
1

February 14, 2007 L04-1http://csg.csail.mit.edu/6.375/

Bluespec-1:
Design methods to facilitate
rapid growth of SoCs

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

System-on-a-chip

February 14, 2007 L04-2http://csg.csail.mit.edu/6.375/

The biggest SoC drivers

Explosive growth in markets for
cell phones
game boxes
sensors and actuators

Functionality and applications are
constrained primarily by:

- cost
- power/energy constrains

2

February 14, 2007 L04-3http://csg.csail.mit.edu/6.375/

Current Cellphone Architecture

Comms.
Processing

Application
Processing

WLAN RFWLAN RF WLAN RFWCDMA/GSM RF

Com
plex, H

ig
h

Perfo
rm

ance

but m
ust

 n
ot d

iss
ip

ate

m
ore

 th
an 3

 w
atts

Today’s chip becomes a block
in tomorrow’s chip

IP reuse is essential

Hardware/software migration

IP =
Intellectual
Property

February 14, 2007 L04-4http://csg.csail.mit.edu/6.375/

An under appreciated fact
If a functionality (e.g. H.264) is
moved from a programmable
device to a specialized hardware
block, the power/energy savings
are 100 to 1000 fold

but our mind set
Software is forgiving
Hardware design is difficult, inflexible,
brittle, error prone, ...

Power savings ⇒ more specialized hardware

3

February 14, 2007 L04-5http://csg.csail.mit.edu/6.375/

SoC Trajectory:
multicores, heterogeneous, regular, ...

On-chip memory banks

Structured on-
chip networks

General-
purpose

processors

Can we rapidly produce high-quality chips and
surrounding systems and software?

Application-
specific

processing units

IBM Cell
Processor

February 14, 2007 L04-6http://csg.csail.mit.edu/6.375/

Things to remember
Design costs (hardware & software)
dominate
Within these costs verification and
validation costs dominate
IP reuse is essential to prevent design-
team sizes from exploding

design cost = number of engineers x time to design

4

February 14, 2007 L04-7http://csg.csail.mit.edu/6.375/

Common quotes
“Design is not a problem;
design is easy”

Almost complete reliance on post-design
verification for qualityMind se

t

“Verification is a problem”
“Timing closure is a problem”
“Physical design is a problem”

February 14, 2007 L04-8http://csg.csail.mit.edu/6.375/

The U.S. auto industry
Sought quality solely through post-build inspection
Planned for defects and rework

and U.S. quality was…

Through the early 1980s:

Defect

Make Inspect Rework

D
ef

ec
t

D
ef

ec
t

5

February 14, 2007 L04-9http://csg.csail.mit.edu/6.375/

… less than world class

Adding quality inspectors (“verification
engineers”) and giving them better tools, was
not the solution
The Japanese auto industry showed the way

“Zero defect” manufacturing

February 14, 2007 L04-10http://csg.csail.mit.edu/6.375/

New mind set:

Design affects everything!
A good design methodology

Can keep up with changing specs
Permits architectural exploration
Facilitates verification and debugging
Eases changes for timing closure
Eases changes for physical design
Promotes reuse

Design for Correctness

⇒ It is essential to

6

February 14, 2007 L04-11http://csg.csail.mit.edu/6.375/

New ways of expressing behavior
to reduce design complexity

Decentralize complexity: Rule-based
specifications (Guarded Atomic Actions)

Lets you think one rule at a time

Formalize composition: Modules with
guarded interfaces

Automatically manage and ensure the
correctness of connectivity, i.e., correct-by-
construction methodology

Bluespec

Smaller, simpler, clearer, more correct code

Strong flavor of Unity

February 14, 2007 L04-12http://csg.csail.mit.edu/6.375/

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

Reusing IP Blocks

Example: Commercially available
FIFO IP block

These constraints are spread over many pages of
the documentation...

No machine verific
ation of su

ch

informal co
nstra

ints is
 feasible

7

February 14, 2007 L04-13http://csg.csail.mit.edu/6.375/

Bluespec promotes composition
through guarded interfaces

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

en
q

de
q

fir
st

FIFO

theModuleA

theModuleB

theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration

control

Dequeue
arbitration

control

Self-documenting
interfaces;
Automatic generation
of logic to eliminate
conflicts in use.

