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1 Introduction

H.264 is one of the newest and most popular video coding standards at the present time. I implemented the
first part of the h.264 decoding process. More specifically, I worked on the NAL unit decoding and entropy
decoding in that order.

2 H.264 Decoder Overview

H.264 is a standard for video coding, which is essential because video files tend to be very large without
compression. It is one of the newest standards, and offers the capability of better compression and error
resilience over its predecessors. The main functional blocks and the data flow of h.264 are shown in figure 1.

Figure 1: The main functional blocks and the data flow of h.264 (copied from “Overview of H.264 / MPEG-4
Part 10” by Kwon, Tamhankar, and Rao).

2.1 NAL Unit Unwrapping

Coded data of h.264 are separated into data units called NAL units. NAL stands for Network Abstraction
Layer, and it is a wrapper of the encoded data that has two formats, byte-stream and packet-based formats.
Packet-based formats can be used only when the data transfer protocol can be used as a means of specifying
the boundaries of the NAL units. An example of this would be some forms of internet video broadcast. The
NAL unit unwrapping step extracts the raw data from these NAL units. It is not shown in Figure 1, but it
is the first step in the decoding process.

For most purposes, the byte-stream format is used, as it provides a way to locate NAL unit boundaries
by simply scanning the data stream for a special three-byte code. However, this introduces complications.
If the data contained in a NAL unit contains the three-byte code, then there must be a way to disambiguate
it, so that it is not mistaken for a NAL unit boundary.

I will be assuming that the input is in the byte-stream format, as the byte-stream format can be used in
all situations, and packet based format requires interaction with the data transfer channel.
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2.1.1 NAL Unwrapping Process

The first step is to search for the “start code prefix,” the three-byte code with value 00000000 00000000
00000001 which marks the start of a NAL unit. The subsequent bytes before the next start code prefix (or
the end of the video stream) contains the data for the current NAL unit.

However, some bytes with value of 00000011 might have been inserted by the encoder to prevent the
start code prefix from appearing in the data. To remove these, the decoder has to scan through the data
once, and for every four-byte combination with value 00000000 00000000 00000011 000000xx, the third byte
with value 00000011 is removed.

The above step gives a sequence of bytes, but since the data is entropy coded, the real data is actually
a sequence of bits. In order to achieve byte-alignment, the encoder padded the end of the sequence of bits
with a bit with value 1 followed by zero or more bits with value 0. Therefore, counting from the end of the
data, the decoder has to discard all bits up to the first bit with value 1.

Sometimes the NAL units have to be bigger than the data they contain, and extra whole bytes of zeros
are used to pad the end of the NAL units. Therefore, the number of zero bits that the decoder has to discard
can be very large.

2.2 NAL Unit Types

After an NAL unit is unwrapped, and the data contained in the NAL unit is extracted, the next step depends
on what kind of information the unit holds. Each unit contains a one byte header which specifies the type
of its content. The three main categories are described below.

Some of the units are simply delimiters that give the boundaries for a single frame, a coded video sequence
(a sequence of frames that could be decoded independently), or the entire video stream. For example, if the
decoder needs to start decoding in the middle of a stream, it would need to search for a delimiter for a coded
video sequence before it starts the decoding process.

Some units contain parameter values that correspond to a single frame or a coded video sequence. Some
of the parameters are encoded using extropy coding, which will be explaned in the next section.

Some units contain an encoded slice, which is just a section of a frame. These units contain a header
that holds some additional parameters values that are used for the slice. The rest of these units contain
two kinds of data, the prediction choices made, and the residual data. The prediction choices give the kind
of prediction that should be used for a block of the slice. The difference between the prediction and the
input video data is the residual data, which accounts for most of the encoded video stream. These units go
through the rest of the decoding steps described below.

2.3 Entropy Decoding

Entropy coding refers to a type of lossless compression that includes Huffman codes. Suppose a file consisting
of ASCII characters is to be compressed, entropy coding takes advantage of the fact that not all characters
occur with the same frequency. Shorter codewords are assigned to more frequent characters and longer
codewords are assigned to less frequent characters, so the overall filesize becomes smaller.

The entropy decoding block in Figure 1 basically decodes the entropy-coded data. However, the entropy
coding used in h.264 is not just the general entropy coding. Some additional operations are used to better
exploit the known regularities in the h.264 data, but the details will not fit into this preliminary proposal.
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Three types of entropy coding are used in h.264, and they are the Exp-Golomb codes, CAVLC, and CABAC.

