H.264 Luma Predictor

Maxine Lee, Alex Moore
May 17, 2006

Integrated Systems Group
Massachusetts Institute of Technology
Why H.264?

- End-to-end protocol
- Better compression
- Designed for efficient encoding
- ITU standard
- It’s on your iPod
Project Scope

- Prediction module of H.264 Encoder
 - Intraframe Prediction
 - Interframe Prediction
 - Transforms
 - Luma only (no color information!)

- Why?
 - 85%+ of encoder computation time
 - Rich problem with lots of exploration
Intraframe Prediction
Motivation
Intraframe Prediction Block Diagram
Interframe Prediction
Intra-Frame Prediction

- Use spatial similarities to compress each frame
 - Use neighboring pixels to make a prediction on a block
 - Transmit the difference between actual and predicted
 - Tradeoff: prediction accuracy vs. # control bits

- H.264 Answer: 4x4 and 16x16 prediction!
Intra – 4x4 Prediction

- 9 prediction modes
- Prediction proceeds left to right, top to bottom
- When not all boundary pixels available (i.e. we’re at border of picture), can’t predict with all the modes
Intra - 16x16 Prediction

Mode 0: Vertical

Mode 1: Horizontal

Mode 2: DC

Mode 3: Plane

average
Advantages/Disadvantages

<table>
<thead>
<tr>
<th>Intra 16x16</th>
<th>Intra 4x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Good for smooth areas</td>
<td>❑ Good for detailed areas</td>
</tr>
<tr>
<td>❑ 4 modes = 2</td>
<td>❑ 9 modes = 4 bits for every 16 pixels (!)</td>
</tr>
</tbody>
</table>

- Encoder’s job to compare options and pick the best
 - Exhaustive search …
 - Uses a cost function to compare different modes
Block Diagram (Baseline)

- **Input Video**
- **Picture Parsing**
- **DCT**
- **IDCT**
- **Quant**
- **IQuant**
- **Try all 4 modes**
- **Try all 9 modes**
- **Initialize prediction variables**
- **Get 16x16 Prediction Residual**
- **Compute 16x16 Cost**
- **Get 4x4 Prediction Residual**
- **Compute 4x4 Cost**
- **Loop through 16 4x4 blocks**
- **Try all 4 modes**
- **Try all 9 modes**
- **Get best mode – Send to output**
- **Output (to entropy encoder)**

- **16x16**
- **4x4**
Intra – 16x16 Considerations

- **Process**
 - Loop through the available*** modes
 - Generate the prediction
 - Compute cost of residual
 - Cost ~ SAD (sum of absolute diff)

- ***What’s available?***
 - Depends on location in the frame!
Intra – 4x4 Considerations

- **Process:**
 - Loop through all 16 blocks
 - For each block, loop through available modes
 - Get ***cost = SAD + 4*P*λ(QP)**
 - Pick best mode – send to DCT
 - Save reconstructed 4x4 block, so you can use it to predict the next 4x4 block

- **Cost:**
 - f (QP), since overhead bits hurt more with higher compression
 - P : most probable mode
Extra Concerns with Intra 4x4

- Which boundary pixels do you use?
 - Boundary depends on where in the picture you are AND which 4x4 block you’re working on

Only left boundary available, and in another macroblock

Upper right pixels not available (can extrapolate)
Storing Boundary Pixels

- To predict current macroblock, need pixels from FOUR neighbors (A-D)
- D can be stored in a register, since it is immediately used
- Pixels for previous row (A-C) have to be stored in a register file
- Also save A in register to limit regfile reads to 2
Synthesis Numbers

Note: not P+R – not enough RAM / hard disk
(ask us tomorrow if you’re really curious about P+R numbers)

- Total Area = 609,940 um²

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor</td>
<td>66%</td>
</tr>
<tr>
<td>DCT/IDCT</td>
<td>10%</td>
</tr>
<tr>
<td>Quant (with QP lookup tables)</td>
<td>15%</td>
</tr>
<tr>
<td>Misc.</td>
<td>9%</td>
</tr>
</tbody>
</table>

- Clock Cycle = 7.27 ns (quant multiplications)
Only Three Regions of Change
Interframe Prediction

- Use previous frame(s) to predict macroblocks of current frame
- Most of the time, majority of frame isn’t moving
- If change within macroblock is sufficiently small, just reproduce it exactly!
Interframe Prediction
Interframe Prediction
Interprediction Algorithm

- Use a *motion vector* to predict the current macroblock.
- Start at (0,0) – same block – and calculate error for each motion vector.
- Full-Search algorithm. Try all possible motion vectors within a window.
- Final prediction will be block given by motion vector with minimum error.
Interprediction Algorithm
Interprediction Algorithm
Interprediction Algorithm
Interprediction Algorithm
Problem…

- Assume a window size of 16 (conservative)
- 1024 possible motion vectors to check per macroblock (vs. 9 for intra)
- 307200 possible motion vectors per frame!
Solution

- A better algorithm! Assume motion estimation gets better as we get closer to ideal motion vector.
- Diamond-shaped algorithm reduces points checked by ~80% with mean error per pixel about 3 (vs about 2) for FS.
- Hexagonal algorithm reduces by another ~35% (3.2 mean error vs 3.0)
Hexagonal Algorithm
Circuit Implementation

Residual And Cost

Predict Control

Transforms

Network Layer

Frame Buffer
Results…

- Results? What Results?

- H.264 predictor ~40x size of SMIPS processor

- Frame buffer adds ~18000 area (+4%)
 - But we’re cheating (64x48 video size)

- Interprediction block adds ~35000 area (+7%)

- Performance evaluation TBA
References

