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Abstract 

In this project, we designed and implemented an out-of-ordering superscalar 

SMIPSv2 processor. The key of this project is designing a re-order buffer which 
controls a lot of information to tell whether each instruction is ready to be 
executed, committed, or discarded. Also, we used multiple number of operation 
units for the processor, including an ALU unit, a branch resolution unit, and an 
address calculation unit for memory instructions, to improve the performance 
even further. To deal with various situations, this processor has to be far more 
complex than in-order processors. Furthermore, jumps/branches and memory 

loads/stores were especially difficult and needed to be considered very carefully. 
Using Bluespec was another key point for this project. It enabled for us to 
develop the processor in a high-level point of view and guarantee correctness by 
construct, but at the same time, we needed to understand Bluespec well to make 
sure it produces a hardware design that we wanted to implement. Specifically, 
attaining high rule concurrency was not easy, and keeping the critical path short 
was also far from trivial. We faced a number of challenges, but we ended up with 
a working processor that can speculatively execute all ALU instructions and 
memory address calculation out-of-order with the optimal rule concurrency 
possible with a single write-port register file. The re-ordering superscalar 
machine has as high performance as SMIPSv2 processor in Lab3 which solved 

the data dependency problem in another way. After exploiting wide pipeline 
superscalar architecture, it will excel the processor in Lab3. 
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1. Project Description 

The main goal of our team is designing a re-order buffer for an 
out-of-ordering superscalar SMIPSv2 processor in Bluespec. To achieve this goal, 
we needed to deal with the behavior of out-of-ordering machine, which 
challenged our skills to carefully design complex logical operations of digital 
devices. A superscalar architecture is another powerful way to improve the CPU 
performance, and we aimed to do a superscalar processor as well because 
out-of-ordering execution greatly handles superscalar machines with different 
delay times of each execution unit. 

Obviously, the purposes of the out-of-ordering machine are increasing the 
performance of the processor in terms of efficiency (IPS), and exploiting the 
parallelism of applications. The re-ordering unit will interact with various 
modules in the processor such as decoding unit, free list, renaming table, register 
file, ALU, branch unit, memory unit as well as the instruction cache, managing 
complex controls over data flow and data dependencies. We used the unified 
physical register file as used in MIPS R10K, Alpha 21264 and Pentium IV for ALU 
operations. However, we creatively merged a re-ordering buffer without unified 
physical registers for memory instructions to solve problems efficiently. 

We needed to orchestrate a number of rules that defined the behavior of the 

re-ordering unit and also implement correct and efficient interface between 
logical units so that the processor would gain the optimal performance. Also, we 
will design a set of testing scenarios which will show what kind of design choices 
affect the processor performance most significantly and how much improvement 
we can expect from introducing out-of-ordering superscalar machine to SMIPSv2 
processor we have examined through the lab assignments. 

2. Introduction to Re-Order Buffer and Superscalar 

Processor 

2.1. Out-of-Ordering Execution 

Figure 1 illustrates why out-of-ordering machines can expect higher 
bandwidth in executing programs. With an in-order processor, if an instruction 
has a long delay and the execution of the next instruction is dependent of its 
result then the whole execution should wait until that instruction is finished. 
However, if we can execute other instructions that are not dependent of the 
instruction with long delay then we can accelerate program execution. 
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Figure 1 In-order execution vs. out-of-ordering execution 

To implement this out-of-ordering execution, the processor must be able to 1) 

keep track of the status of multiple instructions, and 2) resolve dependencies 
between instructions so it could fire instructions which are ready to be executed. 
Moreover, it is important to handle branches and memory instructions because 
all speculative instructions need to be discarded if speculated wrong, even after 
they are already executed. Therefore, out-of-order execution should keep its 
in-order information to properly recover the previous states, which is illustrated 
in Figure 2. This brings much more complexity compared to conventional 
in-order processors.  
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Figure 2 In-order recovery of out-of-ordering execution 

2.2. Re-Order Buffer with Unified Physical Register File 

Unified physical register is used in different commercial processors such as 

MIPS R10K, Alpha 21264, and Pentium IV to implement out-of-ordering 
execution. It keeps the information about dependencies between instructions by 
register renaming. Although architectural register names are continuously 
reused in original machine codes, all these names are renamed by processor into 
physical register names so dependencies are translated into the re-ordering 
buffer and the rename table, and solve the write-after-write hazard. 

