

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.375 Complex Digital Systems Design

A Parametrizable Processor

Authors: Olivier Bichler, Roberto Carli, Alessandro Yamhure

Date: May 16, 2007

System-on-a-chip solutions often require simple processors designed to perform a narrow

variety of tasks meeting certain performance specifications. It is important to use processors

that perform the required tasks with minimal waste of chip area and power consumption,

however there are engineering expenses to design an optimal processor for each SOC solution.

Starting from a 3-stage pipelined SMIPS processor in Bluespec, we designed and implemented a

parametrizable processor, which can be configured at compile-time to be synthesized as a one,

two or three-stage processor. According to the parameter choice, the processor is synthesized

only with the hardware required to run the specified pipeline configuration. Our results indicate

that low-stage solutions have lower IPS performance and lower area, and the performance /

area tradeoff is balanced throughout all possible processor configurations.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

2

Contents

1 Project Description ... 3

1.1 Motivation ... 3

1.2 Design Steps .. 3

2 Design and Implementation 5

2.1 One-rule synchronous processor 5

2.1.1 Explicit guards............................... 5

2.1.1.1 FIFOF Methods 5

2.1.1.1 dataReq/RespQ_guard ... 6

2.1.1.1 wbQ_guard 6

2.1.2 Customized SFIFO 6

2.1.3 Discard and Stall 7

2.1.4 PC Register.................................... 8

2.2 Packaging stages into functions 8

2.2.1 Motivation 8

2.2.2 Implementation 9

2.3 Eliminating Pipeline Stages 10

2.3.1 Merging pcGen and execute 10

2.3.2 Merging execute and writeback ... 11

2.3.3-stage version 13

2.4 Parameter Implementation 14

3 Test Strategy .. 16

4 Results .. 18

4.1 Area ... 21

4.2 Instructions per Cycle 22

4.3 Performance .. 23

4.4 Summary ... 25

5 Conclusions .. 27

6 Acknowledgments .. 28

Figures

Figure 1: One-rule, packaged processor 10

Figure 2: 2-stage, pcG / execute merged 11

Figure 3: 2-stage, execute / writeback merged . 13

Figure 4: 1-stage configuration 14

Figure 5: High-level schematics 15

Figure 6: Area results ... 21

Figure 7: Instructions per Cycle (IPC) results 22

Figure 8: Effective clock period results 23

Figure 9: Instructions per Second (IPS) results .. 24

Figure 10: Figure of Merit (FOM) results 25

Tables

Table 1: Test variables and predicted results 17

1. Project Description

As our final project, we designed and implemented a parametrizable SMIPS ISA processor in

Bluespec HDL. The parameter controlled variable in our processor is the number of pipelined

stages, thus the degree of parallelism and concurrency achieved by the processor. The number

of pipeline stages ranges from 1 to 3, with two versions of the 2-stage configuration.

1.1 Motivation

The motivation behind making a parametrizable processor comes from the realization that

SOCs are designed to solve very specific problems within very narrow system requirements

concerning area, power and performance. By having access to a parametrizable processor, an

SOC designer is equipped with a menu of different processor configurations from which he can

choose a version of the processor with which to tackle the task at hand most efficiently.

Furthermore, having a wide choice of processor configurations allows SOC design to cut down

significantly on engineering costs.

1.2 Design Steps

Implementing a parametrizable processor involved five major steps. Our starting point was a 3-

stage, fully parallel SMIPS ISA processor design in Bluespec where each “pipeline stage” is a

guarded atomic action, known as a rule in Bluespec. Our final result was a SMIPS ISA processor

whose number of pipeline stages and level of stage concurrency was controlled by a 2-bit

parameter, allowing for 4 different configurations of the pipeline stages. The five major steps

were:

� Identifying and merging all the rules in a baseline Bluespec processor description

that contained pipeline stages or actions. This was done in order to achieve very

tight control of the scheduling of pipeline stages and to allow for combinational

paths between pipeline stages (useful when we are dealing with one and two stage

6.375 Complex Digital Systems Bichler, Carli, Yamhure

4

processors). The outcome of this work was a fully functional one-rule synchronous

processor, where all the processing was achieved within one guarded atomic action.

� Identifying and packaging the purely combinational pipeline stages of the SMIPS

processor Bluespec description into separate and independent Bluespec functions.

