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Bluespec-1:
Design methods to facilitate 
rapid growth of SoCs

Arvind 
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

System-on-a-chip
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The biggest SoC drivers

Explosive growth in markets for
cell phones 
game boxes
sensors and actuators

Functionality and applications are 
constrained primarily by:

- cost
- power/energy constrains
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Today’s chip becomes a block 
in tomorrow’s chip

IP reuse is essential

Hardware/software migration

IP = 
Intellectual 
Property
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An under appreciated fact
If a functionality (e.g. H.264) is 
moved from a programmable 
device to a specialized hardware 
block, the power/energy savings 
are 100 to 1000 fold

but our mind set
Software is forgiving
Hardware design is difficult, inflexible, 
brittle, error prone, ...

Power savings ⇒ more specialized hardware
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SoC Trajectory:
multicores, heterogeneous, regular, ...

On-chip memory banks

Structured on-
chip networks

General-
purpose 

processors

Can we rapidly produce high-quality chips and 
surrounding systems and software?

Application-
specific 

processing units

IBM Cell 
Processor
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Things to remember
Design costs (hardware & software) 
dominate 
Within these costs verification and 
validation costs dominate
IP reuse is essential to prevent design-
team sizes from exploding

design cost = number of engineers x time to design
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Common quotes
“Design is not a problem;
design is easy”

Almost complete reliance on post-design 
verification for qualityMind se

t

“Verification is a problem”
“Timing closure is a problem”
“Physical design is a problem”
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The U.S. auto industry
Sought quality solely through post-build inspection
Planned for defects and rework

and U.S. quality was…

Through the early 1980s:

Defect

Make Inspect Rework

D
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… less than world class

Adding quality inspectors (“verification 
engineers”) and giving them better tools, was 
not the solution
The Japanese auto industry showed the way

“Zero defect” manufacturing 
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New mind set:

Design affects everything!
A good design methodology

Can keep up with changing specs
Permits architectural exploration
Facilitates verification and debugging
Eases changes for timing closure
Eases changes for physical design
Promotes reuse

Design for Correctness

⇒ It is essential to
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New ways of expressing behavior 
to reduce design complexity 

Decentralize complexity: Rule-based 
specifications (Guarded Atomic Actions)

Lets you think one rule at a time

Formalize composition: Modules with 
guarded interfaces

Automatically manage and ensure the 
correctness of connectivity, i.e., correct-by-
construction methodology

Bluespec

Smaller, simpler, clearer, more correct code

Strong flavor of Unity
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Reusing IP Blocks

Example: Commercially available 
FIFO IP block

These constraints are spread over many pages of 
the documentation...

No machine verific
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Bluespec promotes composition
through guarded interfaces
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theModuleA
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theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration 

control

Dequeue
arbitration 

control

Self-documenting 
interfaces; 
Automatic generation 
of logic to eliminate 
conflicts in use.
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Bluespec

What is it?
Programming with Rules

Example GCD

Synthesis of circuits
Another Example: Multiplication

Bluespec is available in two versions:
BSV – Bluespec in System Verilog
ESEPro – Bluespec in SystemC

These lectures will use BSV syntax

5-minute 
break to 
stretch you 
legs
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Bluespec SystemVerilog (BSV)
Power to express complex static 
structures and constraints

Checked by the compiler
“Micro-protocols” are managed by the 
compiler

The necessary hardware for muxing and 
control is generated automatically and is 
correct by construction

Easier to make changes while 
preserving correctness

Smaller, simpler, clearer, more correct code

not just simulation, synthesis as well
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Bluespec:  State and Rules 
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their 
interfaces.

interface

module
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Programming with
rules: A simple example

Euclid’s algorithm for computing the 
Greatest Common Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

GCD in BSV

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap sub
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interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

The module can easily be made polymorphic

Many different implementations can provide the same 
interface: module mkGCD (I_GCD)
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) &&  (y != 0));
x <= y;  y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD: 
Another implementation

Combine swap 
and subtract rule

Does it compute faster ?
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Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluesim Cycle
Accurate

Blueview
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Generated Verilog RTL: GCD
module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,

result,RDY_result);
input  CLK; input  RST_N;

// action method start
input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...
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Generated Hardware

next state values
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Generated Hardware Module

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y
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swap? subtract?
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GCD: A Simple Test Bench
module mkTest ();

Reg#(int) state <- mkReg(0);
I_GCD     gcd <- mkGCD();

rule go (state == 0);

gcd.start (423, 142);
state <= 1;

endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;

endrule
endmodule

Why do we need 
the state variable?
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GCD: Test Bench
module mkTest ();

Reg#(int)  state <- mkReg(0);
Reg#(Int#(4)) c1 <- mkReg(1);
Reg#(Int#(7)) c2 <- mkReg(1);
I_GCD  gcd <- mkGCD();

rule req (state==0);
gcd.start(signExtend(c1), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);
$display (“GCD of %d & %d =%d”, c1, c2, gcd.result());
if (c1==7) begin c1 <= 1; c2 <= c2+1; state <= 0; end

else  c1 <= c1+1;
if (c2 == 63) state <= 2;

endrule
endmodule

Feeds all pairs (c1,c2) 
1 < c1 < 7
1 < c2 < 15

to GCD
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GCD: Synthesis results

Original (16 bits)
Clock Period: 1.6 ns
Area: 4240 μm2

Unrolled (16 bits)
Clock Period: 1.65ns
Area: 5944 μm2

Unrolled takes 31% fewer cycles on the 
testbench
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Multiplier Example
Simple binary multiplication:

1001
0101
1001

0000
1001

0000
0101101

// d = 4’d9
// r  = 4’d5
// d << 0 (since r[0] == 1)
// 0 << 1 (since r[1] == 0)
// d << 2 (since r[2] == 1)
// 0 << 3 (since r[3] == 0)
// product (sum of above) = 45

x

What does it look like in Bluespec?

d r product

One step of multiplicationOne step of multiplication
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module mkMult (I_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(16)) d       <- mkReg(0);
Reg#(Int#(16)) r       <- mkReg(0);

rule cycle 

endrule

method Action start

endmethod

method Int#(32) result () 

endmethod
endmodule

Multiplier in Bluespec

What is the 
interface 
I_mult ?

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule

method Action start (Int#(16)x,Int#(16)y) if (r == 0);
d <= signExtend(x); r <= y;

endmethod

method Int#(32) result () if (r == 0);
return product;

endmethod
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Summary
Market forces are demanding a much 
greater variety of SoCs
The design cost for SoCs has to be 
brought down dramatically by 
facilitating IP reuse
High-level synthesis tools are essential 
for architectural exploration and IP 
development
Bluespec is both high-level and 
synthesizable

Next time: Combinational Circuits and Simple pipelines


