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System-on-a-chip solutions often require simple processors designed to perform a narrow 

variety of tasks meeting certain performance specifications. It is important to use processors 

that perform the required tasks with minimal waste of chip area and power consumption, 

however there are engineering expenses to design an optimal processor for each SOC solution. 

Starting from a 3-stage pipelined SMIPS processor in Bluespec, we designed and implemented a 

parametrizable processor, which can be configured at compile-time to be synthesized as a one, 

two or three-stage processor. According to the parameter choice, the processor is synthesized 

only with the hardware required to run the specified pipeline configuration. Our results indicate 

that low-stage solutions have lower IPS performance and lower area, and the performance / 

area tradeoff is balanced throughout all possible processor configurations. 
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1. Project Description 

As our final project, we designed and implemented a parametrizable SMIPS ISA processor in 

Bluespec HDL. The parameter controlled variable in our processor is the number of pipelined 

stages, thus the degree of parallelism and concurrency achieved by the processor. The number 

of pipeline stages ranges from 1 to 3, with two versions of the 2-stage configuration. 

1.1 Motivation 

The motivation behind making a parametrizable processor comes from the realization that 

SOCs are designed to solve very specific problems within very narrow system requirements 

concerning area, power and performance. By having access to a parametrizable processor, an 

SOC designer is equipped with a menu of different processor configurations from which he can 

choose a version of the processor with which to tackle the task at hand most efficiently. 

Furthermore, having a wide choice of processor configurations allows SOC design to cut down 

significantly on engineering costs. 

1.2 Design Steps 

Implementing a parametrizable processor involved five major steps. Our starting point was a 3-

stage, fully parallel SMIPS ISA processor design in Bluespec where each “pipeline stage” is a 

guarded atomic action, known as a rule in Bluespec. Our final result was a SMIPS ISA processor 

whose number of pipeline stages and level of stage concurrency was controlled by a 2-bit 

parameter, allowing for 4 different configurations of the pipeline stages. The five major steps 

were: 

 

� Identifying and merging all the rules in a baseline Bluespec processor description 

that contained pipeline stages or actions. This was done in order to achieve very 

tight control of the scheduling of pipeline stages and to allow for combinational 

paths between pipeline stages (useful when we are dealing with one and two stage 
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processors). The outcome of this work was a fully functional one-rule synchronous 

processor, where all the processing was achieved within one guarded atomic action. 

� Identifying and packaging the purely combinational pipeline stages of the SMIPS 

processor Bluespec description into separate and independent Bluespec functions. 

The functions were constant and were “blind” to the value of the parameter. This 

was done to allow us to call the different functions as needed by the desired 

configuration and to specify the way the functions interact with each other 

depending on the level of parallelism chosen. 

� Introducing a single 2-bit parameter that controls the interaction and arrangement 

of the functions written above to achieve a certain degree of parallelism in the 

processor. The outcome of this step is a processor whose number of pipeline stages 

can be specified by setting the parameter value. 

� Optimizing each processor configuration with respect to performance and area. The 

objective was to have each configuration be as efficient as possible. Moreover, our 

goal was to have each configuration contain the minimum amount of hardware 

needed to achieve the desired level of parallelism. This was done by abusing the 

aggressive optimization approach of the Bluespec compiler in addition to the use of 

compiler macros that specified optimizations. 

� Comparing the different processor configurations. In order for our parametrizable 

processor to be useful, each configuration must have its own benefits and 

advantages over the other configurations.  
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2. Design & Implementation 

2.1 Making a one-rule synchronous processor 

2.1.1 Explicit guards 

Including the whole processor in one Bluespec rule required us to lose all the advantages of 

guarded atomic actions and implicit guards. In a multi-rule processor, each rule can attempt to 

call methods such as FIFO enqueue and dequeue without checking FIFO states first. If the 

methods are not available, the rule stalls and retries next cycle. In a one-rule processor, 

however, a failed attempt would cause the entire processor to stall indefinitely; therefore the 

processor must verify the state of every element before attempting a method call.  In other 

words, in order to maintain processor functionality and correctness, we needed to explicitly 

define the WILL_FIRE signal of each pipeline stage which we expressed with IF conditions that 

“guarded” each pipeline stage. This way, we achieved complete control over when each stage 

fires and could thus specify the precise schedule of the processor stages. 

