Bluespec-1:
Design method
rapid growth o

ilitate

System-on-a-chip

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-1

The biggest SoC drivers

®Explosive growth in markets for
» cell phones
= game boxes
= sensors and actuators

Functionality and applications are
constrained primarily by:

- cost
- power/energy constrains

February 14, 2007 http://csg.csail.mit.edu/6.375/ LO4-2

Current Cellphone Architecture

—rWLAN o WCDMA/GSM RF Today’s Chlp7 becomes a block
| i in tomorrow’s chip

Application Comms.
Processing Processing

{ 1P reuse is essential

nnnnnnnnnnnnnnnnn
rrrrr

........ = C \ . Intellectual
, Property

uuuuu

ransceivers [RRRNRPEIE_..

T—.
S ur- SHA-1)). S\ 'S, JES RNG.
AES, PKA “ecw e WuT,Keys

= opior Ggler ems
February 14, 20(Fudie] Imiows hunTse - T Products

LO4-3

An under appreciated fact

@®I1f a functionality (e.g. H.264) is
moved from a programmable
device to a specialized hardware
block, the power/energy savings
are 100 to 1000 fold

Power savings = more specialized hardware
but our mind set

= Software is forgiving

= Hardware design is difficult, inflexible,
brittle, error prone, ...

February 14, 2007 http://csg.csail.mit.edu/6.375/ LO4-4

IBM Cell

SoC Trajectory: Processor
multicores, heterogeneous, regular, ...

o On-chip memory banks
Application- _ -

specific ; 8 ;
processing units ol ys

I IIIIIIIIIIIIIIIIIIIrIIIII

General-
purpose

s il 2%
processors R o

o || O | (P

Structured on i
chip networks k-

Can we rapidly produce high-quality chips and

surrounding systems and software?
February 14, 2007 http://csg.CSail.mit.edu/6.375/ L04-5

Things to remember

&® Design costs (hardware & software)
dominate

& Within these costs verification and
validation costs dominate

& IP reuse is essential to prevent design-
team sizes from exploding

design cost = number of engineers x time to design

February 14, 2007 http://csg.csail.mit.edu/6.375/ LO4-6

Common quotes

®“Design is not a problem;
design is easy”

@&“Verification is a problem”
@“Timing closure is a problem”
@“Physical design is a problem”

dge‘ Almost complete reliance on post-design
O verification for quality

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-7

Through the early 1980s:

CHRYSLER

The U.S. auto industry

@& Sought quality solely through post-build inspection

@® Planned for defects and rework
Make Inspect

and U.S. quality was...

February 14, 2007 http://csg.csail.mit.edu/6.375/ LO4-8

... less than world class Q%

b= |

&® Adding quality inspectors (“verification
engineers”) and giving them better tools, was
not the solution

&® The Japanese auto industry showed the way
= “Zero defect” manufacturing

February 14, 2007 http://csg.csail.mit.edu/6.375/

LO4-9

New mind set:

Design affects everything!

® A good design methodology
= Can keep up with changing specs
» Permits architectural exploration
» Facilitates verification and debugging
» Eases changes for timing closure
» Eases changes for physical design
= Promotes reuse

= It is essential to

Design for Correctness

February 14, 2007 http://csg.csail.mit.edu/6.375/

L04-10

New ways of expressing behavior
to reduce design complexity

@® Decentralize complexity: Rule-based
specifications (Guarded Atomic Actions)

= Lets you think one rule at a time
Strong flavor of Unity

@® Formalize composition: Modules with
guarded interfaces

» Automatically manage and ensure the
correctness of connectivity, i.e., correct-by-

construction methodology Bluespec

=> Smaller, simpler, clearer, more correct code \

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-11

Reusing IP Blocks

data_in data_out

Example: Commercially available
FIFO IP block

An error occurs if a push is attempted while the Elig

These constraints are spread over many pages of
the documentation...

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-12

Bluespec promotes composition
through guarded interfaces

Self-documenting
theModuleA interfaces;

Automatic generation
theFifo.enq(vetoet); LEnqueue of logic to eliminate
\ control conflicts in use.

theFifo.deqQ); o\ :
value2 = thePifo.first();) theFifo

N\ enab
not fu

<

[deq [eng

rdy
theModuleB enab FIFO
d
A s
2
theFifo.eng(value3); dy —
/‘ Dequeue
/ arbitration
theFifo.deq()7—7 control
value4 = theFifo.fifst();
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-13

5-minute
stretch you
legs

®What is it?

&Programming with Rules
s Example GCD

& Synthesis of circuits

®Another Example: Multiplication

Bluespec is available in two versions:
BSV — Bluespec in System Verilog
ESEPro — Bluespec in SystemC

These lectures will use BSV syntax

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-14

Bluespec SystemVerilog (BSV)

&® Power to express complex static
structures and constraints
» Checked by the compiler
® “Micro-protocols” are managed by the
compiler
» The necessary hardware for muxing and
control is generated automatically and is
correct by construction
® Easier to make changes while
preserving correctness

\-) Smaller, simpler, clearer, more correct code

\-) not just simulation, synthesis as well \

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-15

Bluespec: State and Rules
organized into modules

module =
[%74
interface| | /‘ /7
]

\]

S~

J—

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:
Rule: condition = action

Rules can manipulate state in other modules only via their
interfaces.