Out-of-ordering machines without unifies physical register file deals with 

dependencies by writing each calculated result onto re-ordering buffer itself. We 
choose to use unified physical register because we thought having a separate 
physical register file is the better way to utilize data storage than reserving 

storage size embedded in each re-order buffer entry.  



3. High-level Processor Design 

3.1. Life Cycles of Instructions in Re-order Buffer 

3.1.1. ALU instructions 
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Figure 3 Life cycles of ALU instructions in re-order buffer 

All instructions are fetched from the same fetching unit with in-order 

SMIPSv2 processor, but then inserted into the re-order buffer. ALU instructions 
only stay in the main re-order buffer. There is another special re-order buffer for 
memory instructions. We will refer to the main re-ordering buffer as ALU ROB, 
and the special re-ordering buffer for memory instructions as memory ROB. The 
newly inserted instruction enters ALU ROB with {valid} state, and it has bits 
showing whether the register containing source values for the operation is ready 
or not. If all sources are present, then it can be chosen by a decoder (out of order 
and oldest first), and its arguments are transferred to the ALU module, and its 
state becomes {valid, execution}. When ALU finishes its calculation and the result 

updates the buffer and the register file, then its state becomes {valid, finished}. 
When branch is resolved and this instruction is ready to be committed, it can be 
chosen by another decoder and committed, and then its state becomes {finished}. 

The process discussed above assumes that eventually this instruction will be 

committed, but it may need to be discarded due to branch misprediction. When 
misprediction is detected when its state is {valid} or {valid, finished}, then just 
the {valid} bit is cleared and it won’t be dispatched to ALU or committed because 
decoders check whether valid bit is set. However, we need to take care of {valid, 
execution} state; we cannot just discard this entry because the ALU result will 
return and the result should be discarded as well, or it could overwrite future 

entries. This is why it has {execution} state, and in case that it has {valid, 
execution} on misprediction, then {valid} is cleared and instructions with 



{execution} states will remain in the buffer until their results come back from 
ALU and get discarded. 

3.1.2. Branch/Jump instructions 

Branch/jump instructions stay only in ALU ROB, and have similar life cycles 
with ALU instructions. The difference is that they will dispatch to separate 
branch/jump units because we have superscalar processor. However, all 
branch/jump instructions are designed to be executed in-order, because if 
speculative branches or jumps are executed then it needs to keep enormous 
amount of information to recover from misprediction, which we concluded to be 

inefficient. 

To implement different dispatching algorithm, all branch/jump instructions 
have one more state {in-order}, since they first come into the buffer until they 
are freed from the buffer. Actually, any instructions that need to be done in-order 
and not to be executed speculatively can be dealt properly only by setting this 

state on, which is already used with mtc0 instruction. 

3.1.3. Memory instructions 

Because memory instructions may cause difficult dependency problems, 

sending memory requests to data cache is planned to be executed in-order like 
branches and jumps. However, to execute memory instruction the processor first 
needs to calculate its source or destination address from base registers and 
offsets. Although we concluded that enabling fully out-of-ordering memory 
operations is inefficient to implement, we found that we could do the address 
calculation parts out of order and it can improve the performance effectively 
with much less costs on hardware. Also, this implies that the processor will have 
an independent address calculation unit other than ALU so the address 
calculation can be re-ordered freely to improve performance. 
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Figure 4 Life cycles of ALU instructions in re-order buffer 

3.2. Branch Unit, Branch Resolution and Snapshots 



This superscalar processor has an independent branch resolution unit so 
branch/jump instructions are dispatched separately. When there is no 
misprediction, it tells the re-order buffer so that instructions after this branch 
may be committed. When there are mispredictions, however, all speculative 
executions, including register renaming, free list, and present bits in the register 
file should be restored to the state before the branch. 

To handle this problem, renaming table is snapshoot for each branch 

instruction, present bit is reset when the destination for a new instruction is 
renamed, and branch unit will inform a misprediction so the buffer can be 
recovered to the states before that branch. 

Moreover, instructions in the buffers need to be discarded as well, and 

because they occupy physical registers for their results those registers are 
returned back to the free list when they are discarded. As we will see in the 
section Pipeline Stage3.4, the retire stage will pick an instruction in the buffers 
and check whether to commit or discard, and take corresponding actions. 

