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GAA Execution model

Repeatedly:
Select a rule to execute 
Compute the state updates 
Make the state updates

Highly non-
deterministic

Implementation concern: Schedule 
multiple rules concurrently without 
violating one-rule-at-a-time semantics

User 
annotations 
can help in 
rule selection
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Rule:  As a State Transformer
A rule may be decomposed into two parts 
π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule.

(conjunction of explicit and implicit conditions)

δ(s) is the “state transformation” function, 
i.e., computes the next-state value in terms 
of the current state values.
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Compiling a Rule

f

x

current
state

next
state 
values

δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ;    f.deq ();

endrule

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action   
parameters
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Combining State Updates:
strawman

next state
value

latch 
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R
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Combining State Updates

next state
value

latch 
enable

R

Scheduler:
Priority
Encoder

OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all 
the rules
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One-rule-at-a-time Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi  ⇒ πi

2. π1 ∨ π2 ∨ .... ∨ πn ⇒ φ1 ∨ φ2 ∨ .... ∨ φn

3. One rewrite at a time 
i.e. at most one φi  is true

Very co
nservative 

way of guaranteeing 

corre
ctn

ess
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Executing Multiple Rules Per Cycle:

Conflict-free rules

Parallel execution behaves 
like ra < rb = rb < ra

rule ra (z > 10); 
x <= x + 1; 

endrule

rule rb (z > 20); 
y <= y + 2; 

endrule

rule ra_rb((z>10)&&(z>20)); 
x <= x+1; y <= y+2; 

endrule

Parallel Execution can 
also be understood in 
terms of a composite 

rule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒ 1. πa(δb(s)) ∧ πb(δa(s))

2. δa(δb(s)) == δb(δa(s)) 
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Executing Multiple Rules Per Cycle:

Sequentially Composable rules
rule ra (z > 10); 

x <= y + 1; 
endrule

rule rb (z > 20); 
y <= y + 2; 

endrule

Parallel execution behaves 
like ra < rb

rule ra_rb((z>10)&&(z>20)); 
x <= y+1; y <= y+2; 

endrule

Parallel Execution 
can also be 

understood in 
terms of a 

composite rule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))
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Sequentially Composable rules ...

Parallel execution can behave 
either like ra < rb or rb < ra
but the two behaviors are not 
the same

Composite rules

rule ra (z > 10); 
x <= 1; 

endrule

rule rb (z > 20); 
x <= 2; 

endrule

rule ra_rb(z>10 && z>20); 
x <= 2; 

endrule
Behavior ra < rb

rule rb_ra(z>10 && z>20); 
x <= 1; 

endrule
Behavior rb < ra
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Compiler determines if two rules 
can be executed in parallel

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s)) 

These properties can be determined by examining the 
domains and ranges of the rules in a pairwise manner.

These conditions are sufficient but not necessary.
Parallel execution of CF and SC rules does not 
increase the critical path delay 

D(Ra) ∩ R(Rb) = φ
D(Rb) ∩ R(Ra) = φ
R(Ra) ∩ R(Rb) = φ

D(πb) ∩ R(Ra) 
= φ
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Mutually Exclusive Rules
Rulea and Ruleb are mutually exclusive if they 
can never be enabled simultaneously

∀s . πa(s) ⇒ ~ πb(s) 

Mutually-exclusive rules are Conflict-free 
even if they write the same state

Mutual-exclusive analysis brings down the cost 
of conflict-free analysis
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Multiple-Rules-per-Cycle 
Scheduler

1. φi  ⇒ πi 
2. π1 ∨ π2 ∨ .... ∨ πn ⇒ φ1 ∨ φ2 ∨ .... ∨ φn
3. Multiple operations such that

φi ∧ φj ⇒ Ri and Rj are conflict-free or 
sequentially composable

Schedulerπ1
π2

πn

φ1
φ2

φn

Scheduler

Scheduler

Divide the rules 
into smallest 
conflicting 
groups; provide 
a scheduler for 
each group
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Muxing structure
Muxing logic requires determining for each 
register (action method) the rules that update 
it and under what conditions

π1 ~π2

Conflict Free (Mutually exclusive)

and

and

or
δ1π1
δ2π2

Sequentially composable

and

and

or
δ1π1 and ~π2
δ2π2

CF rules 
either do not 
update the 
same element 
or are ME
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Scheduling and control logic
Modules

(Current state) Rules

δ1

π1
Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”
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some insight

Pictorially

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• There are more intermediate states in the rule 
semantics (a state after each rule step)

• In the HW, states change only at clock edges
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Parallel execution
reorders reads and writes