 

The new explicit conditions guarding the various processor stages were expanded versions of 

the guards used in the original multi-rule Bluespec description. All guards conditioned on the 

type and nature of the instruction being processed were implemented using purely 

combinational logic that takes the instruction as its input (returned by the instruction memory) 

and returns a Boolean result. These Boolean results, logically combined with the state of the 

relevant FIFOs, determine the WILL_FIRE signal of the individual pipeline stages. 

 

2.1.1.1 FIFOF Methods 

Explicit guards require that the processor checks the state of the connecting FIFOs. In the 

absence of implicit guards, we had to explicitly ensure that the FIFOs were capable of handling 

a pipeline stage’s requests before executing the stage itself. This required all FIFOs in the 

processor to be changed into FIFOFs, which are identical to FIFOs but have the additional 
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capacity of being asked whether they are empty or full, which is crucial for ensuring the 

feasibility of enq and deq of the FIFO. Additionally, new interfaces were written in Bluespec to 

allow for the interaction of the FIFOFs with the instruction and data memory modules.  

 

2.1.1.2 dataReqQ_guard/dataRespQ_guard 

 

Guards also require that the processor checks the nature of the instruction being processed. 

Certain instructions (all but LOADS and STORES) do not require any interaction with data 

memory. Thus there is no need to wait for the data memory queues to accept/return a 

request/response to or from data memory. These conditions were made explicit by writing two 

Boolean values, dataReqQ_guard and dataRespQ_guard, and inserting them in the explicit 

guards of execute and writeback stages. 

 

2.1.1.3 wbQ_guard  

Certain instructions (certain branches and jumps) do not write to the register file. Thus, for both 

correctness and performance reasons, we made it explicit that there is no need to wait on the 

readiness of the writeback stage and its associated FIFOs when dealing with such instructions. 

This logic is implemented with a wbQ_guard Boolean, also integrated appropriately in the 

explicit guards. 

 

2.1.2 Customized SFIFO 

The transition to a single-rule processor also required us to customize the searchable FIFO 

(referred to as SFIFO) that connects the execute and writeback stages of the processor (referred 

to as wbQ). It is searchable in order to protect against data hazards and had to remain 

searchable for the same reason in the single-rule merged version of the Bluespec description. 

The customization of our wbQ involved introducing two additional methods and reordering the 

method schedule. The new SFIFO’s schedule, including new methods, is: 

first, find, find2, notFull, notEmpty, deq < enq < clear 
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We added the FIFOF methods notFull and notEmpty, with proper interface, so that the explicit 

guard can verify the state of the SFIFO before firing stages. 

To implement the new schedule, we used EHR registers to hold both the data and the valid bits. 

Having execute and writeback in the same rule implies that one rule will enq while the other 

will deq in the same cycle. The valid-bit structure of the SFIFO implies that both enq and deq 

will read and write registers in the SFIFO. Using EHR registers allows us to schedule the reads 

and writes as needed to ensure correctness and avoid conflicts and structural hazards. 

Pulse wires were avoided in order to allow enqueue and dequeue to occur in the same cycle. 

With full parallelism, when all stages fire concurrently, wbQ needs to deq and enq 

simultaneously. Thus we eliminated the pulse wire found in the base-line SFIFO. 