3.3. Memory Address Unit  

To implement out-of-ordering address calculations, we introduced another 
special re-ordering buffer for memory instructions, memory ROB, as stated in the 
section 3.1.1. Load instructions will stay both in ALU ROB and memory ROB, 

while Store instructions will stay only in memory ROB. This is because loads will 
write to a physical register: when a load instruction need to be committed, the 
physical register which the architectural register was previously renamed should 
be freed. And when the load instruction need to be discarded, the physical 
register reserved for the architectural register should be freed. However, this 
operation can be done without regarding to memory operation itself. Therefore, 
keeping the information in the main buffer and let its decoder logic handle this 
operation makes the whole design very simple and flexible. For store 
instructions, we don’t need to care about this operation because they don’t write 
to any physical registers. We will discuss about memory ROB more in detail in 
microarchitectural part, the section 4.3.5. 

3.4. Pipeline Stages 

As we have seen in the section 3.1, the superscalar units in this processor 
handle three kinds of instructions (ALU instructions, branch/jump instructions, 
and memory instructions) differently. Consequently, pipeline stages are 
separated according to the type of instructions. With the high-level point of view, 
each type of instructions goes through the following pipeline stages.  



 

Figure 5 Pipeline stages for ALU instructions 

 

Figure 6 Pipeline stages for branch/jump instructions 

 

Figure 7 Pipeline stages for memory instructions 

PC fetch stage is the same as in lab 3. In this stage, the next PC is generated 

from the branch predictor/BTB, and the request for the instruction of current PC 
is sent to I-cache. When the I-cache returns the instruction, it is decoded and 
inserted to the ROB at decode and insert stage. Depending on the type of the 
instruction, it will be inserted into the main buffer and/or the special memory 

buffer. 

Now the pipeline is divided for different types of instructions. For memory 

instruction, it goes to address resolution. And then the calculated address is 
written back to the memory ROB, and at memory request stage the first one safe 
to commit generates real memory request. When the reply comes, the load 
update stage updates the register file and both ROBs. Note that we separate 
commitment of load instructions into two parts, and the commitment of load 
instruction in ALU ROB part will be taken care by ALU instructions’ pipeline 
stage. Although this is not very clear here, it is much more efficient in 
implementing in hardware. 

For ALU instructions, an instruction in ALU ROB goes into ALU dispatch and 

execution stage. Here the operand is read, and the instruction with its operands 
is dispatched to the execution module. After this stage, the instruction goes into 
execute stage. The operands are read in the dispatch stage, so the execution stage 
only handles the ALU related calculations without communicating with other 
modules. After an ALU operation is finished, the result is sent to result queue. 
ALU update is the next stage. In this stage, the result from execution stage is 
updated to the ROB and corresponding physical register. The present bits in the 
ROB are updated as well. 

Branch instructions go through different pipeline stages as well, and the 

branch resolution handles all kinds of conditions resulting in discontinuous PC, 

pcGen insertion dispatch execute update retire

pcGen insertion dispatch
branch
resolve

(link pc)
BTB

update
retire

pcGen insertion
dispatch

addr
update

addr
dispatch
request

update
response

retire



including branch instructions and J-type instructions. For these instructions, 
after the operand is read or decoded, the branch or jumping is resolved right 
away. And then, update stage will inform ALU ROB and memory ROB so they 
could commit or discard instructions after that branch/jump. Also, a correct PC 
target and a flag signal are sent back to the fetch stage and many modules need 
to discard the expired items in the following cycles. 

For all kinds of instructions, the final stage is the retire stage. In this stage, an 

instruction is either committed or discarded. After all the results of previous 
branches are resolved the same as prediction, the result can be committed to the 
memory system and return the “last destination” register to the free list. If a 
branch is resolved wrong, then some part of the ROB will be discarded, and 

renaming table restore its previous snapshots. The free list would return to the 
state before the mispredicted branch when all the later instructions are 
discarded and all the destination registers are freed. However, store instructions 
take only memory related request at the retire stage, and loads instruction take 
both. 

3.5. Data Dependency Loop 

From the pipeline stages described in previous section, we can see the 
dependency caused by read-after-write is worsened than the in-order processor. 
In Lab 3, if we don’t use the bypassing register file, and fire execution before the 

write back stage, then it has to stall for one cycle to resolve the immediate 
read-after-write dependency. 