The Exp-Golomb codes encode integers using a fixed codeword table, so it is fairly simple to decode. The
Exp-Golomb codes are used for all entropy coded parts of the coded video stream except for the residual data.

CAVLC stands for Context-based Adaptive Variable Length Coding, and it is a kind of entropy coding
where the codeword table continually changes based on the previous data seen. Accordingly, the decoding
is much more complicated. CAVLC is used to encode the residual data as described in the previous section.

CABAC stands for Context-based Adaptive Binary Arithmetic Coding. Like CAVLC, it encodes based
on the statistics of the previous data, but it does not use a codeword table. Instead, it encodes a large
amounts of data at once to achieve compression ratio appoaching entropy. In a sense, it is similar to using
codewords which do not have to be an integer number of bits. CABAC achieves better compression ratio
than CAVLC, but is substantially more complex. Due to the added complexity, CABAC is only used in some
applications that value compression ratio more than the complexity or performance of the coding process.
When it is used, it replaces the CAVLC, and also replaces the Exp-Golomb codes for many syntax elements.
I was not able to implement the CABAC in this project.

2.3.1 Exp-Golomb Code Syntax

Figure 2 shows the mapping between the variable-length codewords and the codeNums, which are the
unsigned integers they represent.

Figure 2: The codeword to codeNum table for Exp-Golomb code (copied from “ITU Recommendation
H.264”).

However, the Exp-Golomb code is used to encode many different syntax elements in h.264, and not all
of them are simply unsigned integers. Therefore, for many of the syntax elements, an additional table is
specified for the mapping between the codeNum and the values they represent. One such example is the
mapping to signed integers shown in Figure 3. For these mapping tables, the more common values of the
syntax elements are mapped to smaller codeNums, so they can be coded more efficiently.
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Figure 3: The codeNum to signed integer table for Exp-Golomb code (copied from “ITU Recommendation
H.264”).

2.3.2 CAVLC Decoding Process

The typical output of the CAVLC decoding process is an array of 16 integers, which are arranged in such a
way that the numbers at the start of the array are more likely to have large absolute values. The numbers
toward the end of the array are likely to have small values like 0, 1, or -1. An example of such an array
would be 8, 5, -1, -2, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0. To take advantage of these known properties, the array
of integers is encoded into the following components, each of which has unique code tables.

• The first components are TotalCoeff and TrailingOnes. TotalCoeff is the number of nonzero coefficients
in the array. TrailingOnes is the consecutive number of coeffients with absolute value equal to 1,
counting backwards among the nonzero coefficients. In the above example, TotalCoeff would be equal
to 6, and TrailingOnes would be equal to 2. The pair of these two components is coded as a single
token. Depending on some parameters and decoded results of the neighboring blocks, one out of six
variable length code tables is used.

• For each of the trailing ones, a single bit is used to specify whether it is positive or negative.

• The other nonzero coefficients are then coded in reverse order (starting from the end of the array).
Instead of a code table, an algorithm is specified for decoding the coefficients iteratively. For each
coefficient, the algorithm uses the TotalCoeff, TrailingOnes, and the previous decoded coefficient are
used as parameters to decode the coefficients.

• The next component decoded is totalZeros, which is the total number of zeros in the array located
before the last nonzero coefficient. In the example above, totalZeros would have value 3. Depending
on the value of TotalCoeff, one of 15 variable length code tables is chosen to decode totalZeros.

• Now that the number of zeros before the last nonzero coefficient is known, the index of the last nonzero
coefficient can be computed. What is left is the distribution of those zeros. First, the number of zeros
between the last nonzero coefficient and the second-to-last nonzero coefficient is coded. Next, the
number of zeros between the second-to-last nonzero coefficient and the previous nonzero coefficient is
coded. For the example given above, these numbers would be 1 and 2, respectively, and no further
information would be needed since there are no zeros left. For the encoding of each of these numbers,
a variable length code table is chosen based on the maximum value possible (the number of zeros left).
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Sometimes, the output of the CAVLC decoding is an array of 4, 8, or 15 integers instead of 16. In these
cases, the same decoding process is used, but some code tables might be different.

2.4 Summary of the Above Steps

A more detailed flowchart for the described parts of the h.264 decoder is shown in figure 4. The flowchart
shows the decoding flow of NAL units, and is not meant to be a hardware block diagram. The parts of the
algorithm that are shown in the figure are the parts that were implemented in this project.