The functions were constant and were “blind” to the value of the parameter. This

was done to allow us to call the different functions as needed by the desired

configuration and to specify the way the functions interact with each other

depending on the level of parallelism chosen.

� Introducing a single 2-bit parameter that controls the interaction and arrangement

of the functions written above to achieve a certain degree of parallelism in the

processor. The outcome of this step is a processor whose number of pipeline stages

can be specified by setting the parameter value.

� Optimizing each processor configuration with respect to performance and area. The

objective was to have each configuration be as efficient as possible. Moreover, our

goal was to have each configuration contain the minimum amount of hardware

needed to achieve the desired level of parallelism. This was done by abusing the

aggressive optimization approach of the Bluespec compiler in addition to the use of

compiler macros that specified optimizations.

� Comparing the different processor configurations. In order for our parametrizable

processor to be useful, each configuration must have its own benefits and

advantages over the other configurations.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

5

2. Design & Implementation

2.1 Making a one-rule synchronous processor

2.1.1 Explicit guards

Including the whole processor in one Bluespec rule required us to lose all the advantages of

guarded atomic actions and implicit guards. In a multi-rule processor, each rule can attempt to

call methods such as FIFO enqueue and dequeue without checking FIFO states first. If the

methods are not available, the rule stalls and retries next cycle. In a one-rule processor,

however, a failed attempt would cause the entire processor to stall indefinitely; therefore the

processor must verify the state of every element before attempting a method call. In other

words, in order to maintain processor functionality and correctness, we needed to explicitly

define the WILL_FIRE signal of each pipeline stage which we expressed with IF conditions that

“guarded” each pipeline stage. This way, we achieved complete control over when each stage

fires and could thus specify the precise schedule of the processor stages.

The new explicit conditions guarding the various processor stages were expanded versions of

the guards used in the original multi-rule Bluespec description. All guards conditioned on the

type and nature of the instruction being processed were implemented using purely

combinational logic that takes the instruction as its input (returned by the instruction memory)

and returns a Boolean result. These Boolean results, logically combined with the state of the

relevant FIFOs, determine the WILL_FIRE signal of the individual pipeline stages.

2.1.1.1 FIFOF Methods

Explicit guards require that the processor checks the state of the connecting FIFOs. In the

absence of implicit guards, we had to explicitly ensure that the FIFOs were capable of handling

a pipeline stage’s requests before executing the stage itself. This required all FIFOs in the

processor to be changed into FIFOFs, which are identical to FIFOs but have the additional

6.375 Complex Digital Systems Bichler, Carli, Yamhure

6

capacity of being asked whether they are empty or full, which is crucial for ensuring the

feasibility of enq and deq of the FIFO. Additionally, new interfaces were written in Bluespec to

allow for the interaction of the FIFOFs with the instruction and data memory modules.

2.1.1.2 dataReqQ_guard/dataRespQ_guard

Guards also require that the processor checks the nature of the instruction being processed.

Certain instructions (all but LOADS and STORES) do not require any interaction with data

memory. Thus there is no need to wait for the data memory queues to accept/return a

request/response to or from data memory. These conditions were made explicit by writing two

Boolean values, dataReqQ_guard and dataRespQ_guard, and inserting them in the explicit

guards of execute and writeback stages.

2.1.1.3 wbQ_guard

Certain instructions (certain branches and jumps) do not write to the register file. Thus, for both

correctness and performance reasons, we made it explicit that there is no need to wait on the

readiness of the writeback stage and its associated FIFOs when dealing with such instructions.

This logic is implemented with a wbQ_guard Boolean, also integrated appropriately in the

explicit guards.

2.1.2 Customized SFIFO

The transition to a single-rule processor also required us to customize the searchable FIFO

(referred to as SFIFO) that connects the execute and writeback stages of the processor (referred

to as wbQ). It is searchable in order to protect against data hazards and had to remain

searchable for the same reason in the single-rule merged version of the Bluespec description.

The customization of our wbQ involved introducing two additional methods and reordering the

method schedule. The new SFIFO’s schedule, including new methods, is:

first, find, find2, notFull, notEmpty, deq < enq < clear

6.375 Complex Digital Systems Bichler, Carli, Yamhure

7

We added the FIFOF methods notFull and notEmpty, with proper interface, so that the explicit

guard can verify the state of the SFIFO before firing stages.