In our pipeline design, if all the instructions are dependent on the immediate 

previous instruction, the performance could be very low. For example, the first 
instruction is dispatched at the first cycle, executed at the second cycle, and write 
back to register file and update the ROB at the third cycle. Finally, the second 
instruction can be fired at the fourth cycle. So there are two bubble cycles in the 
pipeline, and the IPC can only be 1/3. 

However, this kind of extreme serial dependency is not normal for practical 

programs, and the software critical dependency path is normally shorter than 
1/3 of the length of total code. So this longer dependency loop should not be a 
dominant factor of the performance. 

3.6. Architectural Summary of High-level Design 

Figure 8 shows relations between execution units according to the high-level 
behavior described in this section. 



 

Figure 8 High-level description of out-of-ordering superscalar SMIPSv2 processor 

4. Microarchitecture and Bluespec Implementation 

4.1. Processor Module 

 

Figure 9 in the next page shows detailed microarchitectural structure of the 
processor, regarding to Bluespec rules, modules and methods. The same 
high-level pipeline stage is often decomposed by several Bluespec rules to avoid 

those rules to be conflict by reading and writing into the same data structure at 
the same time. Some of these rules can fire at the same cycle and others cannot. 
We will provide more information about this in the section 5. 

Here is the list of Bluespec rules in processor module and their descriptions.  

pcgen 

- Take predicted PC from branch predictor or increase the current PC by four, send 

requests to I-cache 

discardFetch 

- Dequeue instructions coming from I-cache in case of misprediction. Misprediction 

is determined by inspecting the tag from the I-cache and the current flag. 



decodeInsert 

- Decode instructions from I-cache and put into re-ordering buffers. Mutually 

exclusive with rule discardFetch 

 

dispatchALU 

- Decode ready ALU instructions, read the operands from the register file and 

dispatch to execution module 

 

branchResolve 

- Decode a ready branch or J-type instruction from ROB, read the operands and 

resolve the branch condition. Update the BTB and new PC 

branchStep2Link 

- For JAL instructions, write the current PC into register file and update ALU ROB.  

branchStep2 

- According to the branch resolution, tell ROBs whether the prediction was right or 

wrong 

 

aluUpdate 

- When the results of ALU instruction come from execution module, update the 

ROBs and register file. 

 

dispatchMem 

- Calculate address of ready memory instructions and update the calculated address in 

memory ROB 

memReq 

- Get the first ready memory operation in memory ROB. Send requests to D-cache 

memUpdate 

- When results of load instructions come from I-cache, update the ROBs and register 

file. If the register file only has one write-port, then the confliction with rule 

aluUpdate cannot be removed. 

memUpdateNOP 

- When results of store instructions come from I-cache, dequeue the response and do 

nothing else 

 

retireInst 

- Get retiring (commit or discard) instruction from ROBs, and put register index back 

to freeList 
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Figure 9 Microarchitectural structure of processor module 



4.2. Re-ordering Module 

The interface can be better described in Bluespec code. This is not the final 
version of the interface, just used to explain the concept, and different styles are 
mixed in the interface example, which will be described in the later parts. 

interface ROB; 

  method Action                    insertEntry     ( ROBInstr inst); 

  method Action                    insertMemEntry  ( MemROBInstr inst ); 

  method ActionValue#(ROBInstrIdx) aluInstPop      (); 

  method ActionValue#(ROBInstrIdx) brInstPop       (); 

  method Bool                      getValidBit     ( ROBIndx index ); 

  method Action                    aluUpdResult    ( ROBIndx index, PRindx prdst, Bit#(32) data ); 

  method Action                    linkUpdResult   ( PRindx prdst, Bit#(32) data ); 

  method ActionValue#(ROBRetire)   retirePop       (); 

  method ActionValue#(MemCalReady) memInstPop      (); 

  method Action                    memUpdAddr      ( MemROBIndx index, Addr addr ); 

  method ActionValue#(MemReqReady) memReqPop       (); 

  method Action                    discard         ( ROBIndx index ); 

  method Action                    resolve         ( ROBIndx index ); 

endinterface 

This module contains two tables to store the reordered instructions. One is 
for memory related instructions, and another one is for all the other instructions 
and load instruction. They are described in section 4.3.4 and 4.3.5. 