Another issue is that of bypassing. Our register file is write-before-read, EHR-based and 

bypassable in order to avoid RAW hazards during full stage parallelism - once dequeued by 

writeback, an instruction writes the new value before the execute stage fires. Our initial SFIFO 

was bypassable too, which caused a combinational loop between execute and writeback. We 

solved this by scheduling the notFull and notEmpty as read_0, so that if deq and enq are 

requested in the same cycle on an empty SFIFO, the dequeue will see wbQ as empty and not 

fire. 

Finally, we scheduled the SFIFO methods in according to the schedule of the processor stages, 

expressed by the explicit guards. To ensure correct stage scheduling, we allow the find, notFull 

and notEmpty methods used by the explicit guards to happen before the SFIFO methods that 

are required when the stages fire. Therefore, find, notFull and notEmpty make use of read_0. 

Furthermore, in order to avoid scheduling conflicts between execute and writeback, we altered 

the scheduling properties of the SFIFO so that deq < enq which translates into writeback < 

execute. This schedule is consistent with the register file and prevents a conflict. 

2.1.3 Discard and stall  

Discard, implemented as part of the one-rule processor, is used to eliminate stale instructions 

between the pc generation and execution. Its guard is mutually exclusive with the execute 
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condition, so that it fires only when the pcQ is locked with old data. Correctness is guaranteed 

by the 1-bit value hasToken and the wait4token state of execute. When the execute stage takes 

a branch, it sets a wait4token state, and it fires only when the new good instruction, carrying 

hasToken, reaches the first position in pcQ. 

The stall logic is implemented as a function, concerned with avoiding RAW hazards in the 

execute-writeback pipeline. It works by searching the wbQ. It only necessary when the execute 

and writeback stages are pipelined. 

2.1.4 PC register 

The pc register was modified to an EHR register in order to ensure correctness during a branch 

instruction. Since pcGen and execute are in the same rule, and pcGen always updates the pc 

value, during a branch a pc write by execute would cause a structural hazard. In our 

implementation, execute performs a write_1 (overwrite) on the PC register while to pcGen 

performs a write_0 in the case of a branch/jump instruction. 

2.2 Packaging stages into functions 

After obtaining a working one-rule version of the processor, we proceeded to packaging the 

main combinational functioning of the three stages into parameter-independent functions. 

2.2.1 Motivation 

There are several reasons why we decided to use the various stages as functions. 

• Unchanged combinational workhorse: While different degrees of pipelining influence 

the processor’s internal datapath and scheduling, the combinational working of 

instruction retrieval, ALU operations and writeback remain unchanged. Therefore it 

makes sense to isolate this combinational work into abstracted blocks. 

• Function-call mechanisms: In Bluespec, a function is converted into appropriate 

hardware at compile-time, in instances when it is called. Therefore, specifying 

combinational stages as functions gives an additional degree of flexibility to the system, 
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wherein, for example, working ALU hardware can be instantiated in more than one 

place, and the corresponding hardware only synthesized if and where the function is 

called. The designer can easily build combinational paths between hardware by using 

recursive calls, without worrying about timing details in communication. These choices 

provide higher flexibility for future system expansions. 

• Higher-level abstraction: Isolating combinational stages also implies theoretical 

advantages. It sets a higher level of abstraction into the system, wherein data routing 

can be separated from combinational workings. The internal logic of the functions is 

completely parameter-independent, which guarantees the description of an elegant 

parametrization, where the only difference between pipeline and non-pipeline resides 

in the routing. 

2.2.2 Implementation 

Each state was separated into a shell and a function. Shells correspond to the parameter-

dependent routing logic, which also interacts with state elements, and calls stage-functions 

with the appropriate data. 

While theoretically they should be fully combinational, we implemented stage functions as 

ActionValue functions, which partially interact with the processor’s state. We chose this 

solution since some interactions, for example those with instruction memory, are completely 

parameter-independent. Integrating these actions into stage functions provided for a much 

cleaner shell code, and highly simplified the complexity of the functions’ input/output types. If 

new parameters were to be added which conflict with function actions, it would be easy to 

modify state functions to be purely combinational for higher expandibility. 