Figure 4: The flowchart for the parts of h.264 decoder that were implemented.

2.5 The Rest of H.264

As shown in Figure 1, there are several more steps to the h.264 decoding process after the steps described in
the previous sections. These parts tie together into a feedback loop, and I will not be able to get to them.

3 Hardware Design

The hardware diagram of the implementation is shown in Figure 5. As shown in the diagram, there are two
main modules. The first deals with the NAL unwrapping, and the second checks the unit type and performs
entropy decoding. In addition, there is a module that reads a file and generates the inputs for verification
purposes, and a memory module for the CAVLC context.

Except in the case of the entropy decoder module calling methods of its CAVLC context submodule, the
only communication between the modules will be through FIFOs as shown in Figure 5.

3.1 NAL Unwrapping Module

This module will check the boundaries of the NAL units, and remove the extra bytes with value 00000011
inserted by the encoder. After that, it will also remove the extra bytes with value 00000000 at the end of
the data (these bytes pad the data when the NAL unit has to be bigger than the amount of data held in
the module for some reason). However, the bits used to achieve byte alignment are left untouched, and the
entropy decoder module takes care of those. This module will contain the following components.
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Figure 5: The hardware diagram for the Bluespec implementation.

3.1.1 State Elements

• A three byte buffer for checking the NAL boundaries and removing the unneeded 00000011 bytes.

• A counter for the number of bytes of data currently in the buffer.

• A counter for the number of consecutive 00000000 bytes in the data. This is needed since the module
will not know whether these bytes should be removed or not until it sees the next nonzero byte.

3.1.2 Rules

• fillbuffer:
This rule fires when the three byte buffer is not full, and the end of the file has not been reached.
It simply adds a byte to the buffer with data from the input FIFO, dequeues the input FIFO, and
increments the counter by 1.

• newnalunit:
This rule fires when the buffer is full, the end of the file has not been reached, and the start code prefix
(code for a new NAL unit) is found in the buffer.
It throws away the start code prefix, sets the consecutive zero counter to 0, and puts a “new unit” tag
in the output FIFO.

• remove3byte:
This rule fires when the buffer is full, the end of the file has not been reached, and the buffer bytes
plus the next byte from the FIFO indicates that a byte with value 3 needs to be removed.
It increments the zero counter by 2, and subtracts 3 from the buffer counter.

• normalop:
This rule fires when the predicates for the three previous rules are all false, and the end of the file has
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not been reached.
If the first byte in the buffer is a zero, it increments the zero counter. Otherwise, it checks the zero
counter. If the zero counter is 0 it just outputs the first byte in the buffer and decrements the buffer
counter. If the zero counter is greater than zero, it outputs a 0 and decrements the zero counter.

• endfileop:
This rule fires when the end of the file is reached.
It processes the last bytes remainig in the buffer and the remaining zero counts in the zero counter.
When ther is no data left, it outputs a tag indicating the end of file.

3.2 Entropy Decoding Module

This module will check the type of each NAL unit, and parse the unit accordingly. The module will contain
the following elements.

3.2.1 State Elements

• A state register that specifies the current parsing state of the data. The following is the type of the
data stored in the state register.

typedef union tagged
{
void Start; //special state that initializes the process.
void NewUnit; //special state that checks the NAL unit type.

Bit#(5) CodedSlice; //decodes a type of NAL unit
void SEI; //decodes a type of NAL unit
Bit#(5) SPS; //decodes a type of NAL unit
Bit#(5) PPS; //decodes a type of NAL unit
void AUD; //decodes a type of NAL unit
void EndSequence; //decodes a type of NAL unit
void EndStream; //decodes a type of NAL unit
void Filler; //decodes a type of NAL unit

Bit#(5) SliceData; //decodes slice data (part of a CodedSlice NAL unit)
Bit#(5) MacroblockLayer; //decodes macroblock layer (part of a CodedSlice NAL unit)
Bit#(5) MbPrediction; //decodes macroblock prediction (part of a CodedSlice NAL unit)
Bit#(5) SubMbPrediction; //decodes sub-macroblock prediction (part of a CodedSlice NAL unit)
Bit#(5) Residual; //decodes residual (part of a CodedSlice NAL unit)
Bit#(5) ResidualBlock; //decodes residual block (part of a CodedSlice NAL unit)
}
State deriving(Eq,Bits);

Start and NewUnit are special states for initializing the decoding process. The other tags each corre-
sponds to a kind of NAL unit. Several states are used to decode the CodedSlice NAL units, since they
are larger than the other types, and the decoding process is much more complicated.