The functionality of these methods are described below: 

insertEntry/insertMemEntry 

- Insert an instruction to ALU/memory ROB. 

aluInstPop/brInstPop/memInstPop/memReqPop 

- Find out the first available ALU/branch/memory/memory instruction for 

execution/branch resolution/address calculation/memory request and label it as 

executing. 

getValidBit 

- Return the valid bit of an entry in ALU ROB. This is to check if the returned data 

from the execution stage can be updated to the register file. 

aluUpdResult 

- The present bits in ALU ROB are set if it matches the updated data and the entry 

that generate the updated data is valid. The base and source fields in memory ROB 

are updated as well. 

linkUpdResult 

- Similar with aluUpdResult, but the valid bit is not checked. It doesn’t need to check 

the valid bit because this is only used by the linking instruction (JAL and JALR) and 

memory update, which are never speculative. 



retirePop 

- Return the instruction that can be retired, and label it as invalid. The head pointer is 

also incremented. 

memUpdAddr 

- Update the address field in the memory ROB 

discard 

- Label all the entries in ALU ROB and memory ROB as invalid if the snapid is 

“cyclically larger” than the snapid of mispredicted branch. The concept of cyclic 

comparison is to interpret the difference of the two values as signed value in the 

same bit width. For example, if the snapid is 3 bits wide, 4-7=-3, and 2-7=3. The 

possible number of snapids should be two times larger than the size of ALU ROB in 

order to guarantee the correctness of cyclic comparison. 

resolve 

- Label the corresponding branch instruction in the ALU ROB as finished. 

Re-ordering module is supposed to have no rules, but there is only one rule to 

move the head pointers of memory ROB, because the discarding of memory ROB 
is not handled in the processor module. 

discardMem 

- When an instruction should be discarded from memory ROB, move pointers. 

4.3. Leaf Modules 

In this section, more detailed microarchitectural implementations of leaf 
modules are provided. 

4.3.1. Free List 

The interface can be better described in Bluespec code. 

interface FreeList; 

  method Action                         setFree         ( PRindx item ); 

  method ActionValue#(PRindx)           getFreeIdx      (); 

endinterface 

The state of free list can be represented in a 63-bit (assuming the size of 
physical register file is 64, and P0 is always 0) array. The query of a free index 
can be implemented by a priority decoder. The downside (or feature) of the 
priority decoder is the usage is not balanced. It can also be implemented by a 
shifted priority decoder (see section 4.3.6), and the shifting amount is updated 
by the chosen free index. As a result, the return value of the free list is evenly 
distributed and cyclic monotonic, and the newly returned item is not reused 
immediately. This property helps an optimization related to LW instruction. 



As stated before, we don’t have to use snapshots in the free list, as the 

discarded instructions returns the destination back to the list when they are 
discarded. 

Furthermore, it is hard to use snapshots to restore the state because the 

branch can be resolved before the commitment of previous instructions. As a 
result, the snapshot is taken when the branch instruction is inserted, but we do 
want to keep the returned items by the previous instruction. 

Here is a scenario that could cause this problem. An instruction is decoded 

and inserted. At the next cycle, a branch instruction is decoded and inserted, and 
the snapshot is taken. After that, the earlier instruction commits, and the last 

destination returns to the free list. Finally, the branch instruction is resolved and 
the result is mispredicted, so the snapshot is restored. However, the committed 
item of the previous instruction is gone. 

4.3.2. Renaming Table 

The interface can be better described in Bluespec code. 

interface Rename; 

  method Action update          ( Rindx index, PRindx value ); 

  method PRindx getPhyIndx1     ( Rindx index ); 

  method PRindx getPhyIndx2     ( Rindx index ); 

  method PRindx getPhyIndx3     ( Rindx index ); 

  method Action takeSnapshot    ( SnapID id ); 

  method Action restoreSnapshot ( SnapID id ); 

endinterface 

The renaming table contains a register file with depth equal to the depth of 
architectural register file, and with width of log2(depth of physical register file). 
The set of snapshots duplicate the register file. The snapshot is accurate because 
renaming table is only modified in the decode-and-insert stage. 