February 14, 2007 L04-14http://csg.csail.mit.edu/6.375/

Bluespec

What is it?
Programming with Rules

Example GCD

Synthesis of circuits
Another Example: Multiplication

Bluespec is available in two versions:
BSV – Bluespec in System Verilog
ESEPro – Bluespec in SystemC

These lectures will use BSV syntax

5-minute
break to
stretch you
legs

8

February 14, 2007 L04-15http://csg.csail.mit.edu/6.375/

Bluespec SystemVerilog (BSV)
Power to express complex static
structures and constraints

Checked by the compiler
“Micro-protocols” are managed by the
compiler

The necessary hardware for muxing and
control is generated automatically and is
correct by construction

Easier to make changes while
preserving correctness

Smaller, simpler, clearer, more correct code

not just simulation, synthesis as well

February 14, 2007 L04-16http://csg.csail.mit.edu/6.375/

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

9

February 14, 2007 L04-17http://csg.csail.mit.edu/6.375/

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:

February 14, 2007 L04-18http://csg.csail.mit.edu/6.375/

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a; y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

GCD in BSV

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap sub

10

February 14, 2007 L04-19http://csg.csail.mit.edu/6.375/

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

The module can easily be made polymorphic

Many different implementations can provide the same
interface: module mkGCD (I_GCD)

February 14, 2007 L04-20http://csg.csail.mit.edu/6.375/

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) && (y != 0));
x <= y; y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a; y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD:
Another implementation

Combine swap
and subtract rule

Does it compute faster ?

11

February 14, 2007 L04-21http://csg.csail.mit.edu/6.375/

Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluesim Cycle
Accurate

Blueview

February 14, 2007 L04-22http://csg.csail.mit.edu/6.375/

Generated Verilog RTL: GCD
module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,

result,RDY_result);
input CLK; input RST_N;

// action method start
input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...

12

February 14, 2007 L04-23http://csg.csail.mit.edu/6.375/

Generated Hardware

next state values

predicates

x_en y_en

x_en = swap?
y_en = swap? OR subtract?

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

February 14, 2007 L04-24http://csg.csail.mit.edu/6.375/

Generated Hardware Module

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

rdy = (y==0)

start_en start_en

13

February 14, 2007 L04-25http://csg.csail.mit.edu/6.375/

GCD: A Simple Test Bench
module mkTest ();

Reg#(int) state <- mkReg(0);
I_GCD gcd <- mkGCD();

rule go (state == 0);

gcd.start (423, 142);
state <= 1;

endrule

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;

endrule
endmodule

Why do we need
the state variable?

February 14, 2007 L04-26http://csg.csail.mit.edu/6.375/

GCD: Test Bench
module mkTest ();

Reg#(int) state <- mkReg(0);
Reg#(Int#(4)) c1 <- mkReg(1);
Reg#(Int#(7)) c2 <- mkReg(1);
I_GCD gcd <- mkGCD();

rule req (state==0);
gcd.start(signExtend(c1), signExtend(c2));
state <= 1;

endrule

rule resp (state==1);
$display (“GCD of %d & %d =%d”, c1, c2, gcd.result());
if (c1==7) begin c1 <= 1; c2 <= c2+1; state <= 0; end

else c1 <= c1+1;
if (c2 == 63) state <= 2;

endrule
endmodule

Feeds all pairs (c1,c2)
1 < c1 < 7
1 < c2 < 15

to GCD

14

February 14, 2007 L04-27http://csg.csail.mit.edu/6.375/

GCD: Synthesis results

Original (16 bits)
Clock Period: 1.6 ns
Area: 4240 μm2

Unrolled (16 bits)
Clock Period: 1.65ns
Area: 5944 μm2

Unrolled takes 31% fewer cycles on the
testbench

February 14, 2007 L04-28http://csg.csail.mit.edu/6.375/

Multiplier Example
Simple binary multiplication:

1001
0101
1001

0000
1001

0000
0101101

// d = 4’d9
// r = 4’d5
// d << 0 (since r[0] == 1)
// 0 << 1 (since r[1] == 0)
// d << 2 (since r[2] == 1)
// 0 << 3 (since r[3] == 0)
// product (sum of above) = 45

x

What does it look like in Bluespec?

d r product

One step of multiplicationOne step of multiplication

15

February 14, 2007 L04-29http://csg.csail.mit.edu/6.375/

module mkMult (I_mult);
Reg#(Int#(32)) product <- mkReg(0);
Reg#(Int#(16)) d <- mkReg(0);
Reg#(Int#(16)) r <- mkReg(0);

rule cycle

endrule

method Action start

endmethod

method Int#(32) result ()

endmethod
endmodule

Multiplier in Bluespec

What is the
interface
I_mult ?

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule

method Action start (Int#(16)x,Int#(16)y) if (r == 0);
d <= signExtend(x); r <= y;

endmethod

method Int#(32) result () if (r == 0);
return product;

endmethod

February 14, 2007 L04-30http://csg.csail.mit.edu/6.375/

Summary
Market forces are demanding a much
greater variety of SoCs
The design cost for SoCs has to be
brought down dramatically by
facilitating IP reuse
High-level synthesis tools are essential
for architectural exploration and IP
development
Bluespec is both high-level and
synthesizable

Next time: Combinational Circuits and Simple pipelines