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-16

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

15 6
9 6 subtract
3 6 subtract
6 3 swap
3 3 subtract
0) answer: @ subtract
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-17

GCD in BSV

module mkGCD (1_GCD);
[Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0); $‘:SS-State

[typedef int Int#(32)

/" rule swap ((x > y) & (y !'= 0));
X <= y; Yy <= X;

endrule

rule subtract ((x <=y) && (y = 0));
y <=y —X;

endrule

Internal
behavior

N

method Action start(int a, int b) if (y==0);
X <= a; y <= b;
endmethod
method int result() if (y==0);
return x;
endmethod
endmodule

External
interface

‘ Assumes X /=0andy /=0
February 14, 2007 http://csg.csail.mit.edu/6.375/ [04-18

GCD Hardware Module

m—

= In a GCD call t
enab” |8 could be
Jdy a2 Int#(32),
implicit I 8 = UInt#(16),
conditions iﬁt = S Int#(13), ...
rdy g

#(type t)

interface 1_GCD?
method Action start (in€ a, int b);
method iy‘l.1 result();

endinterface

@ The module can easily be made polymorphic

& Many different implementations can provide the same
interface: module mkGCD (1_GCD)

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-19

GCD:
Another implementation

module mkGCD (1_GCD);
Reg#(int) x <- mkRegU; Combine swap
Reg#(int) y <- mkReg(0); ﬁ and subtract rule

rule swapANDsub ((x > y) && (y != 0));
X <=Yy; Yy <=X-Y;

endrule

rule subtract ((x<=y) && (y!=0)):
y <=y = X;

endrule

method Action start(int a, int b) if (y==0);
X <= a; Yy <= b;

endmethod
method int result() if (y==0);
return Xx;
endmethod
endmodule Does it compute faster ?
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-20

10

Bluespec Tool flow

Blueview

< ——— [Verilog 95 RTL |

L

Bluesim cydle —— Verilog sim || RTL synthesis

Accurate
l

—————————————————————————————— VCD output

Legend Debussy Place& b
Visualization n =
ot | §
http://csg.csail.mit.edu/6.375/ ——-21
Generated Verilog RTL: Gcp
module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,
result,RDY_result);
input CLK; input RST_N;
// action method start
input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;
// value method result
output [31 : 0] result; output RDY_result;
// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] vy;
wire [31 : 0] y$D_IN; wire y$EN;
// rule RL_subtract
assign WILL_FIRE_RL_subtract = x SLE.y d3 && 'y EQ O di0 ;
// rule RL_swap
assign WILL_FIRE_RL swap = IxX SLE .y d3 && !y EQ O dio ;
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-22

11

en
rdy

rdy

February 14, 2007

Generated Hardware

| [stalt] |

result]

next state values

swap? subtract?

X_en = swap?
y_en = swap? OR subtract?

http://csg.csail.mit.edu/6.375/

L04-23
Generated Hardware Module
-
en ,CE
rdy vl
E=
X =)
rdy g
| S |
swap? subtract?
x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en
rdy = (y==0)
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-24

12

GCD: A Simple Test Bench

module mkTest ();
Reg#(int) state <- mkReg(0);
1_GCD gcd <- mkGCDQ);
Why do we need
rule go (state == 0); the state variable?
gcd.start (423, 142);
state <= 1;
endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;
endrule
endmodule

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-25

GCD: Test Bench

module mkTest Q); Feeds all pairs (c1,c2)
Reg#(int) state <- mkReg(0); l<cl<?7
Reg#(Int#(4)) cl <- mkReg(l);
Reg#(Int#(7)) c2 <- mkReg(l); 1<c2<15
1 GCD ged <- mkGCDQ); to GCD

rule req (state==0);
gcd.start(signExtend(cl), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);

$display (“GCD of %d & %d =%d”, cl, c2, gcd.result());

if (c1==7) begin cl <= 1; c2 <= c2+1; state <= 0; end
else cl <= cl+1;
if (c2 == 63) state <= 2;
endrule
endmodule

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-26

13

& Original (16 bits)
= Clock Period:
= Area: 4240 um?

& Unrolled (16 bits)
= Clock Period:

1.6 ns

1.65ns

= Area: 5944 um?2

& Unrolled takes 31% fewer cycles on the

GCD: Synthesis results

testbench
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-27
Multiplier Example
Simple binary multiplication:
% 1001 // d =4d9
0101 //r =4d5
1001 // d << 0 (since r[0] == 1)
0000 // 0 << 1 (since r[1] == 0)
1001 // d << 2 (since r[2] == 1)
0000 // 0 << 3 (since r[3] == 0)
0101101 // product (sum of above) = 45
What does it look like in Bluespec?
1 l |
’ d \ ’ r \ ’ product \
v v
— ' |
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-28

14

Multiplier in Bluespec

module mkMult (1_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(16)) d <- mkReg(0);
Reg#(Int#(16)) r <- mkReg(0);

rule cycle (r = 0);
if (r[0] == 1) product <= product + d;
d <=d << 1;
r <=r > 1;

endrule

method Action start (Int#(16)x, Int#(16)y) if (r == 0);
d <= signExtend(X); r <= y;

endmethod
method Int#(32) result) if (r == 0);
return product; What is the

endmethod interface

endmodule I_mult?
February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-29

Summary

&® Market forces are demanding a much

greater variety of SoCs

& The design cost for SoCs has to be
brought down dramatically by
facilitating IP reuse

& High-level synthesis tools are essential
for architectural exploration and IP
development

& Bluespec is both high-level and
synthesizable

‘ Next time: Combinational Circuits and Simple pipelines

February 14, 2007 http://csg.csail.mit.edu/6.375/ L04-30

15

