
The Graphics Pipeline on a
Heterogeneous Multicore

Jiawen Chen & Jonathan Ragan-Kelley

The Graphics Pipeline

Vertex
Shader

Rasterizer

Fragment
Shader

Raster
Operations

transformed
vertices

fragment
interpolants

shaded
fragments

vertices

image

Motivation: Convergence

GPUs becoming general-purpose

CPUs becoming parallel

Efficiency, economic advantages
to convergence

Motivation: Performance

Key parts of the graphics pipeline
still benefit dramatically from
fixed-function logic

Manycore

SMIPS

SMIPS

SMIPS

SMIPS

SMIPS

SMIPS

SMIPS

SMIPS

SMIPS

Heterogeneous Manycore

 Rasterizer

SMIPS
(rop)

SMIPS
(rop)

SMIPS
 (scheduler)

SMIPS
(shader)

SMIPS
(shader)

Reorder
Buffer

SMIPS
(shader)

SMIPS
(shader)

Network Router

SMIPS Network Interface

■Hijack coprocessor interface
■MFC2/MTC2 => read/write from network
■COP2 register reads/writes a word from the

network packet
■COP2 $r0 commits the packet

■Blocking I/O from Bluespec scheduling
■ (non-blocking I/O possible with status query)

■Completely programmable in C

Hardware Rasterizer

Hardware Rasterizer

■Pipelined
■ Assembly
■ Setup
■ Interpolate

■Division
■ 1 per-pixel

■ Tuned fixed-point

Shaders

■User-programmable pipeline stages

■ Vertex shader: transforms geometry

■ Fragment shader: computes pixel color

■ Implemented in C, through toolchain

Raster Operations

■Z-buffer: visibility

■Color buffer

■ Implemented in C

■Hardware memory extension to scan out
final image
■ Ridiculously inefficient in software

SMIPS C Support Libraries

■High-level network interface

■ Fixed-point vector math, divide, sqrt

■Mini-stdio
■Critical for debugging

■ Flush framebuffer
■ Flush data cache

Flushing the Pipeline

■Hard!
■ But without it, broken/partial images

■Encode end-of-stream token in data
stream

■Carry token through every pipeline stage
in-order
■ Between network tiles
■Within tile pipeline stages

■ Flush SMIPS ROP data cache

Toolchain

■makeFBO

■modelViewer

■ relocateSP

■memory scanout

■ txt2ppm

Demo

Preliminary Results

Preliminary Results

Performance

Teapot

■Configuration
■ 633 triangles
■ Vertex lighting
■ 200x200 resolution

■ Performance
■ 328,927,040 cycles
■ VS never blocked
■ Rast blocked: 10,878,532 c.
■ FS blocked: 20,767,325 c.
■ ROP blocked: 23,541,712 c.
■ Simulation time: 52 mins

on Core 2 Duo E6600

Head

■Configuration
■ 1,214 triangles
■ Vertex lighting
■ 200x200 resolution

■ Performance
■ 633,569,28 cycles
■ VS never blocked
■ Rast blocked: 15,967,788 c.
■ FS blocked: 30,752,199 c.
■ ROP blocked: 38,441,460 c.
■ Simulation time: 120 mins

on Core 2 Duo E6600

Performance Lessons

■SMIPS is slow
■Narrow data-path
■ graphics workloads need wide data
■ many cycles to fill/read network packets

■DIV, RSQRT really slow in software

■Compilation, simulation is slow for
parallel hardware