Figure 1 shows the state of our processor after one-rule merging and stage packaging. 
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Figure 1: One-rule, 3-stage processor with packaged functions. The comprehensive rule fires every 

clock cycle, and the firing of individual stages is regulated by explicit guards, which invoke FIFOF 

methods (question marks) to check the state/availability of FIFO elements. The combinational 

working of each stage, together with part of the memory interfacing, is performed by the function-

blocks. The shell parts take care of all parameter-dependent routing and of invoking stage functions. 

 

2.3 Eliminating Pipeline stages 

2.3.1 Merging pcGen and execute 

The pcGen and execute stages can be merges by eliminating the FIFOF pcQ and inserting a 

synchronizing register allow_pcgen. Since merged stages always work on the same instruction, 

execute can read the pc value directly from the pc register for branch instructions. The 

hardware for pcQ, as well as all discarding mechanisms, is eliminated, and the instrReq/RespQ 

FIFOFs are reduced to size 1. 
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The 1-bit Boolean register allow_pcgen, initially set to true, ensures synchronization between 

the two stages by enforcing mutual exclusion. The pcGen explicit guard requires allow_pcgen to 

be true, and sets it to false after firing. Execute requires it to be false, and sets it to true after 

firing. The allow_pcgen mechanism does not allow concurrent firing of the two stages, however, 

the instruction memory cycle latency never allows a combinational path between the stages. In 

the following section, however, allow_execute is compatible with single-cycle stage firing. 

Figure 2 shows the resulting 2-stage implementation, with the pcGen and execute stages 

merged. 

 

Figure 2: 2-stage implementation with pcGen and execute merged. During branches, execute reads 

directly from the PC register. The allow_pcG Boolean register coordinates the firing for the two stages 

by enforcing mutually-exclusive firing. 

 

2.3.2 Merging execute and writeback 

We merged execute and writeback by using a data-holding register, rescomm, and a 

synchronizing register, allow_execute. 
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The EHR register rescomm is used as a temporary holder for the output of execute. It is set so 

that execute can write before writeback reads, so as to allow concurrent firing of the two rules. 

This register needs to be particularly flexible in its workings, since its workings depend on the 

type of instruction processed. In case of ALU instructions, which do not need data memory, 

rescomm works as a wire between the two stages. For load/store instructions, rescomm acts as 

a register, holding its value until data memory responds. For branch-type instructions, finally, 

rescomm is set as invalid, since writeback does not need to fire at all after a branch. 

The Boolean synchronizer allow_execute works similarly to allow_pcG, but allows single-stage 

firing, and has a few more complications. It allows concurrent firing by being EHR, so that 

execute can read it, fire, and write it before writeback does the same. Also, execute only sets 

the register to False after non-branching instructions, since in those cases writeback does not 

need to fire, and execute can fire again instead.  

This implementation can use a regular read<write register file, as opposed to the standard EHR 

solution. In fact, with writeback and execute working on a single instruction, there are no read-

after-write pipeline hazards. With the previous implementation, it was necessary to use a 

write<read register file for rule scheduling issued, as well as for correctness in the stall logic. 

This change to a regular register file implies high savings in hardware, as well as preventing a 

combinational cycle between execute and writeback, since, in a 2-stage implementation, the 

former fires before the latter.  

Finally, the entire stall logic, implemented as a function, is never called, thus never synthesized. 

Figure 3 shows the 2-stage implementation that results from merging execute and writeback. 
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Figure 3: The 2-stage implementation with merged execute and writeback. The EHR register file is 

substituted with a regular read<write register file. The rescomm register allows for single-cycle (ALU 

instructions) or deferred (LD/ST) communication between the two stages. The Boolean allow_exec 

synchronized the two stages, while allowing single-stage firing. 