• A buffer with 77 bits (72 should actually be enough). It stores the input data and is large enough to
handle all variable length code. Old data is shifted out.

• A buffer counter for the number of bits of data currently contained in the buffer.

• A 16 element FIFO for holding the result or intermediate result of the residual data CAVLC decoding.
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• Additionally, some decoded syntax elements are saved in registers since their values are needed for
parsing other parts of the data, and some counters and other temporary registers are used.

3.2.2 Rules

• startup:
This rule fires when the current state is Start.
It initializes the various states for decoding a new NAL unit. Before that, it the previous NAL unit
has some unneeded data or filler data left unparsed, it throws the data away. At then end, when all
the NAL units are decoded, this rule outputs a tag into the output FIFO to indicate that the end of
the file has been reached.

• newunit:
This rule fires when the current state is NewUnit.
It checks the NAL unit type contained in the first byte of the NAL unit, and it updates the state
register accordingly.

• fillbuffer:
This rule fires when the current state is neither Start nor NewUnit, the buffer has space for another
byte of data, and there are more data bytes from the NAL unit currently being decoded.
It simply dequeues the next data byte from the input FIFO, and inserts the data into the appropriate
place in the buffer. It also adds 8 to the buffer counter.

• parser:
This rule fires when the predicate for all three of the above rules is false.
It is a finite state machine that parses a NAL unit. Depending on the current state, it decodes a syntax
element using functions that parse the Exp-Golomb code or CAVLC. It outputs the results, subtracts
the number of bits comsumed from the buffer counter, shifts out the used data from the buffer, and
sets the next state. When it has decoded the needed information from a NAL unit, it sets the next
state to Start so that the next NAL unit can be decoded.

3.2.3 Functions, Submodules, and Memory Usage

Several functions are used by the parser rule for decoding the different versions of Exp-Golomb codes and
CAVLC.

In addition, one of the CAVLC decoding schemes requires information from previously decoded blocks.
The information is used as the context for CAVLC decoding, and helps determine the decoding table used
for the current block. A submodule, Calc nC, is used to retrieve this information, and determine the appro-
priate decoding table for the current block. It also saves the information from the current block for future
use. This submodule is the one that interfaces with, and directly uses the memory module.

As mentioned above, a memory module is used by the Calc nC submodule of entropy decoding. This
is made a separate module since the amount of memory needed is significant (about 5000 bits for 1080p
resolution), and a separate module would provide more flexibility. A client-server interface is established
between the Calc nC submdule and the memory module, with FIFOs carrying the requests and responses.
The memory module is not included in the main H.264 module, which allows easier swapping of different
memory module implementations. It also makes design exploration easier, as the memory module can be
left out of the synthesis calculations.
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4 Verification

I used the C version of h.264, currently incoporated into XBS by Jae Lee, for the verification. I found the
places in the C code that correspond to the outputs of the hardware funtional blocks, and inserted print
function calls to output the values into a file as the C decoder runs. The values are tagged to specify the
source of the values to enable easier debugging.

I verified my code by running a simulation in VCS, and writing outputs of the fuctional blocks into a
file using the $display statements. These values are tagged the same way that the outputs of the C code
is tagged. I then used a Perl script to compare the output against the output from the C version of h.264.
Values with the same tag are compared against each other, and when necessary, the order of the values with
different tags is also verified.

This allowed me to localize the bugs, as I was able to see which functional block started giving faulty
outputs, and what the tags were for those outputs. I could also open the files and compare the outputs for
debugging, instead of always having to look at waveforms.

5 Design Exploration

I tried out three design changes. I thought of several ideas, but these three were the most promising and
interesting ones.

5.1 Design Exploration A: Special Output for Consecutive Zeros

The transformed residual data that the CAVLC outputs often contain many consecutive zeros. In fact,
sometimes all sixteen output numbers are zeros.

In the original code, the entropy decoder just outputs all the zeros one by one. This makes the interface
between the entropy decoder module and the next module a little bit simpler. However, I decided that it
wasted too many cycles.

