5/14/2007

Group IV
Wei-Yin Chen
Myong Hyon Cho

RE-ORDER BUFFER FOR
SUPERSCALAR SMIPSV2
PROCESSOR

MIT6.375 Complex Digital Systems 2007 Spring

Outline

® Introduction
< In-Order vs. Out-of-Order
<+ Register Renaming
< Re-Ordering Buffer
< Superscalar Architecture
® Architectural Design
® Bluespec Implementation
® Results
I

MIT6.375 Complex Digital Systems 2007 Spring

Project Goal

® Design and implement
an out-of-ordering superscalar
SMIPSv2 processor

MIT6.375 Complex Digital Systems 2007 Spring

In-Order vs. Out-of-Order

TIME

1 LWR1, 0(R2)
ADD R7, R6, R5
ADD RY0, R9, R8

ADD R4, R1, R3

...Out-of-Ordering(O00) exe can increase/IPC

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Register Renaming

ADD R3\,R2, R1
ADD R4, R3, RO

Register renaming can solve this prob

MIT6.375 Complex Digital Systems 2007 Spring

| LW R2, O(R1) 1 LW R2, O(R1)
ADD R3, R6, RO ADD R3, R2, R1
ADD R4, R3, RO
ADD R3, R6, RO

(R3 = R1 + R2) (R3 = R6 + RO)

Re-Ordering Buffer

Inst srcl src2 dst
ADD P1 P2 P3
ADD P4 P1 P6
MUL P7 P6 P6
AND P5 P4 P7

Re-Ordering Buffer (ROB)

ALU

ROB keeps information for Oo ispatch.

MIT 6.375 Complex Digital Systems 2007 Spring

Register Renaming

ADDI R1, RO, 1024
LW R2, O(R1)

ADD R3, R2, R1
ADD R4, R3, RO
ADD R3, R6, R0

P1

Re able

R1
R2 P2
R3 P5 P3
R4 P4

MIT 6.375 Complex Digital Systems 2007 Spring

Superscalar Architecture

Inst srcl src2 dst
ADD P1 P2 P3
ADD P4 P1 P6
MUL P7 P6 P6
AND P5 P4 P7

Re-Ordering Buffer (ROB)

Adder Mult

\/N

MIT 6.375 Complex Digital Systems 2007 Spring

5/14/2007

Outline

® Introduction
® Architectural Design
< Main Tasks
< Pipeline Stages
< Microarchitectural Design
® Bluespec Implementation
® Results
® Conclusion

MIT6.375 Complex Digital Systems 2007 Spring

Main Tasks

® Branch
- Resolve branches
- Rollback on mis-predictions

® Commit
- Finish ‘safe’ instructions

MIT6.375 Complex Digital Systems 2007 Spring

Main Tasks

® Insertion
- Fetch instructions
- Rename registers
- Insert into ROB

® Dispatch
- Send ‘ready’ instructions to execution units

® Update

- Update ROB to show values are ready

MIT6.375 Complex Digital Systems 2007 Spring

Pipeline Stages

® ALU instructions

insertion

I pcGen ll:} E>[dispatch] E:)[execute ll:} l update I D retir%

l

® Memory instructions

dispatch Update dispatch update |
[pcGen]Q[insertion]I:>[addr]E:>[addr]I:>[request]w[response D[[ewe;

)

® Branches and Jumps

[pcGen

>

insertion I I:> [dispatch] I:>

branch [branch
resolve |':>[(ink pe) update]DI /e“’e

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Microarchitectural Design

® Overall Design

Decode, Rename, Insert

75 Complex Digital Systems 2007 Spring

® Overall Design

Microarchitectural Design

Retire (Commit or Discard)

Microarchitectural Design

® Overall Design

Branches

® Status of entries in ROB

\4 E F inst
1 1 BNE
1 1 1 suB
1 1 ADD

- SUB updates value
- ADD is dispatched to ALU

- BNE is dispatched to branch unit

Microarchitectural Design

5/14/2007

Microarchitectural Design

® Status of entries in ROB

\ E F inst
1 1 1 BNE
0 1 1 SuB
0 1 ADD

- BNE is resolved, mis-prediction

MIT6.375 Complex Digital Systems 2007 Spring

Microarchitectural Design

® Status of entries in ROB

\ E F inst
4] S 3 BNE -
8] kS S SuUB —_—
2] kS S ADBDB —_—

- ADD gets the result from ALU
- ADD is now retired (discarded)

MIT6.375 Complex Digital Systems 2007 Spring

Microarchitectural Design

® Status of entries in ROB

\ E inst
o S 3 BNE —_—
o |2 SuUB -
0 1 ADD

- SUB is retired (discarded)
- ADD cannot be retired

MIT6.375 Complex Digital Systems 2007 Spring

Outline

® Introduction

® Architectural Design

® Bluespec Implementation
% Bluespec Rules and Methods
< Rule Concurrency
< Design Exploration

® Results

® Conclusion

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Bluespec Rules in mkProc Concurrency Analysis

® Insertion

. yscardretch ® Actions in different stages @ Initial Design

. o decodhelnsert should work at the same * A huge register containing all
® ispatc . 1 .