 

2.3.3 Combining the merging: 1-stage version 

Figure 1 shows a 1-stage version of the processor, which was was obtained by linearly 

combining the explicit guards and routing paths of both 2-stage implementations. This linear 

superimposition stands as a demonstration of true and elegant parametrization, because it 

proves that the two stage parameters are independent. The simplicity in the implementation of 

the 1-stage version leads a fundamental conclusion for future expansions: with new parameters 

introduced, code length and complexity increase linearly, while the number of possible 

processor configurations increase exponentially. 
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Figure 4: The 1-stage version of the processor. It was obtained by linearly combining the explicit 

guards and routing paths for both 2-stage versions. 

 

2.4 Parameter Implementation 

In implementing the parameters, we decided to use compiler macros to ensure both 

correctness and area optimizations. The two pipeline parameters are defined initially, and the 

commands `ifdef and `ifndef ensure that the compiler can skip parts of the code depending on 

whether the parameter is defined. We use compiler macros to regulate the composition of 

explicit guards, the routing paths, and for some hardware instantiations, e.g. the choice of 

register file type. However, most hardware optimizations, such as stall logic or pcQ/wbQ, is 

performed automatically by aggressive compiling. Figure 5 shows high-level schematics for our 

processor, with notiations on hardware that can be optimized out, and connections that are 

parameter-dependent. 
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Figure 5: High-level processor view. The notation indicates hardware whose synthesis depends on the 

processor configuration, and parameter-dependent routing connections. 
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3. Test Strategy 

Our parametrizable processor implements exactly the same instruction sets as the SMIPSv2 

processor. That allows us to use the same tests and benchmarks as those used for the SMIPSv2 

processor to ensure the correctness of the processor. 

However, the primary purposes of designing a parametrizable processor are flexibility and 

adaptability, which implies the ability to tune area, clock period and power consumption to 

obtain the most efficient processor for the intended task. Therefore, the way in which the 

processor synthesizes for each configuration is a major concern for this project. Furthermore, 

for our work to be useful, we had to make sure that each configuration has some benefits, in 

term of area or Instruction per second (IPS). 

Considering the huge amount of time it could take to manually synthesize and extract data for 

every processor configuration, we built a set of automated benchmarks, to change the 

parameters of the processor, synthesize it, and extract all relevant data such as area and clock 

period for each configuration automatically. Table 1 shows a summary of the characteristics we 

check for every configuration: 
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Table 1: Description of test parameters with comparative expected results 

Parameter Expectation Best with 

Post-synthesis total area Area should increase with the number of 

pipelined stages 

1-stage 

Post-synthesis critical path and 

effective clock period 

The effective clock period is expected to 

decrease with the number of pipelined stages, 

as we make the critical path shorter 

3-stages 

Post-place+route total area Same behavior as post-synthesis total area 1-stage 

Post-place+route critical path 

and effective clock period 

Same behavior as post-synthesis effective 

clock period 

3-stages 

Instruction per cycle (IPC) Due to parallel execution and shared 

resources, IPC should slightly decrease when 

there is more pipelined stages 

1-stage 

Instruction per second (IPS) Even if IPC is a little worst for the maximum 

stages configuration, IPS should improve 

thanks to a increased effective clock period 

3-stages 

 

Unfortunately, we were not able to obtain power consumption information for the various 

processor configurations. This was due to the fact that parts of our implementation are 

described in Verilog, and the BlueSim power consumption simulation requires a full Bluespec 

work. 

A designer using our parameterized processor should be able to easily choose the best 

configuration for his interests, which would certainly be a tradeoff between area and 

performance, and be able to quantify accurately the pros and cons offered by each 

configuration. 
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4. Results 

We tested each possible configuration: 

- without pcQ, without wbQ (1-stage); 

- with pcQ, without wbQ (2-stage); 

- without pcQ, with wbQ (2-stage); 

- with pcQ, with wbQ (3-stage). 