I changed the entropy decoder unit to output the number of consecutive zeros instead. When this hap-
pens, the output is tagged differently, so that the next midule is able to differentiate between the two. Since
the CAVLC coding also takes advantage of the fact that there are often consecutive zeros, I discovered that
this is actually the easier way to write the code, and both the performance and area improved for the module.

While this might make the next module slightly more complicated, I realized that this change is actually
good for the performance of the next module. This is because the next module multiplies a number to
the output of the entropy decoder, then stores the data into a 4x4 matrix, before performing some more
operations on the data. The zeros do not need to be multiplied, and the matrix can be initialized to zero,
so the zeros don’t have to be inserted into the matrix either.

5.2 Design Exploration B: Two-Stage Exp-Golomb Function

While I was debugging the code, I realized that most of the Exp-Golomb coded syntax elements are at most
16 bits in length after decoding. This means that they take up at most 33 bits in the encoded data. However,
11 very infrequently used syntax elements are 32 bits after decoding, and can be up to 65 bits in the encoded
data.
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Originally, I only had one version of the Exp-Golomb decoding function, and it was capable of decoding
even the largest syntax elements in one cycle. This contributed to the critical path of the system.

I created two versions of Exp-Golomb decoder functions. One of them can only decode syntax elements
up to 16 bits in decoded length, but can do so in only one cycle. The other version can decode the largest
syntax elements, but has two stages, and takes two cycles to complete the decoding. This might increase the
number of cycles needed to decode the same file, but the savings in critical path should outweight that effect.

This change also has the added benefit of shortening the required length of the main buffer. In the
original design, the main buffer has to be able to hold the 65-bit encoded syntax elements. In the revised
design, only 33 bits of the 65-bit encoded syntax elements need to be used per cycle.

5.3 Design Exploration C: Two Stage Buffering

My implementation of the entropy decoder has a rule that filles the buffer, and the parser rule that takes
the data from the buffer. The rules cannot fire in the same cycle.

The buffer filler originally inserts one byte per cycle, since the NAL unwrapper outputs a byte at the
time. Therefore, the parser has to wait one cycle per byte of input.

I added an extra 32-bit buffer, a counter for it, and a rule for filling it with the output of the NAL
unwrapper module. This allows the main buffer filler rule to insert 32 bits at once into the main buffer,
which decrease the number of cycles that the parser rule idles.

In order to implement this change, the main buffer size has to be increased by 24 bits. This might
lengthen the critical path, and the size of the module would also increase. Therefore, this change may not
always be desirable.

6 Benchmark Results

I simulated the operation of the implementation using three clips taken from three different video files. One
of them has 5 frames at 176x144 resolution, the second has 15 frames at 176x144 resolution, and the last
one has 5 frames at 352x288 resolution. The simulation results and the post-route area and timing numbers
are shown in the following table.

Code Version Original A added A+B added A+C added A+B+C added
# cycles for the 1st clip 177762 63699 63696 58540 58518
# cycles for the 2nd clip 102448 40850 40880 37711 37713
# cycles for the 3rd clip 374080 146975 146976 134499 134481
# cycles total 654290 251524 251552 230750 230712
post-route critical path delay (ns) 6.468 6.405 5.955 6.400 6.184
total time (ms) 4.232 1.611 1.498 1.477 1.427
postroute area (um2̂) 337757 328339 281980 368960 293235

As expected, the first design change (A) increases performance dramatically and also decreases area a
little bit. It is so obviously beneficial, I did not bother testing the other changes by themselves.

Adding the second design change (B) also produced the expected benefits. However, it was surprising
that it actually decreased the number of cycles used in some cases. It turns out that the syntax elements
decoded using the 2-cycle Exp-Golomb decoder are used so infrequently, they did not appear in any of the
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three benchmark clips. The changes in the cycle numbers actually come from the changed buffer size, which
seems to randomly affect the cycle numbers.

Adding the third change (C) increases overall performance by decreasing the number of cycles needed,
but also increases area significantly. Performance per area seems to remain about the same. Whether this
change is desirable or not will depend on the rest of the modules not yet implemented, and the relative
importance of performance and area. It is interesting that going from A to A+C results in a large increase
in area and basically unchanged critical path delay, while going from A+B to A+B+C results in a moderate
increase in both area and critical path delay. My guess is that the synthesis tools made some different
decisions in area versus performance tradeoffs in these two cases.

7 Possible Future Work

I am planning on finishing the BSV implementation of the h.264 decoder, and using it for my MEng thesis.
I hope nobody has done this yet.
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