4.3.3. Physical Register File 

The interface is defined as follows: 



interface PRFile; 

  method Action   wr( PRindx rindx, Bit#(32) data ); 

  method Bit#(32) rd1( PRindx rindx ); 

  method Bit#(32) rd2( PRindx rindx ); 

  method Bit#(32) rd3( PRindx rindx ); 

  method Bit#(32) rd4( PRindx rindx ); 

  method Bit#(32) rd5( PRindx rindx ); 

  method Bool      getPBit1( PRindx rindx ); 

  method Bool      getPBit2( PRindx rindx ); 

  method Action  clearPBit( PRindx rindx ); 

endinterface 

The differences between this register file and that in lab3 are the size and 
present-bits. If not indicated otherwise, the size is 64 elements, with PR0 always 
stick to zero. The present bits are important for the decode-and-insert stage to 
look up whether the value of a register is present. The present-bit is set at the 
ALU-update stage along with the write to the register, and cleared at the commit 
stage. It doesn’t need snapshots for the present bits because we can also clear it 
at decode-and-insert stage, so the wrongly set present-bit of destination would 
be erased whenever it is allocated again as the destination. As a result, 
speculative execution doesn’t cause problems in the present-bits in register file. 

4.3.4. ALU ROB 

There are two pointers in the ALU ROB: head and tail. The entry pointed by 

the head pointer is the next to be committed or discarded, and the one pointed 
by the tail pointer is a place for the next insertion. There are also two Boolean 
variables: full and empty. These variables distinguish the state when the head 
pointer equals the tail pointer. They can also be used in the condition of methods, 
resulting in optimized critical path. 

Each entry in the ROB contains several status bits: valid, execute, in-order, 

some present bits for operands, and finish. All the entries are initially invalid. 

After instruction insertion, it is valid. If an ALU or branch instruction pops, the 
execute bit is on. After the result of ALU returns or the branch is resolved, the 
execute bit is off and the finish bit is on. When handling the entry pointed by the 
head pointer, if the valid and finish bits are both on, then we can commit it. Or if 
it is invalid, then we can discard it. Otherwise just wait. 

Regarding to atomicity, all the invalid entries are labeled at the same cycle 

when a branch is resolved. This guarantees the atomicity and the correctness. 
Even if there are some results on the fly, they will be discarded and not writing to 
the register file when coming back. 

4.3.5. Memory ROB 



Another important point of memory ROB is that it has actual value for base 

registers and source registers for store instructions, rather than physical register 
indexes and present bits. Because we have an independent address calculation 
unit, memory instructions do not have to act synchronously with ALU ROB, only 
except the fact that it should check whether the data for memory instructions 
will be still valid in physical register file when their executions begin. ALU ROB 
doesn’t care about memory ROB, so the physical register that contains data for 
memory instructions may be freed before the memory instructions read it. To 
solve this problem, memory ROB has data field rather than physical register, so 
when the source value or base address is produced, memory ROB will take those 
values inside it so ALU ROB may not consider memory ROB in freeing physical 

registers. 

As a result, only ALU ROB uses the unified physical register architecture. 

Memory ROB just put everything in the table. This also enables the possibility to 
do sophisticated dependency checking within the memory ROB. 

4.3.6. Shifted Priority Decoder 

A priority decoder outputs the first met item and returns the index of that 
item. The priority is static and can be monotonically increase or decrease with 
the index. 

Shifted priority decoder is a variance of the priority decoder. The priority has 
a shifting amount, which is a parameter changeable in the run-time. This shifted 
priority decoder search for the first met item from the shifting amount on, and 
return the index. The priority is circular monotonically increasing or decreasing 
from the shifting amount. 

For example, if we have an array v[n], and the shifting amount is k, then if v[k] 
is met, the decoder returns k, otherwise, it searches v[k+1], v[k+2], and so on, 
and after searching beyond v[n-1], it returns to search v[0], and ends on v[k-1]. 

The hardware is combining a vector rotation module, a normal priority 

decoder, and an adder with rounding control. First module rotates the input 
vector by the shifting amount, so the item with highest priority is rotated to the 
first element. The output of the priority decoder is added with the shifting 
amount, but if the sum is greater than the size of the input vector, the answer is 
subtracted by the size. The last step is equivalent to modulation, but this is 
cheaper in hardware. 

This module is used to find the first available instruction in the reorder buffer, 
and the first free index in the free list. 

5. Obtaining High Rule Concurrency 



5.1. Calling Relationship 

The top level module is the processor module, and all the actions are 
described as rules, which are described in 4.1. These rules call many leaf 
modules, and ROB is the largest and most complex leaf module, and actually 
causes most of the conflictions. The calling relationship is shown below. As a 
result, solving the method confliction in the ROB becomes the first task. 