To implement the new schedule, we used EHR registers to hold both the data and the valid bits.

Having execute and writeback in the same rule implies that one rule will enq while the other

will deq in the same cycle. The valid-bit structure of the SFIFO implies that both enq and deq

will read and write registers in the SFIFO. Using EHR registers allows us to schedule the reads

and writes as needed to ensure correctness and avoid conflicts and structural hazards.

Pulse wires were avoided in order to allow enqueue and dequeue to occur in the same cycle.

With full parallelism, when all stages fire concurrently, wbQ needs to deq and enq

simultaneously. Thus we eliminated the pulse wire found in the base-line SFIFO.

Another issue is that of bypassing. Our register file is write-before-read, EHR-based and

bypassable in order to avoid RAW hazards during full stage parallelism - once dequeued by

writeback, an instruction writes the new value before the execute stage fires. Our initial SFIFO

was bypassable too, which caused a combinational loop between execute and writeback. We

solved this by scheduling the notFull and notEmpty as read_0, so that if deq and enq are

requested in the same cycle on an empty SFIFO, the dequeue will see wbQ as empty and not

fire.

Finally, we scheduled the SFIFO methods in according to the schedule of the processor stages,

expressed by the explicit guards. To ensure correct stage scheduling, we allow the find, notFull

and notEmpty methods used by the explicit guards to happen before the SFIFO methods that

are required when the stages fire. Therefore, find, notFull and notEmpty make use of read_0.

Furthermore, in order to avoid scheduling conflicts between execute and writeback, we altered

the scheduling properties of the SFIFO so that deq < enq which translates into writeback <

execute. This schedule is consistent with the register file and prevents a conflict.

2.1.3 Discard and stall

Discard, implemented as part of the one-rule processor, is used to eliminate stale instructions

between the pc generation and execution. Its guard is mutually exclusive with the execute

6.375 Complex Digital Systems Bichler, Carli, Yamhure

8

condition, so that it fires only when the pcQ is locked with old data. Correctness is guaranteed

by the 1-bit value hasToken and the wait4token state of execute. When the execute stage takes

a branch, it sets a wait4token state, and it fires only when the new good instruction, carrying

hasToken, reaches the first position in pcQ.

The stall logic is implemented as a function, concerned with avoiding RAW hazards in the

execute-writeback pipeline. It works by searching the wbQ. It only necessary when the execute

and writeback stages are pipelined.

2.1.4 PC register

The pc register was modified to an EHR register in order to ensure correctness during a branch

instruction. Since pcGen and execute are in the same rule, and pcGen always updates the pc

value, during a branch a pc write by execute would cause a structural hazard. In our

implementation, execute performs a write_1 (overwrite) on the PC register while to pcGen

performs a write_0 in the case of a branch/jump instruction.

2.2 Packaging stages into functions

After obtaining a working one-rule version of the processor, we proceeded to packaging the

main combinational functioning of the three stages into parameter-independent functions.

2.2.1 Motivation

There are several reasons why we decided to use the various stages as functions.

• Unchanged combinational workhorse: While different degrees of pipelining influence

the processor’s internal datapath and scheduling, the combinational working of

instruction retrieval, ALU operations and writeback remain unchanged. Therefore it

makes sense to isolate this combinational work into abstracted blocks.

• Function-call mechanisms: In Bluespec, a function is converted into appropriate

hardware at compile-time, in instances when it is called. Therefore, specifying

combinational stages as functions gives an additional degree of flexibility to the system,

6.375 Complex Digital Systems Bichler, Carli, Yamhure

9

wherein, for example, working ALU hardware can be instantiated in more than one

place, and the corresponding hardware only synthesized if and where the function is

called. The designer can easily build combinational paths between hardware by using

recursive calls, without worrying about timing details in communication. These choices

provide higher flexibility for future system expansions.

• Higher-level abstraction: Isolating combinational stages also implies theoretical

advantages. It sets a higher level of abstraction into the system, wherein data routing

can be separated from combinational workings. The internal logic of the functions is

completely parameter-independent, which guarantees the description of an elegant

parametrization, where the only difference between pipeline and non-pipeline resides

in the routing.

2.2.2 Implementation

Each state was separated into a shell and a function. Shells correspond to the parameter-

dependent routing logic, which also interacts with state elements, and calls stage-functions

with the appropriate data.

