
1

February 28, 2007 http://csg.csail.mit.edu/6.375/ L10-1

Bluespec-7: Scheduling
& Rule Composition

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 28, 2007 L10-2http://csg.csail.mit.edu/6.375/

GAA Execution model

Repeatedly:
Select a rule to execute
Compute the state updates
Make the state updates

Highly non-
deterministic

Implementation concern: Schedule
multiple rules concurrently without
violating one-rule-at-a-time semantics

User
annotations
can help in
rule selection

2

February 28, 2007 L10-3http://csg.csail.mit.edu/6.375/

Rule: As a State Transformer
A rule may be decomposed into two parts
π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule.

(conjunction of explicit and implicit conditions)

δ(s) is the “state transformation” function,
i.e., computes the next-state value in terms
of the current state values.

February 28, 2007 L10-4http://csg.csail.mit.edu/6.375/

Compiling a Rule

f

x

current
state

next
state
values

δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ; f.deq ();

endrule

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action
parameters

3

February 28, 2007 L10-5http://csg.csail.mit.edu/6.375/

Combining State Updates:
strawman

next state
value

latch
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

February 28, 2007 L10-6http://csg.csail.mit.edu/6.375/

Combining State Updates

next state
value

latch
enable

R

Scheduler:
Priority
Encoder

OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

4

February 28, 2007 L10-7http://csg.csail.mit.edu/6.375/

One-rule-at-a-time Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. One rewrite at a time
i.e. at most one φi is true

Very co
nservative

way of guaranteeing

corre
ctn

ess

February 28, 2007 L10-8http://csg.csail.mit.edu/6.375/

Executing Multiple Rules Per Cycle:

Conflict-free rules

Parallel execution behaves
like ra < rb = rb < ra

rule ra (z > 10);
x <= x + 1;

endrule

rule rb (z > 20);
y <= y + 2;

endrule

rule ra_rb((z>10)&&(z>20));
x <= x+1; y <= y+2;

endrule

Parallel Execution can
also be understood in
terms of a composite

rule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒ 1. πa(δb(s)) ∧ πb(δa(s))

2. δa(δb(s)) == δb(δa(s))

5

February 28, 2007 L10-9http://csg.csail.mit.edu/6.375/

Executing Multiple Rules Per Cycle:

Sequentially Composable rules
rule ra (z > 10);

x <= y + 1;
endrule

rule rb (z > 20);
y <= y + 2;

endrule

Parallel execution behaves
like ra < rb

rule ra_rb((z>10)&&(z>20));
x <= y+1; y <= y+2;

endrule

Parallel Execution
can also be

understood in
terms of a

composite rule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

February 28, 2007 L10-10http://csg.csail.mit.edu/6.375/

Sequentially Composable rules ...

Parallel execution can behave
either like ra < rb or rb < ra
but the two behaviors are not
the same

Composite rules

rule ra (z > 10);
x <= 1;

endrule

rule rb (z > 20);
x <= 2;

endrule

rule ra_rb(z>10 && z>20);
x <= 2;

endrule
Behavior ra < rb

rule rb_ra(z>10 && z>20);
x <= 1;

endrule
Behavior rb < ra

6

February 28, 2007 L10-11http://csg.csail.mit.edu/6.375/

Compiler determines if two rules
can be executed in parallel

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s))

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

These conditions are sufficient but not necessary.
Parallel execution of CF and SC rules does not
increase the critical path delay

D(Ra) ∩ R(Rb) = φ
D(Rb) ∩ R(Ra) = φ
R(Ra) ∩ R(Rb) = φ

D(πb) ∩ R(Ra)
= φ

February 28, 2007 L10-12http://csg.csail.mit.edu/6.375/

Mutually Exclusive Rules
Rulea and Ruleb are mutually exclusive if they
can never be enabled simultaneously

∀s . πa(s) ⇒ ~ πb(s)

Mutually-exclusive rules are Conflict-free
even if they write the same state

Mutual-exclusive analysis brings down the cost
of conflict-free analysis

7

February 28, 2007 L10-13http://csg.csail.mit.edu/6.375/

Multiple-Rules-per-Cycle
Scheduler

1. φi ⇒ πi
2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn
3. Multiple operations such that

φi ∧ φj ⇒ Ri and Rj are conflict-free or
sequentially composable

Schedulerπ1
π2

πn

φ1
φ2

φn

Scheduler

Scheduler

Divide the rules
into smallest
conflicting
groups; provide
a scheduler for
each group

February 28, 2007 L10-14http://csg.csail.mit.edu/6.375/

Muxing structure
Muxing logic requires determining for each
register (action method) the rules that update
it and under what conditions