« dispatchALU time ROB fields and entries ——

. dispatchMem 3’ _ i

. memReq ®© Why don tthey? ® Read Write P_attern method1 method3
® Brabnch oo e Every entry is read and s

. ranchResolve . X,

e branchStep2Llink written by many methods . Register

. branchStep2
® Update

. aluUpdate

. memUpdate

. memUpdateNOP
©® Retire
retirelnst

¢ All action methods conflict
e Compiling is slow

MIT6.375 Complex Digital Systems 2007 Spring

MIT 6.375 Complex Digital Systems 2007 Spring

Bluespec Methods in mkROB Rule Concurrency
® Insertion ® Insertion . mgllho method2
e discardFetch + Action insertEntry ® How to get hlgh
e« decodelnsert 4 e Action insertMemEntry concurrency?
© Dispatch ® Dis[?altChF_ . o Y : RWire | RWire
. i . alulnstFirst ction alulnstPop 1 —
. g::pztiufﬂfm—/# . brinstFirst / Action brinstP ® EVe.ry methOd Wnte to Rul
p . Actionvalue memInstPop RW”’e ue
* memReq . ActionValue memReqPop .
® Branch ® Branch e Structural rule to handle all Regist
...High Method Concurrency in ROB First ‘ the cases er
+ branchstep2 ® Update ® Or Bluespec way!
® Update e Action aluUpdResult D .
« aluUpdate + Action linkUpdResult e Data structure separation P
+ memuUpdate ¢ Action memUpdAddr « ROB Method ordering with .
¢ memUpdateNOP ° R E;;m| getvalidBit EHR 9‘17'
; ® Retire
® . Rertelrtﬁelnst > i ue retirePop
MIT6.375 Complex Digital Systems 2007 Spring MIT 6.375 Complex Digital Systems 2007 Spring

5/14/2007

Data Structure Separatio

® Separated Data Structure
based on the number of reads and writes

VIE|F| 1O | rsrcl |p| rsrc2 |p| sid rdst | Irdst | inst | taken | pc+4

Remained in Vector
- global read
- multiple writers

Fitted in RegFile
- limited read

- single writer
® After this, compile time becomes
reasonable

MIT6.375 Complex Digital Systems 2007 Spring

Lab3 Example

® lab3 with normal FIFO:
e wb < exe < pcgen:
o long path, higher IPC
* pcgen < exe <wb:
o short path, lower IPC
® Why?
® FIFO as CF separator

MIT6.375 Complex Digital Systems 2007 Spring

Rule Ordering in mkProc

® Methodology of rule ordering
propagation
e Determine the top rule ordering

¢ Change the method order of all leaf
modules

¢ Change the EHR index for state variables
¢ Keep EHR index consistent within a rule
® Problem: longer critical path!

MIT6.375 Complex Digital Systems 2007 Spring

Coherent EHR index

® Conflicting to sequentially
composible

® Automation in future compiler
@ Larger area

¢ Multiple instances of combinational
circuit for different EHR index

® Longer path
¢ Directly stack multiple stages

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Non-Coherent EHR Index

® Early read in rule condition
Late write in body
¢ Safe in general
¢ Only influence performance
® Early read in body
Late write in body
¢ Not safe in general
¢ Need domain knowledge

MIT6.375 Complex Digital Systems 2007 Spring

Non-Coherent EHR Index
Unsafe usage

® Domain Knowledge

¢ Snapshot taken/restored cannot be of
the same epoch

e etc...