Here is an example of a complete simulation report, automatically generated by our 

benchmarks Makefile: 

Configuration: woPCQ_woWBQ 

   Post-synthesis total area: 19897.500000 

   Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns 

   Post-place+route total area: 324682.6 um^2 

   Post-place+route effective clock period: 5.000ns - (-1.056ns) = 6.056ns 

   Benchmark: median 

      IPC: 0.249868 

      IPS: 41259577 /s 

   Benchmark: qsort 

      IPC: 0.249921 

      IPS: 41268328 /s 

   Benchmark: towers 

      IPC: 0.249962 

      IPS: 41275099 /s 

   Benchmark: vvadd 

      IPC: 0.249751 

      IPS: 41240257 /s 

   Benchmark: multiply 

      IPC: 0.248531 

      IPS: 41038804 /s 

 

Configuration: wPCQ_woWBQ 

   Post-synthesis total area: 20427.000000 

   Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns 

   Post-place+route total area: 351514.2 um^2 

   Post-place+route effective clock period: 5.000ns - (-1.701ns) = 6.701ns 

   Benchmark: median 

      IPC: 0.341072 

      IPS: 50898671 /s 

   Benchmark: qsort 

      IPC: 0.410716 

      IPS: 61291747 /s 

   Benchmark: towers 

      IPC: 0.316339 

      IPS: 47207730 /s 

   Benchmark: vvadd 

      IPC: 0.384429 

      IPS: 57368900 /s 

   Benchmark: multiply 

      IPC: 0.380400 

      IPS: 56767646 /s 
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Configuration: woPCQ_wWBQ 

   Post-synthesis total area: 22406.750000 

   Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns 

   Post-place+route total area: 349309.6 um^2 

   Post-place+route effective clock period: 5.000ns - (-2.060ns) = 7.060ns 

   Benchmark: median 

      IPC: 0.249868 

      IPS: 35392067 /s 

   Benchmark: qsort 

      IPC: 0.249939 

      IPS: 35402124 /s 

   Benchmark: towers 

      IPC: 0.249962 

      IPS: 35405382 /s 

   Benchmark: vvadd 

      IPC: 0.249751 

      IPS: 35375495 /s 

   Benchmark: multiply 

      IPC: 0.249350 

      IPS: 35318696 /s 

 

Configuration: wPCQ_wWBQ 

   Post-synthesis total area: 22823.250000 

   Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns 

   Post-place+route total area: 363453.0 um^2 

   Post-place+route effective clock period: 5.000ns - (-0.433ns) = 5.433ns 

   Benchmark: median 

      IPC: 0.392375 

      IPS: 72220688 /s 

   Benchmark: qsort 

      IPC: 0.434285 

      IPS: 79934658 /s 

   Benchmark: towers 

      IPC: 0.419139 

      IPS: 77146880 /s 

   Benchmark: vvadd 

      IPC: 0.453956 

      IPS: 83555310 /s 

   Benchmark: multiply 

      IPC: 0.384702 

      IPS: 70808393 /s 

 

As the output example shows, we performed synthesis and place+route for all 4 configurations. 

However, we focused more on the synthesis results, which seems more relevant for several 

reasons: 

• If we can reasonably expect to get every time exactly the same results for the synthesis 

step for a given code, it is not the case of the place+route step, because it is partially 

heuristic and very dependant on the synthesized code. Indeed, for insignificant (or even 

no) changes in Bluespec code, the area and effective clock period can change a lot. 
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• The place+route process is not ideal: we expect that the default floorplanning may not 

be optimal for every processor version, and in the worst case, it could even favor the 

pipelined version since it was primarily designed for this processor configuration. The 

idea of parametrizing the floorplanning configuration is feasible, but beyond the scope 

of our project. 

• Since the theoretical minimal effective clock period is different for each version, and 

lower for the fully pipelined processor (since the critical path is shorter), having a fixed 

target for the effective clock period, whatever the configuration is, may result in certain 

case in a much bigger area than intended, as Encounter might desperately try to slightly 

decrease the clock period in cost of much bigger area. 