π1 ~π2

Conflict Free (Mutually exclusive)

and

and

or
δ1π1
δ2π2

Sequentially composable

and

and

or
δ1π1 and ~π2
δ2π2

CF rules
either do not
update the
same element
or are ME

8

February 28, 2007 L10-15http://csg.csail.mit.edu/6.375/

Scheduling and control logic
Modules

(Current state) Rules

δ1

π1
Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

February 28, 2007 L10-16http://csg.csail.mit.edu/6.375/

some insight

Pictorially

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• There are more intermediate states in the rule
semantics (a state after each rule step)

• In the HW, states change only at clock edges

9

February 28, 2007 L10-17http://csg.csail.mit.edu/6.375/

Parallel execution
reorders reads and writes

Rules

HW
clocks

rule

steps

• In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules

• In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks

reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

February 28, 2007 L10-18http://csg.csail.mit.edu/6.375/

Correctness

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule
execution (i.e., CF or SC)

• Consequence: the HW can never reach a state
unexpected in the rule semantics

10

February 28, 2007 L10-19http://csg.csail.mit.edu/6.375/

Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common
piece of state, the compiler introduces
appropriate muxing logic
For proper pipelining, dead-cycle elimination
and value forwarding, the user needs some
understanding and control of scheduling

February 28, 2007 L10-20http://csg.csail.mit.edu/6.375/

Two-stage Pipeline
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd(rd, va+vb); bu.deq(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear(); end

else bu.deq();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd(rd, dMem.read(av)); bu.deq(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq(); end
endcase endrule

fetch &
decode

execute

pc rfCPU

bu

Can these rules
fire
concurrently ?

11

February 28, 2007 L10-21http://csg.csail.mit.edu/6.375/

Two-stage Pipeline Analysis

fetch &
decode

execute

pc rfCPU

bu

1. fetch < execute

2. execute < fetch

February 28, 2007 L10-22http://csg.csail.mit.edu/6.375/

Scheduling expectations:
execute < fetch schedule
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd(rd, va+vb); bu.deq(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear(); end

else bu.deq();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd(rd, dMem.read(av)); bu.deq(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq(); end
endcase endrule

bu:

rf:

pc:

12

February 28, 2007 L10-23http://csg.csail.mit.edu/6.375/

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);
method Action enq(t x) if (!full);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False;

endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod
endmodule

One Element FIFO Analysis

first < deq ?

first < enq ?

deq < enq ?

Expectation bu: (first<deq) < (find<enq)

February 28, 2007 L10-24http://csg.csail.mit.edu/6.375/

The good news ...

It is always possible to transform
your design to meet desired
concurrency and functionality

13

February 28, 2007 L10-25http://csg.csail.mit.edu/6.375/

Register Interfaces

read < write

D Q
0

1
readwrite.x

write.en

write < read ?

read’

read’ – returns the current state when write is not enabled
read’ – returns the value being written if write is enabled

February 28, 2007 L10-26http://csg.csail.mit.edu/6.375/

Ephemeral History Register (EHR)

read0 < write0 < read1 < write1 < ….

D Q
0

1

read1

write0.x
write0.en

read0

0

1write1.x
write1.en

writei+1 takes precedence over writei

[MEMOCODE’04]

14

February 28, 2007 L10-27http://csg.csail.mit.edu/6.375/

Transformation for
Performance
rule fetch_and_decode (!stallfunc(instr, bu)1);

bu.enq1(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd0(rd, va+vb); bu.deq0(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear0(); end

else bu.deq0();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd0(rd, dMem.read(av)); bu.deq0(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq0(); end
endcase endrule

February 28, 2007 L10-28http://csg.csail.mit.edu/6.375/

One Element FIFO using EHRs
module mkFIFO1 (FIFO#(t));
EHReg2#(t) data <- mkEHReg2U();
EHReg2#(Bool) full <- mkEHReg2(False);
method Action enq0(t x) if (!full.read0);
full.write0 <= True; data.write0 <= x;

endmethod
method Action deq0() if (full.read0);
full.write0 <= False;

endmethod
method t first0() if (full.read0);
return (data.read0);

endmethod
method Action clear0();
full.write0 <= False;

endmethod
endmodule

first0 < deq0 < enq1

15

February 28, 2007 L10-29http://csg.csail.mit.edu/6.375/

After Renaming

Things will work
both rules can fire concurrently

Programmer Specifies:
Rexecute < Rfetch

Compiler Derives:
(first0, deq0) < (find1, deq1)

What if the programmer wrote this?
Rexecute < Rexecute < Rfetch < Rfetch

February 28, 2007 L10-30http://csg.csail.mit.edu/6.375/

Experiments in scheduling
Dan Rosenband, ICCAD 2005

What happens if the user specifies:

No change in rules

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Executing 2 instructions per cycle requires more resources but is
functionally equivalent to the original design

Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF

I1 I0I3 I2I5 I4I7 I6I9 I8

A cycle in

slow motion

a superscalar processor!

