& Rule Composition

Arvind

Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

Bluespec-7: Scheduling

/

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-1

GAA Execution model

Repeatedly:
&Select a rule to execute <

Highly non-
deterministic

®Compute the state updates

®Make the state updates

User
annotations
can help in
rule selection

Implementation concern: Schedule
multiple rules concurrently without

violating one-rule-at-a-time semantics

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-2

Rule: As a State Transformer

A rule may be decomposed into two parts
n(s) and 3(s) such that

Spext = If m(S) then 3(s) else s

n(s) is the condition (predicate) of the rule,

a.k.a. the “CAN_FIRE” signal of the rule.
(conjunction of explicit and implicit conditions)

3(s) is the “state transformation” function,
i.e., computes the next-state value in terms

of the current state values.

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-3
rule r (f.first() > 0) ;
x<=x+1; f.deqQ(;
endrule
— enable
> T
next
current S tat
state rdy signals enable signals Stale
read method action values
parameters
n = enabling condition
4 = action signhals & values

s

February 28, 2007

http://csg.csail.mit.edu/6.375/

L10-4

Combining State Updates:

strawman

7's from the rules
that update R

o's from the rules
that update R

Ty

latch
enable

next state .

value

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-5
Combining State Updates
: b,
1
s f I . Scheduler: .
5 JToin g ° Priority : OR |]
the rules ° y
% Encoder
" dn
latch
enable
o's from the rules . : .—
that update R : . next state
> value
5n,R
Scheduler ensures that at most one ¢ is true
L10-6

February 28, 2007

http://csg.csail.mit.edu/6.375/

‘One-rule-at-a-time Scheduler

4 gl
72- —_————] _
2 — . Scheduler: ——— "2
) Priority [|
"
7ty R - . ¢n
1. ¢| = 7 N1
e(\lnas\‘ee‘\(\g
2. MV IV e VI, S PV iy V. V c9°iy#3p
\‘e‘\J O&Q =S
. . q\‘a‘J “\6‘5
3. One rewrite at a time oe®
i.e. at most one ¢ is true
February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-7

Executing Multiple Rules Per Cycle:
Conflict-free rules

rule ra (z > 10);
X <= X + 1;
endrule

Parallel execution behaves
likera<rb=rb<ra

rule rb (z > 20);
y <=y + 2;
endrule

Rule, and Rule, are conflict-free if
Vs . my(S) A T(S) = 1. mu(8,(S)) A my(8a(S))
2. 8,(8(8)) == 8,(84())

Parallel Execution can -
also be understood in rute E?—rb§(2>19?&&(%>20))’
X <= xX+1; y <= y+2;

endrule

terms of a composite
rule

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-8

Executing Multiple Rules Per Cycle:

rule ra (z > 10);
X <=y + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Sequentially Composable rules

Parallel execution behaves
likera<rb

Rule, and Rule, are sequentially composable if
Vs . m,(S) A mp(S) = m,(84(S))

Parallel Execution
can also be

understood in
terms of a
composite rule

February 28, 2007

rule ra rb((z>10)&&(z>20));
X <= y+l; y <= y+2;
endrule

http://csg.csail.mit.edu/6.375/

rule ra (z > 10);
X <= 1;
endrule

rule rb (z > 20);
X <= 2;
endrule

Composite rules

Behavior ra < rb

Behavior rb < ra

February 28, 2007

http://csg.csail.mit.edu/6.375/

Sequentially Composable rules ...

Parallel execution can behave
either likera<rborrb <ra
but the two behaviors are not
the same

rule ra rb(z>10 && z>20);
X <= 2;
endrule

rule rb_ra(z>10 && z>20);
X <= 1;
endrule

L10-9

L10-10

Compiler determines if two rules
can be executed in parallel

Rule, and Rule, are conflict-free if —
Vs . () A my(s) = BEEE; 2 iﬁif@ - i
1. 7,(3,(8)) A 7(34(5)) RERo3 R 4

2. 5,(5,(s)) == §,(5,(s))

Rule, and Rule, are sequentially composable if || D(r,) n R(Ra)
Vs . m(S) A 1u(S) = 1,(8,(S)) =9¢

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

These conditions are sufficient but not necessary.