At the contrary, synthesis figures don’t really reflect the real area we will eventually get, but are 

probably more adapted to do comparisons between different architectures, since they are 

directly proportional to the number of gates and transistors in the circuit. 

There is actually a huge number of possibilities and design exploration that are possible for 

every single processor configuration (1 to 3-stages), such as tweaking FIFOs size, the register file 

type, or implementing additional hardware for branch predictor and so on. Considering that, 

and also the huge amount of time required to benchmark each modification (4 to 5 hours), we 

choose to present our results for two main variations of our design, to show how optimization 

for each configuration could impact the performances of the processor. 

We found that an EHR register file was actually not necessary for the 2 configurations with a 

merged execute and writeback, and that we could replace it by a regular register file with 

negligible IPC loss, but significant decrease in area, as it can be seen in our results. This is only 

one example, but it is important since it confirms the relevance of our project. 
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4.1 Area 

As expected, the area of our processor increases when we add decoupling with pcQ and wbQ 

FIFOs. Turning the EHR register file to a regular one effectively decrease the area. If the area is a 

primary concern for the designer, the no-pcQ and no-wbQ (1-stage) version of the processor is 

the smallest. 

Post-synthesis total area
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Figure 6: Post-synthesis and post-place+route ares results, for EHR and non-EHR versions 

Place+route area is very different from the synthesis area, and leads to the previous discussion 

about the relevance of theses numbers. However, the general trend is still confirmed for the 

non-EHR version. 
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4.2 Instruction per Cycle (IPC) 

IPC is important as it reflect the degree of parallelism of the processor. For the 1-stage 

processor, IPC is comparable to the baseline Bluespec processor, and increase with parallelism. 

Of course, a lot of effort could still be done in order to increase it, especially for the 3-stages 

version, mainly by introducing a basic branch predictor. It is important to notice that, for our 

set of benchmarks, the elimination of the pcGen-execute pipeline causes a dramatic decrease in 

IPC. This happens because the instruction memory is accesses every cycle, and the pcQ FIFO 

plays a role decoupling the two stages, thus hiding the memory cycle latency. 
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Figure 7: Instructions per Cycle results, for various benchmarks and configurations 



6.375 Complex Digital Systems  Bichler, Carli, Yamhure 

 

 

23 

4.3 Performance 

The effective clock period significantly decrease when the three stages are decoupled, as 

expected, since the critical path gets shorter. However, it doesn’t shrink systematically with the 

number of stages, since the clock period for the 2-stages processor is pretty much the same as 

the 1-stage version, suggesting that the ALU is the main latency source. It has to be noticed that 

the effective clock period increase with the non-EHR even with wbQ (which should not change 

since the non-EHR version only concern the no-wbQ versions), so it is not very relevant and 

should be considered for a given the area. 

Post-place+route effective clock period

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

w/o pcQ, w/o

wbQ

w/o pcQ, w

wbQ

w pcQ, w/o

wbQ

w pcQ, w

wbQ

EHR RegFile w/o wbQ non-EHR RegFile w/o wbQ

 

Figure 8: Effective clock-period results 

To actually measure the effective speed of our processor, we have computed the number of 

instructions per second (IPS) for our benchmarks. It is expected that the IPS increases with the 

number of pipelined stages, as more parallelism is achieved. Given our results, IPS is more 

dependants on IPC than the effective clock period, which is quite constant. This is interesting, 

since it tell use that we should focus on improving IPC without worrying too much on critical 

path. 
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IPS (EHR RegFile w/o wbQ)
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Figure 9: Instructions per Second results for various benchmarks and configurations 

We can see that the IPS don’t increase at all by pipelining execute and writeback stage without 

pcQ FIFO. This seems relatively easy to explain, as decoupling writeback stage is really useful 

only for read or write into the data memory, because the memory has some latency. But since 

pcgen and execute stages are not decoupled, the throughput is actually limited by the 

instruction memory latency. 
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4.4 Summary 