¢ Non-Coherent EHR Index in rule body
o Error prone optimization

o Need huge effort to analyze the
interaction

MIT6.375 Complex Digital Systems 2007 Spring

Non-Coherent EHR Index
Safe usage

® FIFO Example

® Coherent EHR index produces either BFIFO or LFIFO
® BFIFO:
e enq(...) if(1full[0]) {empty[0O] <= False;...}
e deq() if(lempty[1]) {full[1l] <= False;...}
® LFIFO:
e enq(...) if(1full[1]) {empty[1l] <= False;...}
e deq() if(lempty[0]) {full[0] <= False;...}
® Combinational path between methods
® FIFO in bsv with EHR
e enq(...) if(IFfull[0]) {empty[l1l] <= False;...
e deq() if(lempty[0]) {full[1l] <= False;. <
e Not Conflict Free

MIT6.375 Complex Digital Systems 2007 Spring

Result of Rule Concurrency

® Highest possible concurrency in
systems with one-writing-port register
file

® Similar critical path and area
e Path 2% longer
e Area 8% larger

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Design Exploration

® Adjusting Pipeline

- Merging execute stage with update
stage

+ Shortens end-to-end dependency
- Possibly lengthen the critical path

MIT6.375 Complex Digital Systems 2007 Spring

Design Exploration

® Different ROB Sizes

The size of ROB determines how ‘far’ it can
find executable instructions
If it is too small, the performance may suffer

If it is too large, the penalty for mis-prediction
becomes too high

MIT6.375 Complex Digital Systems 2007 Spring

Design Exploration

® Adjusting Pipeline

- Simply implemented by using BFIFO
+ Result

- High concurrency attained

IPC 5.8% higher than the most optimized
version*

- The critical path is almost the same
1% longer than the most optimized version**

* For 5 benchmarks used for SMIPSv2
** From the result of synthesis

MIT6.375 Complex Digital Systems 2007 Spring

Design Exploration

® Different ROB Sizes

s

- The size of 8 was chosen.

MIT6.375 Complex Digital Systems 2007 Spring

5/14/2007

Outline

® Introduction
® Architectural Design
® Bluespec Implementation
® Results
< Physical Numbers
< Performance Results
® Conclusion

MIT6.375 Complex Digital Systems 2007 Spring

Physical Numbers

® Area Analysis
- Total Area 1.42 mm? after place and route

MIT6.375 Complex Digital Systems 2007 Spring

Physical Numbers

® Critical Path
¢ 4.44ns after synthesis
@1.88ns : A branch dispatched from ROB
@2.86ns : Source is read from register file
@4.24ns : PC register is updated

¢ 9.40ns after place and route

MIT6.375 Complex Digital Systems 2007 Spring

Performance Results

® Case 1:LAB3 -low profile version
wbQ size 2, no bypassing register file

® Case 2 : LAB3 - high profile version
wbQ size 8, bypassing register file, decoupled wbQ and mem

® Case 3: 000 Superscalar - non-concurrent version

® Case 4: 000 Superscalar - initial version
ROB size of 8, execution and update are separate

® Case 5: 000 Superscalar - merged stages
ROB size of 8, execution and update are merged

MIT6.375 Complex Digital Systems 2007 Spring

10

5/14/2007

Performance Results
® IPC Result

MIT6.375 Complex Digital Systems 2007 Spring

Outline

® Introduction
® Architectural Design
® Bluespec Implementation
® Results
® Conclusion
< Summary
< Possible Follow-ups

MIT6.375 Complex Digital Systems 2007 Spring

Performance Results

® Analysis with LAB3 SMIPSv2

LAB3 SMIPSv2 does not suffer much from data
dependency

In order to exploit superscalar architecture, we
need to fetch and commit multiple instructions at
one cycle.

Since more execution units can be added to t

especially in the case with more ¢
instructions such as multiplieations

MIT6.375 Complex Digital Systems 2007 Spring

Summary

® Out-of-order execution

« Al ALU instructions and memory address
calculations are out-of-order.

« Branch resolutions and memory requests are in
order.

- Speculative execution:

Even instructions after an unresolved branch ca
be executed out-of-order and possibly discarde
properly in case of mis-predictions.

MIT6.375 Complex Digital Systems 2007 Spring

11

5/14/2007

Summary Possible Follow-ups
@ Superscalar architecture ® Multiple instruction fetch and
ALU execution, branch resolution, memory commitment
address calculation and sending memory request ® More execution units

can be done simultaneously.

® Precise interrupt handling

® Complex ALU operations

MIT6.375 Complex Digital Systems 2007 Spring MIT6.375 Complex Digital Systems 2007 Spring

Summary

® Optimal rule concurrency

Achieved the highest rule concurrency with
single write port register file and renaming table
IPC reaches 1 if no mispredictions

Even with memory operations if ROB is large
enough to compensate memory latency

Thanks to
Prof. Arvind and Prof. Asanovic
TA Myron and Ajay

MIT6.375 Complex Digital Systems 2007 Spring

MIT6.375 Complex Digital Systems 2007 Spring

12