While theoretically they should be fully combinational, we implemented stage functions as

ActionValue functions, which partially interact with the processor’s state. We chose this

solution since some interactions, for example those with instruction memory, are completely

parameter-independent. Integrating these actions into stage functions provided for a much

cleaner shell code, and highly simplified the complexity of the functions’ input/output types. If

new parameters were to be added which conflict with function actions, it would be easy to

modify state functions to be purely combinational for higher expandibility.

Figure 1 shows the state of our processor after one-rule merging and stage packaging.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

10

Figure 1: One-rule, 3-stage processor with packaged functions. The comprehensive rule fires every

clock cycle, and the firing of individual stages is regulated by explicit guards, which invoke FIFOF

methods (question marks) to check the state/availability of FIFO elements. The combinational

working of each stage, together with part of the memory interfacing, is performed by the function-

blocks. The shell parts take care of all parameter-dependent routing and of invoking stage functions.

2.3 Eliminating Pipeline stages

2.3.1 Merging pcGen and execute

The pcGen and execute stages can be merges by eliminating the FIFOF pcQ and inserting a

synchronizing register allow_pcgen. Since merged stages always work on the same instruction,

execute can read the pc value directly from the pc register for branch instructions. The

hardware for pcQ, as well as all discarding mechanisms, is eliminated, and the instrReq/RespQ

FIFOFs are reduced to size 1.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

11

The 1-bit Boolean register allow_pcgen, initially set to true, ensures synchronization between

the two stages by enforcing mutual exclusion. The pcGen explicit guard requires allow_pcgen to

be true, and sets it to false after firing. Execute requires it to be false, and sets it to true after

firing. The allow_pcgen mechanism does not allow concurrent firing of the two stages, however,

the instruction memory cycle latency never allows a combinational path between the stages. In

the following section, however, allow_execute is compatible with single-cycle stage firing.

Figure 2 shows the resulting 2-stage implementation, with the pcGen and execute stages

merged.

Figure 2: 2-stage implementation with pcGen and execute merged. During branches, execute reads

directly from the PC register. The allow_pcG Boolean register coordinates the firing for the two stages

by enforcing mutually-exclusive firing.

2.3.2 Merging execute and writeback

We merged execute and writeback by using a data-holding register, rescomm, and a

synchronizing register, allow_execute.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

12

The EHR register rescomm is used as a temporary holder for the output of execute. It is set so

that execute can write before writeback reads, so as to allow concurrent firing of the two rules.

This register needs to be particularly flexible in its workings, since its workings depend on the

type of instruction processed. In case of ALU instructions, which do not need data memory,

rescomm works as a wire between the two stages. For load/store instructions, rescomm acts as

a register, holding its value until data memory responds. For branch-type instructions, finally,

rescomm is set as invalid, since writeback does not need to fire at all after a branch.

The Boolean synchronizer allow_execute works similarly to allow_pcG, but allows single-stage

firing, and has a few more complications. It allows concurrent firing by being EHR, so that

execute can read it, fire, and write it before writeback does the same. Also, execute only sets

the register to False after non-branching instructions, since in those cases writeback does not

need to fire, and execute can fire again instead.

This implementation can use a regular read<write register file, as opposed to the standard EHR

solution. In fact, with writeback and execute working on a single instruction, there are no read-

after-write pipeline hazards. With the previous implementation, it was necessary to use a

write<read register file for rule scheduling issued, as well as for correctness in the stall logic.

This change to a regular register file implies high savings in hardware, as well as preventing a

combinational cycle between execute and writeback, since, in a 2-stage implementation, the

former fires before the latter.

Finally, the entire stall logic, implemented as a function, is never called, thus never synthesized.

Figure 3 shows the 2-stage implementation that results from merging execute and writeback.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

13

Figure 3: The 2-stage implementation with merged execute and writeback. The EHR register file is

substituted with a regular read<write register file. The rescomm register allows for single-cycle (ALU

instructions) or deferred (LD/ST) communication between the two stages. The Boolean allow_exec

synchronized the two stages, while allowing single-stage firing.