Parallel execution of CF and SC rules does not
increase the critical path delay

L10-11

February 28, 2007 http://csg.csail.mit.edu/6.375/

Mutually Exclusive Rules

® Rule, and Rule, are mutually exclusive if they
can never be enabled simultaneously

Vs . my(S) = — mp(S)

Mutually-exclusive rules are Conflict-free
even if they write the same state

Mutual-exclusive analysis brings down the cost
of conflict-free analysis

L10-12

February 28, 2007 http://csg.csail.mit.edu/6.375/

Multiple-Rules-per-Cycle
Scheduler

2 ————— &

m, ————— Scheduler Wiy @, | Divide the rules

SRS N | L, , |into smallest

. ————— Scheduler —— . |conflicting

. e | groups; provide
. : ° | a scheduler for
s . . |each group

> ————— Scheduler ——

7T I ¢n

l.g =rn

2. MV V. VI, 29V V.. Vi,

w

. Multiple operations such that
1 4 = R;and R, are conflict-free or
sequentially composable

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-13

Muxing structure

&® Muxing logic requires determining for each
register (action method) the rules that update
it and under what conditions

Conflict Free (Mutually exclusive) CF rules
8, either do not
T ’ update the
22 — Jand same element
2 or are ME
T, ~T,

Sequentially composable

o)

m, and 215 and
62 ”| and
Ty

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-14

Scheduling and control logic

“WModules Rules CAN_FIRE “WILL_FIRE" Modules
(Current state) 1 o, (Next state)
l T — : Scheduler)
7'l:n d)n ﬁ
[n
| A |
O . L
L] e o o L]
L] 81 _ > L]
cond Ty . i
l action| § . BTG . |:|
O EEREn: R
b N
February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-15
some insight
Pictorially
| Ri .Ri Kk | | rule
RUlES weel Aoeel A AT A eee FY 0 o ooel A oA eee | A
j | steps
—
o R | | |
I oo | I clocks
Ri g
e There are more intermediate states in the rule
semantics (a state after each rule step)
< In the HW, states change only at clock edges
February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-16

Parallel execution

reorders reads and writes

Rules rule
Ireads Write§|reads Writeglreads Writeslreads Writeslreads Writesl steps
> <L > P
: o S
o Ta v oA o T a
reads writeg]reads writes
g *|clocks
HW
< In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules
* In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks
February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-17
Correctness
% Ri ,Rj k * rule
RUlES weel Aoeel A AT A eee FY 0 o ooel A oA eee | A
j | steps
I oo | I clocks
Ri
~

= Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule
execution (i.e., CF or SC)

e Consequence: the HW can never reach a state
unexpected in the rule semantics

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-18

Synthesis Summary

& Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to

execute in the same clock cycle

= The hardware makes a rule-execution decision on

every clock (i.e., it is not a static schedule)

= Among those rules that CAN_FIRE, only a subset

WILL_FIRE that is consistent with a Rule order

& Since multiple rules can write to a common

piece of state, the compiler introduces
appropriate muxing logic

@ For proper pipelining, dead-cycle elimination
and value forwarding, the user needs some

understanding and control of scheduling

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-19

g | CPU
il | > |
Two-stage Pipeline |)
rule fetch_and_decode (Istallfunc(instr, bu)); | ‘
bu.enqg(newlt(instr,rf)); Can these rules

pc <= predla; fire
endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,srcl:.va,src2:.vb}: begin
rf.upd(rd, vatvb); bu.deq(); end
tagged EBz {cond:.cv,addr:.av}:
if (cv == 0) then begin
pc <= av; bu.clear(); end
else bu.deq(Q);
tagged ELoad{dst:.rd,addr:.av}: begin
rf.upd(rd, dvem.read(av)); bu.deq(Q); end
tagged EStore{value:.vv,addr:.av}: begin
dMem.write(av, vv); bu.deq(); end
endcase endrule

