house GPU (PSP, PS3)

- Only barrier to ubiquity is how to compile to them!

Utility: What does a Multimedia Extension look like and what does it do?

- Expose vector primitives (vector registers replace scalar ones)

- Expose DWORD primitives within each vector

- Add opcodes which are useful for target applications

- Make claims about memory interaction

- Convince others it’s actually useful!

Motivation & Utility



Nothing new under the sun:  why reinvent the wheel?

- Interesting work;  lots of infrastructure already in place

- Until you implement something, you don’t fully “grok” it

- Still an active area in research, both industrial and academic

- Cross-pollination which took place in exploration could lead 
to interesting projects in the future

- Asif is tenacious Bluespec hacker and does the heavy lifting!

Coming up with the specifics:

- DirectX Shader Language (vertex shaders especially)

- MMX and SSE for instruction set extension

- Discussions with Chris Batten (exploration)

- Arvind’s insistence on specifying the micro-protocol details early on 
led us to an implementation which would ensure SC but with minimal 
interlocking (for greater efficiency)

Getting Started



Adding the Coprocessor:

- At first all in one module but onerous compile times as well as good 
design practice forced us to modularize our design

- Definition of interfaces for transfer of Data (and state) from control 
processor to coprocessor

- Once we gained adequate Bluespec skills, this came quite  naturally 
(getting over the learning curve, easier said than done)

Implementing the Instructions:

- Determining which instructions run on which processor (some on 
both) was the first step.

- Some Cop2 instructions must be run on the control processor as 
well (SC follows naturally if done correctly)

- Restrictions on Cop2 instructions allow for easier implementation 
(no CF instructions and no non-aligned loads and stores)

Changing smipsv2



What did we do to SMIPSv2:

- Add a coprocessor module with some new opcodes.

- Add a new rule “dispatch” between “pcGen” and “exec”

- Change the memory caches: enlarge cache lines to support 
128 bit loads and stores

- Add more control logic for the interaction with the control processor

- Add some cop2 instructions to the control processor 
execution (those which need both)

What’s in the Coprocessor:

- only execution and write back stages

- Cache interface needed to be changed to route responses

- lots of gotcha’s!
Getting everything up and running:

- Add pre-asm.pl to tool path

- Write tests and benchmarks (hand-writing assembly code is no fun!)

Changing smipsv2



Microarchitecture



Branch prediction works: but you already knew that!

IPC's for Various Benchmarks on smipsv2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

median multiply qsort towers vvadd

without branch predictor
with branch predictor



Runtime Comparison between smipsv2 
and Baseline Implementation

0.0

20000.0

40000.0

60000.0

80000.0

100000.0

120000.0

140000.0

160000.0

180000.0

vvadd multiply

smipsv2
baseline implementation



Exploration 1: 16-DWORD 
Vectors

16-dword vectors but still 4 lanes in the coprocessor
Register File enlarged to 24 4-dword registers from 8 4-dword 
registers
Semantics of the control processor instructions and the data 
transfer instructions remain unaltered
Exec rule changed in the control processor to execute LWC2 
and SWC2 in 4 cycles
Exec rule changed in the coprocessor to execute all instructions
other than the data transfer instructions in 4 cycles
Writeback rules in both the control processor and the 
coprocessor remain unaltered



Exploration 1: 16-DWORD 
Vectors
Discarding Mispredicted Branches

Single epoch register scheme from smipsv2 falls 
apart
Coprocessor takes multiple cycles to execute each 
instruction, allowing the control processor to run 
ahead
Another epoch register added which is incremented 
every time a branch instruction is dispatched
All the coprocessor instructions are dual-tagged
Extra checks in the exec rule of the coprocessor to 
make sure that all instructions which were dispatched 
before the branch instruction get executed



Runtime Comparison between Baseline 
and Exploration 1

0.0

20000.0

40000.0

60000.0

80000.0

100000.0

120000.0

140000.0

160000.0

180000.0

vvaddv multiplyv geometry

Baseline Implementation
16-dword Vectors Implementation



Exploration 2: Variable Length
Vectors

A control register is added which allows the 
programmer to set the length of the vector 
registers using the CTC2 instruction
Length has to be a multiple of 4 and 
maximum length restricted to 32-dwords
Register File further enlarged to 32 4-dword 
registers
Mask bits increased to 32
Changes to the exec rules in the control 
processor and the coprocessor similar to 
exploration1



Number of Instructions for Custom Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

8000

Baseline
Implementation

Variable Length
Vectors

Implementation
(8-dword)

Variable Length
Vectors

Implementation
(12-dword)

Variable Length
Vectors

Implementation
(16-dword)

Variable Length
Vectors

Implementation
(20-dword)

Variable Length
Vectors

Implementation
(24-dword)

Variable Length
Vectors

Implementation
(28-dword)

Variable Length
Vectors

Implementation
(32-dword)

vvaddv
multiplyv
geometry



Runtimes for Custom Benchmarks (ns)

0.0

20000.0

40000.0

60000.0

80000.0

100000.0

120000.0

140000.0

160000.0

180000.0

Baseline
Implementation

Variable Length
Vectors

Implementation
(8-dword)

Variable Length
Vectors

Implementation
(12-dword)

Variable Length
Vectors

Implementation
(16-dword)

Variable Length
Vectors

Implementation
(20-dword)

Variable Length
Vectors

Implementation
(24-dword)

Variable Length
Vectors

Implementation
(28-dword)

Variable Length
Vectors

Implementation
(32-dword)

vvaddv
multiplyv
geometry



Exploration 3: ALU changes for clock 
speed 

improvement

The dot4 instruction creates the longest 
combinational path
dot4 instruction broken down into mulv and 
addh instructions
Register File size is the same as that for the 
baseline implementation
Minor changes in design to accommodate for 
the added addh instruction



Timing and Area Comparison

Area (units) Effective Clock Period (ns)
smipsv2 Implementation 28,837.25                               4.26
Baseline Implementation 87,413.50                               5.50
16-dword Vectors Implementation 147,652.25                             5.50
Variable Length Vectors Implementation 172,251.00                             5.84
Alternate ALU Implementation 104,651.75                             5.00

Total Area and Effective Clock Period of Different Implementations from the Synthesis Tool

Area (sq micron) Effective Clock Period (ns)
smipsv2 Implementation 464,849.30                             7.174
Baseline Implementation 1,415,025.90                          9.453
16-dword Vectors Implementation 2,466,711.70                          14.520
Variable Length Vectors Implementation 2,799,400.60                          14.889
Alternate ALU Implementation 1,708,809.50                          10.782

Total Area and Effective Clock Period of Different Implementations from Encounter



Conclusion
The baseline implementation is a win!
Explorations have not proven very fruitful
Memory bottleneck with lengthened vectors
Not changing the register file size increases 
register pressure on benchmarks
Needed more time for floor planning to get 
better timing and area from Encounter
A few more benchmarks perhaps
We’re happy with what we’ve accomplished



Thank you