2.3.3 Combining the merging: 1-stage version

Figure 1 shows a 1-stage version of the processor, which was was obtained by linearly

combining the explicit guards and routing paths of both 2-stage implementations. This linear

superimposition stands as a demonstration of true and elegant parametrization, because it

proves that the two stage parameters are independent. The simplicity in the implementation of

the 1-stage version leads a fundamental conclusion for future expansions: with new parameters

introduced, code length and complexity increase linearly, while the number of possible

processor configurations increase exponentially.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

14

Figure 4: The 1-stage version of the processor. It was obtained by linearly combining the explicit

guards and routing paths for both 2-stage versions.

2.4 Parameter Implementation

In implementing the parameters, we decided to use compiler macros to ensure both

correctness and area optimizations. The two pipeline parameters are defined initially, and the

commands `ifdef and `ifndef ensure that the compiler can skip parts of the code depending on

whether the parameter is defined. We use compiler macros to regulate the composition of

explicit guards, the routing paths, and for some hardware instantiations, e.g. the choice of

register file type. However, most hardware optimizations, such as stall logic or pcQ/wbQ, is

performed automatically by aggressive compiling. Figure 5 shows high-level schematics for our

processor, with notiations on hardware that can be optimized out, and connections that are

parameter-dependent.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

15

Figure 5: High-level processor view. The notation indicates hardware whose synthesis depends on the

processor configuration, and parameter-dependent routing connections.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

16

3. Test Strategy

Our parametrizable processor implements exactly the same instruction sets as the SMIPSv2

processor. That allows us to use the same tests and benchmarks as those used for the SMIPSv2

processor to ensure the correctness of the processor.

However, the primary purposes of designing a parametrizable processor are flexibility and

adaptability, which implies the ability to tune area, clock period and power consumption to

obtain the most efficient processor for the intended task. Therefore, the way in which the

processor synthesizes for each configuration is a major concern for this project. Furthermore,

for our work to be useful, we had to make sure that each configuration has some benefits, in

term of area or Instruction per second (IPS).

Considering the huge amount of time it could take to manually synthesize and extract data for

every processor configuration, we built a set of automated benchmarks, to change the

parameters of the processor, synthesize it, and extract all relevant data such as area and clock

period for each configuration automatically. Table 1 shows a summary of the characteristics we

check for every configuration:

6.375 Complex Digital Systems Bichler, Carli, Yamhure

17

Table 1: Description of test parameters with comparative expected results

Parameter Expectation Best with

Post-synthesis total area Area should increase with the number of

pipelined stages

1-stage

Post-synthesis critical path and

effective clock period

The effective clock period is expected to

decrease with the number of pipelined stages,

as we make the critical path shorter

3-stages

Post-place+route total area Same behavior as post-synthesis total area 1-stage

Post-place+route critical path

and effective clock period

Same behavior as post-synthesis effective

clock period

3-stages

Instruction per cycle (IPC) Due to parallel execution and shared

resources, IPC should slightly decrease when

there is more pipelined stages

1-stage

Instruction per second (IPS) Even if IPC is a little worst for the maximum

stages configuration, IPS should improve

thanks to a increased effective clock period

3-stages

Unfortunately, we were not able to obtain power consumption information for the various

processor configurations. This was due to the fact that parts of our implementation are

described in Verilog, and the BlueSim power consumption simulation requires a full Bluespec

work.

A designer using our parameterized processor should be able to easily choose the best

configuration for his interests, which would certainly be a tradeoff between area and

performance, and be able to quantify accurately the pros and cons offered by each

configuration.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

18

4. Results

We tested each possible configuration:

- without pcQ, without wbQ (1-stage);

- with pcQ, without wbQ (2-stage);

- without pcQ, with wbQ (2-stage);

- with pcQ, with wbQ (3-stage).

Here is an example of a complete simulation report, automatically generated by our

benchmarks Makefile:

Configuration: woPCQ_woWBQ

 Post-synthesis total area: 19897.500000

 Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns

 Post-place+route total area: 324682.6 um^2

 Post-place+route effective clock period: 5.000ns - (-1.056ns) = 6.056ns

 Benchmark: median

 IPC: 0.249868

 IPS: 41259577 /s

 Benchmark: qsort

 IPC: 0.249921

 IPS: 41268328 /s

 Benchmark: towers

 IPC: 0.249962

 IPS: 41275099 /s

 Benchmark: vvadd

 IPC: 0.249751

 IPS: 41240257 /s

 Benchmark: multiply

 IPC: 0.248531

 IPS: 41038804 /s

Configuration: wPCQ_woWBQ

 Post-synthesis total area: 20427.000000

 Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns

 Post-place+route total area: 351514.2 um^2

 Post-place+route effective clock period: 5.000ns - (-1.701ns) = 6.701ns

 Benchmark: median

 IPC: 0.341072

 IPS: 50898671 /s

 Benchmark: qsort

 IPC: 0.410716

 IPS: 61291747 /s

 Benchmark: towers

 IPC: 0.316339

 IPS: 47207730 /s

 Benchmark: vvadd

 IPC: 0.384429

 IPS: 57368900 /s

 Benchmark: multiply

 IPC: 0.380400

 IPS: 56767646 /s

6.375 Complex Digital Systems Bichler, Carli, Yamhure

19

Configuration: woPCQ_wWBQ

 Post-synthesis total area: 22406.750000

 Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns

 Post-place+route total area: 349309.6 um^2

 Post-place+route effective clock period: 5.000ns - (-2.060ns) = 7.060ns

 Benchmark: median

 IPC: 0.249868

 IPS: 35392067 /s

 Benchmark: qsort

 IPC: 0.249939

 IPS: 35402124 /s

 Benchmark: towers

 IPC: 0.249962

 IPS: 35405382 /s

 Benchmark: vvadd

 IPC: 0.249751

 IPS: 35375495 /s

 Benchmark: multiply

 IPC: 0.249350

 IPS: 35318696 /s

Configuration: wPCQ_wWBQ

 Post-synthesis total area: 22823.250000

 Post-synthesis effective clock period: 4.00ns - (0.00ns) = 4.00ns

 Post-place+route total area: 363453.0 um^2

 Post-place+route effective clock period: 5.000ns - (-0.433ns) = 5.433ns

 Benchmark: median

 IPC: 0.392375

 IPS: 72220688 /s

 Benchmark: qsort

 IPC: 0.434285

 IPS: 79934658 /s

 Benchmark: towers

 IPC: 0.419139

 IPS: 77146880 /s

 Benchmark: vvadd

 IPC: 0.453956

 IPS: 83555310 /s

 Benchmark: multiply

 IPC: 0.384702

 IPS: 70808393 /s

As the output example shows, we performed synthesis and place+route for all 4 configurations.

However, we focused more on the synthesis results, which seems more relevant for several

reasons:

• If we can reasonably expect to get every time exactly the same results for the synthesis

step for a given code, it is not the case of the place+route step, because it is partially

heuristic and very dependant on the synthesized code. Indeed, for insignificant (or even

no) changes in Bluespec code, the area and effective clock period can change a lot.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

20

• The place+route process is not ideal: we expect that the default floorplanning may not

be optimal for every processor version, and in the worst case, it could even favor the

pipelined version since it was primarily designed for this processor configuration. The

idea of parametrizing the floorplanning configuration is feasible, but beyond the scope

of our project.

• Since the theoretical minimal effective clock period is different for each version, and

lower for the fully pipelined processor (since the critical path is shorter), having a fixed

target for the effective clock period, whatever the configuration is, may result in certain

case in a much bigger area than intended, as Encounter might desperately try to slightly

decrease the clock period in cost of much bigger area.

At the contrary, synthesis figures don’t really reflect the real area we will eventually get, but are

probably more adapted to do comparisons between different architectures, since they are

directly proportional to the number of gates and transistors in the circuit.

There is actually a huge number of possibilities and design exploration that are possible for

every single processor configuration (1 to 3-stages), such as tweaking FIFOs size, the register file

type, or implementing additional hardware for branch predictor and so on. Considering that,

and also the huge amount of time required to benchmark each modification (4 to 5 hours), we

choose to present our results for two main variations of our design, to show how optimization

for each configuration could impact the performances of the processor.

We found that an EHR register file was actually not necessary for the 2 configurations with a

merged execute and writeback, and that we could replace it by a regular register file with

negligible IPC loss, but significant decrease in area, as it can be seen in our results. This is only

one example, but it is important since it confirms the relevance of our project.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

21

4.1 Area

As expected, the area of our processor increases when we add decoupling with pcQ and wbQ

FIFOs. Turning the EHR register file to a regular one effectively decrease the area. If the area is a

primary concern for the designer, the no-pcQ and no-wbQ (1-stage) version of the processor is

the smallest.

