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Motivation: Convergence

GPUs becoming general-purpose

CPUs becoming parallel

Efficiency, economic advantages 
to convergence



Motivation: Performance

Key parts of the graphics pipeline 
still benefit dramatically from 
fixed-function logic
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Heterogeneous Manycore
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Network Router



SMIPS Network Interface

■Hijack coprocessor interface
■MFC2/MTC2 => read/write from network
■COP2 register reads/writes a word from the 

network packet
■COP2 $r0 commits the packet

■Blocking I/O from Bluespec scheduling
■ (non-blocking I/O possible with status query)

■Completely programmable in C



Hardware Rasterizer



Hardware Rasterizer

■Pipelined
■ Assembly
■ Setup
■ Interpolate

■Division
■ 1 per-pixel

■ Tuned fixed-point



Shaders

■User-programmable pipeline stages

■ Vertex shader: transforms geometry

■ Fragment shader: computes pixel color

■ Implemented in C, through toolchain



Raster Operations

■Z-buffer: visibility

■Color buffer

■ Implemented in C

■Hardware memory extension to scan out 
final image
■ Ridiculously inefficient in software



SMIPS C Support Libraries

■High-level network interface

■ Fixed-point vector math, divide, sqrt

■Mini-stdio
■Critical for debugging

■ Flush framebuffer
■ Flush data cache



Flushing the Pipeline

■Hard!
■ But without it, broken/partial images

■Encode end-of-stream token in data 
stream

■Carry token through every pipeline stage 
in-order
■ Between network tiles
■Within tile pipeline stages

■ Flush SMIPS ROP data cache



Toolchain

■makeFBO

■modelViewer

■ relocateSP

■memory scanout

■ txt2ppm



Demo



Preliminary Results



Preliminary Results



Performance

Teapot

■Configuration
■ 633 triangles
■ Vertex lighting
■ 200x200 resolution

■ Performance
■ 328,927,040 cycles
■ VS never blocked
■ Rast blocked: 10,878,532 c.
■ FS blocked: 20,767,325 c.
■ ROP blocked: 23,541,712 c.
■ Simulation time: 52 mins

on Core 2 Duo E6600

Head

■Configuration
■ 1,214 triangles
■ Vertex lighting
■ 200x200 resolution

■ Performance
■ 633,569,28 cycles
■ VS never blocked
■ Rast blocked: 15,967,788 c.
■ FS blocked: 30,752,199 c.
■ ROP blocked: 38,441,460 c.
■ Simulation time: 120 mins

on Core 2 Duo E6600



Performance Lessons

■SMIPS is slow
■Narrow data-path
■ graphics workloads need wide data
■ many cycles to fill/read network packets

■DIV, RSQRT really slow in software

■Compilation, simulation is slow for 
parallel hardware