For our parameterizable processor to be useful, we should take care that the gain in speed is 

compensated by the increase in area, and vice versa. To estimate the overall performance of 

each configuration, we introduced a “figure of merit” coefficient, which takes into account the 

tree main preoccupations of a designer: speed, in term of IPS, area and power: 

PowerArea

IPS
FOM

×
∝  

Since the power is hard to estimate with accuracy, especially in regards of our considerations 

about the place+route process, we just made the very rough assumption that the power is 

proportional to the number of gates, therefore to post-synthesis area. Our therefore becomes 

2
Area

IPS
FOM ∝ , which is probably fair enough for a first comparison between each variation of 

our processor. 

FOM = IPS / (Post-synthesis area)²
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Figure 10: Figure of Merit tradeoffs for various configurations 

Currently, without further optimization, the 3-stage configuration has the best FOM. However, 

the figures are relatively well-balanced for each processor configuration. It is safe to say that no 

version truly dominates the others, therefore the parameters provide a balanced tradeoff. 
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Results show that both versions with merged pcGen and execute stages display a dramatic 

decrease in performance, whose has been explained. These results, however, do not exclude 

those versions as purely dominated, since the performance decrease depends on the type of 

benchmarks, and on the baseline processor configuration. It can be shown that, under a 

different configuration and benchmark code, those two implementations can show improved 

performance. For example with branch prediction, and vector-based code with a high-number 

of load/store operations, there would be high branching, low instruction memory access, and 

high data memory access, making for a feasible no-pcQ version. 

Each configuration could probably be optimized further, especially for the place+route step, 

with clever floorplanning for instance. But our results already demonstrate the viability of a 

parametrizable processor, which could be worthwhile particularly for specialized multi-core 

processors, where every core doesn’t need to run at the same speed. 
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5. Conclusions 

 

We managed to design and implement in Bluespec a parametrizable processor where the 

number of pipeline stages, and thus the degree of parallelism, is defined using a single 

parameter. Our final design includes 4 configurations consisting of a 1-stage, two 2-stage and 

one 3-stage processor. 

The key to the usefulness and value of our project was ensuring that there is something to gain 

from each configuration. Otherwise, if one processor version were superior to all the other 

versions in all respects (area/performance/power) then there would be no need to ever use the 

other configurations. Namely, we had to ensure that, on going to lower levels of parallelism, we 

gained in other dimensions such as area and/or power consumption. By optimizing each 

configuration, this turned out to be the case. As we go to lower degrees of parallelism, we 

reduce the area of the processor by primarily eliminating bulky FIFOs. Secondly, we can remove 

complicated combinational logic that served to protect against data hazards that only occur due 

to concurrency of pipeline stages. Additionally, at low levels of parallelism, a simpler non-EHR 

register file was sufficient to ensure correctness and optimal performance, thus saving even 

more area on the processor chip.  

Further studies that we would have liked to perform, given more time, include power analysis 

and comparison between the different processor configurations. We feel that, similar to area, 

power consumption would show a decrease with decreasing levels of parallelism, again due to 

the absence of FIFOs, less supporting combinational logic (such as the stall function) and a 

simpler register file. Secondly, we would have liked to commit some time to floorplanning; our 

area analysis is based mainly on post-synthesis results. This is because post place-and-route 

results are highly heuristic and were optimized for the three-stage version of the processor. If 

we had time to experiment with floorplanning, we feel that the results would have been just as 

good, if not better, than the post-synthesis results; that lower degrees of parallelism allow for 

smaller processor area. 
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Finally, we were happy to see that different parameter configurations were linearly super-

imposable. While our parameter-regulated processor certainly took more engineering effort 

than four separate processors, we are confident that, in future expansions, the addition of 

more parameters will be linear growth in complexity, and an exponentially higher number of 

possible configurations, thus making our processor a valuable tool for the SOC designer. 
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