Post-synthesis total area

18000.00

18500.00

19000.00

19500.00

20000.00

20500.00
21000.00

21500.00

22000.00

22500.00

23000.00

23500.00

w/o pcQ, w/o

wbQ

w/o pcQ, w

wbQ

w pcQ, w/o

wbQ

w pcQ, w

wbQ

EHR RegFile w/o wbQ non-EHR RegFile w/o wbQ

Post-place+route total area

300000.00

310000.00

320000.00

330000.00

340000.00

350000.00

360000.00

370000.00

380000.00

w/o pcQ, w/o

wbQ

w/o pcQ, w

wbQ

w pcQ, w/o

wbQ

w pcQ, w

wbQ

EHR RegFile w/o wbQ non-EHR RegFile w/o wbQ

Figure 6: Post-synthesis and post-place+route ares results, for EHR and non-EHR versions

Place+route area is very different from the synthesis area, and leads to the previous discussion

about the relevance of theses numbers. However, the general trend is still confirmed for the

non-EHR version.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

22

4.2 Instruction per Cycle (IPC)

IPC is important as it reflect the degree of parallelism of the processor. For the 1-stage

processor, IPC is comparable to the baseline Bluespec processor, and increase with parallelism.

Of course, a lot of effort could still be done in order to increase it, especially for the 3-stages

version, mainly by introducing a basic branch predictor. It is important to notice that, for our

set of benchmarks, the elimination of the pcGen-execute pipeline causes a dramatic decrease in

IPC. This happens because the instruction memory is accesses every cycle, and the pcQ FIFO

plays a role decoupling the two stages, thus hiding the memory cycle latency.

IPC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

IPC (median) IPC (qsort) IPC (towers) IPC (vvadd) IPC (multiply)

w/o pcQ, w/o wbQ

w pcQ, w/o wbQ

w/o pcQ, w wbQ

w pcQ, w wbQ

Figure 7: Instructions per Cycle results, for various benchmarks and configurations

6.375 Complex Digital Systems Bichler, Carli, Yamhure

23

4.3 Performance

The effective clock period significantly decrease when the three stages are decoupled, as

expected, since the critical path gets shorter. However, it doesn’t shrink systematically with the

number of stages, since the clock period for the 2-stages processor is pretty much the same as

the 1-stage version, suggesting that the ALU is the main latency source. It has to be noticed that

the effective clock period increase with the non-EHR even with wbQ (which should not change

since the non-EHR version only concern the no-wbQ versions), so it is not very relevant and

should be considered for a given the area.

Post-place+route effective clock period

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

w/o pcQ, w/o

wbQ

w/o pcQ, w

wbQ

w pcQ, w/o

wbQ

w pcQ, w

wbQ

EHR RegFile w/o wbQ non-EHR RegFile w/o wbQ

Figure 8: Effective clock-period results

To actually measure the effective speed of our processor, we have computed the number of

instructions per second (IPS) for our benchmarks. It is expected that the IPS increases with the

number of pipelined stages, as more parallelism is achieved. Given our results, IPS is more

dependants on IPC than the effective clock period, which is quite constant. This is interesting,

since it tell use that we should focus on improving IPC without worrying too much on critical

path.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

24

IPS (EHR RegFile w/o wbQ)

0.00

10000000.00

20000000.00

30000000.00

40000000.00

50000000.00

60000000.00

70000000.00

80000000.00

90000000.00

100000000.00

IPS (median) IPS (qsort) IPS (towers) IPS (vvadd) IPS (multiply)

w/o pcQ, w/o wbQ

w pcQ, w/o wbQ

w/o pcQ, w wbQ

w pcQ, w wbQ

IPS (non-EHR RegFile w/o wbQ)

0.00

10000000.00

20000000.00

30000000.00

40000000.00

50000000.00

60000000.00

70000000.00

80000000.00

90000000.00

IPS (median) IPS (qsort) IPS (towers) IPS (vvadd) IPS (multiply)

w/o pcQ, w/o wbQ

w/o pcQ, w wbQ

w pcQ, w/o wbQ

w pcQ, w wbQ

Figure 9: Instructions per Second results for various benchmarks and configurations