February 28, 2007 http://csg.csail.mit.edu/6.375/

concurrently ?
|

L10-20

10

Two-stage Pipeline Analysis

m CPU

[> |

1. fetch < execute

2. execute < fetch

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-21

Scheduling expectations:
execute < fetch schedule

rule fetch_and_decode (!stallfunc(instr, bu));
bu.enq(newlt(instr,rf)); pc:
pc <= predla;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,srcl:.va,src2:.vb}: begin‘
rf.upd(rd, va+vb); bu.deq(); en(py-
tagged EBz {cond:.cv,addr:.av}:
if (cv == 0) then begin
pc <= av; bu.clear(); end
else bu.deq(Q); ‘
tagged ELoad{dst:.rd,addr:.av}: begin rf-
rf.upd(rd, dMem.read(av)); bu.deqQ;
tagged EStore{value:.vv,addr:.av}: begin
dMem.write(av, vv); bu.deq(); end
endcase endrule

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-22

11

One Element FIFO Analysis

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegUQ);
Reg#(Bool) full <- mkReg(False); deq <enq?
method Action enq(t x) if (Ifull);
full <= True; data <= Xx;
endmethod
method Action deq() if (Ffull); first < deq ?
full <= False;
endmethod
method t first() if (full); .
return (data); first <enq ?
endmethod
method Action clear();
full <= False;
endmethod
endmodule

Expectation bu: (First<deq) < (find<enq)

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-23

The good news ...

@It is always possible to transform
your design to meet desired
concurrency and functionality

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-24

12

Register Interfaces

| read < write | | write < read ? |
write.en 1
A

read’

read’ — returns the current state when write is not enabled
read’ — returns the value being written if write is enabled

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-25

Ephemeral History Register (EHR)

. [MEMOCODE'04]

| read® < write® < read® < writel < |

0
: — D Q (read?]
write0.x 1
write®.en

writel.x o A

writel.en

readt

writei*1 takes precedence over write' ‘

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-26

13

Transformation for
Performance

rule fetch_and_decode (!stallfunc(instr, bu)l);
bu.engt(newlt(instr,rf));
pc <= predla;
endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,srcl:.va,src2:_vb}: begin
rf_upd°(rd, va+vb); bu.deq®(); end
tagged EBz {cond:.cv,addr:._av}:
if (cv == 0) then begin
pc <= av; bu.clear®(); end
else bu.deq’(Q);
tagged ElLoad{dst:.rd,addr:.av}: begin
rf_upd°(rd, dMem.read(av)); bu.deq°(); end
tagged EStore{value:._vv,addr:.av}: begin
dMem.write(av, vv); bu.deg®(); end
endcase endrule
February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-27

One Element FIFO using EHRs

module mkFIFO1 (FIFO#(t)); inrsto < deq® < enql‘
EHReg2#(t) data <- mkEHReg2U()3;
EHReg2#(Bool) full <- mkEHReg2(False);
method Action eng®(t x) if (1full.read®);
Ffull.write® <= True; data.write® <= Xx;
endmethod
method Action deq®() if (full.read®);
Ffull .write® <= False;
endmethod
method t first®() if (full.read%);
return (data.read®);
endmethod
method Action clear®();
full .write® <= False;
endmethod
endmodule

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-28

After Renaming

&® Things will work
= both rules can fire concurrently

Programmer Specifies:
R

Compiler Derives:
(first®, deq®) < (find?%, deqg?)

execute < Rfetch

What if the programmer wrote this?

R <R < Rfetch < Rfetch

execute execute

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-29

Experiments in scheduling
Dan Rosenband, ICCAD 2005

&® What happens if the user specifies:

| Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF|

No change in rules

a superscalar processor!

ﬂ —’E—’ _’
b bD bE bw

Executing 2 instructions per cycle requires more resources but is

functionally equivalent to the original design

February 28, 2007 http://csg.csail.mit.edu/6.375/

L10-30

15