Rules

HW
clocks

rule

steps

• In the rule semantics, each rule sees (reads) the 
effects (writes) of previous rules

• In the HW, rules only see the effects from previous 
clocks, and only affect subsequent clocks

reads writes reads writes reads writesreads writesreads writes

reads writes reads writes
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Correctness

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• Rules are allowed to fire in parallel only if the net 
state change is equivalent to sequential rule 
execution (i.e., CF or SC)

• Consequence: the HW can never reach a state 
unexpected in the rule semantics
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Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to 
execute in the same clock cycle

The hardware makes a rule-execution decision on 
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset 
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common 
piece of state, the compiler introduces 
appropriate muxing logic
For proper pipelining, dead-cycle elimination 
and value forwarding, the user needs some 
understanding and control of scheduling
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Two-stage Pipeline
rule fetch_and_decode (!stallfunc(instr, bu)); 

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd(rd, va+vb); bu.deq(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear(); end         

else bu.deq();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd(rd, dMem.read(av)); bu.deq(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq(); end
endcase endrule

fetch & 
decode

execute

pc rfCPU

bu

Can these rules 
fire 
concurrently ?
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Two-stage Pipeline Analysis

fetch & 
decode

execute

pc rfCPU

bu

1. fetch < execute

2. execute < fetch
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Scheduling expectations: 
execute < fetch schedule
rule fetch_and_decode (!stallfunc(instr, bu)); 

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd(rd, va+vb); bu.deq(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear(); end         

else bu.deq();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd(rd, dMem.read(av)); bu.deq(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq(); end
endcase endrule

bu:

rf: 

pc:
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module mkFIFO1 (FIFO#(t));
Reg#(t)    data  <- mkRegU(); 
Reg#(Bool) full  <- mkReg(False);
method Action enq(t x) if (!full);
full <= True;     data <= x;

endmethod
method Action deq() if (full);
full <= False;

endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod
endmodule

One Element FIFO Analysis

first < deq ?

first < enq ?

deq < enq ?

Expectation bu: (first<deq) < (find<enq)
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The good news ...

It is always possible to transform 
your design to meet desired 
concurrency and functionality 
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Register Interfaces

read < write

D Q
0

1
readwrite.x

write.en

write < read ?

read’

read’ – returns the current state when write is not enabled
read’ – returns the value being written if write is enabled
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Ephemeral History Register (EHR)

read0 < write0 < read1 < write1 < ….

D Q
0

1

read1

write0.x
write0.en

read0

0

1write1.x
write1.en

writei+1 takes precedence over writei

[MEMOCODE’04]
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Transformation for 
Performance
rule fetch_and_decode (!stallfunc(instr, bu)1); 

bu.enq1(newIt(instr,rf));
pc <= predIa;

endrule

rule execute (True);
case (it) matches
tagged EAdd{dst:.rd,src1:.va,src2:.vb}: begin

rf.upd0(rd, va+vb); bu.deq0(); end
tagged EBz {cond:.cv,addr:.av}:

if (cv == 0) then begin
pc <= av; bu.clear0(); end         

else bu.deq0();
tagged ELoad{dst:.rd,addr:.av}: begin

rf.upd0(rd, dMem.read(av)); bu.deq0(); end
tagged EStore{value:.vv,addr:.av}: begin

dMem.write(av, vv); bu.deq0(); end
endcase endrule
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One Element FIFO using EHRs
module mkFIFO1 (FIFO#(t));
EHReg2#(t) data  <- mkEHReg2U(); 
EHReg2#(Bool) full  <- mkEHReg2(False);
method Action enq0(t x) if (!full.read0);
full.write0 <= True;  data.write0 <= x;

endmethod
method Action deq0() if (full.read0);
full.write0 <= False;

endmethod
method t first0() if (full.read0);
return (data.read0);

endmethod
method Action clear0();
full.write0 <= False;

endmethod
endmodule

first0 < deq0 < enq1
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After Renaming

Things will work
both rules can fire concurrently

Programmer Specifies:
Rexecute < Rfetch

Compiler Derives:
(first0, deq0) < (find1, deq1)

What if the programmer wrote this?
Rexecute < Rexecute < Rfetch < Rfetch
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Experiments in scheduling
Dan Rosenband, ICCAD 2005

What happens if the user specifies:

No change in rules

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Executing 2 instructions per cycle  requires more resources but is 
functionally equivalent to the original design

Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF

I1 I0I3 I2I5 I4I7 I6I9 I8

A cycle in 

slow motion 

a superscalar processor!