We can see that the IPS don’t increase at all by pipelining execute and writeback stage without

pcQ FIFO. This seems relatively easy to explain, as decoupling writeback stage is really useful

only for read or write into the data memory, because the memory has some latency. But since

pcgen and execute stages are not decoupled, the throughput is actually limited by the

instruction memory latency.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

25

4.4 Summary

For our parameterizable processor to be useful, we should take care that the gain in speed is

compensated by the increase in area, and vice versa. To estimate the overall performance of

each configuration, we introduced a “figure of merit” coefficient, which takes into account the

tree main preoccupations of a designer: speed, in term of IPS, area and power:

PowerArea

IPS
FOM

×
∝

Since the power is hard to estimate with accuracy, especially in regards of our considerations

about the place+route process, we just made the very rough assumption that the power is

proportional to the number of gates, therefore to post-synthesis area. Our therefore becomes

2
Area

IPS
FOM ∝ , which is probably fair enough for a first comparison between each variation of

our processor.

FOM = IPS / (Post-synthesis area)²

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

w/o pcQ, w/o wbQ w/o pcQ, w wbQ w pcQ, w/o wbQ w pcQ, w wbQ

Figure 10: Figure of Merit tradeoffs for various configurations

Currently, without further optimization, the 3-stage configuration has the best FOM. However,

the figures are relatively well-balanced for each processor configuration. It is safe to say that no

version truly dominates the others, therefore the parameters provide a balanced tradeoff.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

26

Results show that both versions with merged pcGen and execute stages display a dramatic

decrease in performance, whose has been explained. These results, however, do not exclude

those versions as purely dominated, since the performance decrease depends on the type of

benchmarks, and on the baseline processor configuration. It can be shown that, under a

different configuration and benchmark code, those two implementations can show improved

performance. For example with branch prediction, and vector-based code with a high-number

of load/store operations, there would be high branching, low instruction memory access, and

high data memory access, making for a feasible no-pcQ version.

Each configuration could probably be optimized further, especially for the place+route step,

with clever floorplanning for instance. But our results already demonstrate the viability of a

parametrizable processor, which could be worthwhile particularly for specialized multi-core

processors, where every core doesn’t need to run at the same speed.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

27

5. Conclusions

We managed to design and implement in Bluespec a parametrizable processor where the

number of pipeline stages, and thus the degree of parallelism, is defined using a single

parameter. Our final design includes 4 configurations consisting of a 1-stage, two 2-stage and

one 3-stage processor.

The key to the usefulness and value of our project was ensuring that there is something to gain

from each configuration. Otherwise, if one processor version were superior to all the other

versions in all respects (area/performance/power) then there would be no need to ever use the

other configurations. Namely, we had to ensure that, on going to lower levels of parallelism, we

gained in other dimensions such as area and/or power consumption. By optimizing each

configuration, this turned out to be the case. As we go to lower degrees of parallelism, we

reduce the area of the processor by primarily eliminating bulky FIFOs. Secondly, we can remove

complicated combinational logic that served to protect against data hazards that only occur due

to concurrency of pipeline stages. Additionally, at low levels of parallelism, a simpler non-EHR

register file was sufficient to ensure correctness and optimal performance, thus saving even

more area on the processor chip.

Further studies that we would have liked to perform, given more time, include power analysis

and comparison between the different processor configurations. We feel that, similar to area,

power consumption would show a decrease with decreasing levels of parallelism, again due to

the absence of FIFOs, less supporting combinational logic (such as the stall function) and a

simpler register file. Secondly, we would have liked to commit some time to floorplanning; our

area analysis is based mainly on post-synthesis results. This is because post place-and-route

results are highly heuristic and were optimized for the three-stage version of the processor. If

we had time to experiment with floorplanning, we feel that the results would have been just as

good, if not better, than the post-synthesis results; that lower degrees of parallelism allow for

smaller processor area.

6.375 Complex Digital Systems Bichler, Carli, Yamhure

28

Finally, we were happy to see that different parameter configurations were linearly super-

imposable. While our parameter-regulated processor certainly took more engineering effort

than four separate processors, we are confident that, in future expansions, the addition of

more parameters will be linear growth in complexity, and an exponentially higher number of

possible configurations, thus making our processor a valuable tool for the SOC designer.

6. Acknowledgements

We would like to thank the entire 6.375 staff for their support and suggestions, in particular our

TA Myron King. We would also like to thank the 6.375 student community, who were always

willing to share suggestions and possible solutions for commonly encountered problems.