 

 

Figure 10 Calling relationship between processor and ROB modules 

5.2. Read-Write Pattern 

The reason of having rule confliction is the incompatible read-write patterns 

in different rules. If the read set and write set are analyzed as incompatible, the 
compiler would not fire these two rules at the same time even if they are both 
able to fire. As a result, the rule concurrency is low and the performance is bad. 

To have high rule concurrency, the first step is to manually analyze the 

read-write pattern of all the conflicting rules and methods, and see what we can 
do to improve the confliction. 

5.2.1. Read-Write Pattern in ROB 

Most of the rules in the processor call the methods in the ROB, and the 

method confliction in ROB is the main cause of rule confliction in the top level. 



In the original design of the ROB module, the ROB buffer and memory ROB 

buffer are contained in two huge registers. The type of these registers are 
registers of vector of structure, Reg#(Vector#(ROBSize, ROBEntry)) if 
expressed in Bluespec syntax. Since the confliction analysis is done on the basis 
of register, any write to each portion of the buffer would be considered as a write 
to the register, hence results in the confliction. This property makes the 
confliction analysis worse because even if two rules write to different fields in 
the table, the compiler would regard them as conflicting. 

Furthermore, writing in this style also makes compiling extremely slow. With 

ROB size 4, the compilation time is around half an hour; with ROB size 7, it takes 
3 hours, and ROB size 8 can never finish, which is very unreasonable. 

5.2.2. Read-Write Pattern in the Physical Register File 

In the register file, all the reading methods happen before all the writing 
methods, and they are sequentially composable. However, we have two writing 

methods: one is wr(), and the other is clearPBits(), which are conflicting. 

As the register file is separately synthesized, the number of ports are fixed in 
the bit level, so the all the rules that call wr() would also conflict with each other. 
Even if we don’t separately synthesize the register file, we also have to use some 
other methods to explicitly make some sequentially composable writing ports 

for different rules to call. 

5.2.3. Multiple Write Problem 

One of the common problems in the confliction analysis is multiple write. 

Since write/write and update (read then write)/update pairs are not 
sequentially composable but widely used in the design, we have to use some 
structures that support multiple writes, or we cannot get high concurrency. 

5.3. Methodologies 

5.3.1. Structural Coding Style vs. EHR 

The traditional method to solve the confliction is to write structural code. 
Structural code is a coding style that explicitly takes care of lower level details in 
the hardware structure. 

One possibility is to use RWires to get all the written data, and use a rule that 
is fired in every cycle to handle all the possible combinations of the written data. 
Therefore, the methods become confliction free, and the register is only updated 
in one rule. This is a trick to lie to the compiler that these methods are confliction 

free. The drawback is the difficulty to guarantee the correctness and worse 
readability of the code. 



 

Figure 11 Using RWires to solve confliction 

The other possibility is write a rule for each storage element, thus the 

register is updated only by one rule. However, this method is sometimes even 
harder to implement because the original rule splitting is based on concept 
grouping instead of writing pattern. 

Since both of the solutions involve large change in the code or even the 

organization of rules and methods, we decided to extensively use EHRs and use 
the methodology similar to what is covered by the lecture to solve our problems 
and make few changes to the method/rule structures. 

 

Figure 12 Using EHR to solve confliction 

However, the methods/rules become sequentially composable instead of 

being confliction free, and there is an ordering constraint on them. Therefore, if 

two rules call different methods that have inconsistent ordering, these rules are 
still conflicting. 

In order to avoid the inconsistent ordering, we need to assign a global 

ordering of all the top level rules, and propagate the ordering to all the leaf 
modules, and change their EHR index accordingly. Notice that the EHR index 
within a rule/method should be kept consistent, even in the condition, or the 
atomicity is broken. 

5.3.2. Field Splitting 

Rule
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RWire RWire

Register



The main cause of method confliction in ROB module is the misuse of the 

register. We split the structure according to the read-write analysis of different 
fields. For those fields who needs to be read in every entries or written for 
multiple times, they are put in the EHR with type EHR#(n, Vector#(ROBSize,  
ROBBookkeep), where ROBBookkeep is a structure containing all the bookkeeping 
status bits. For those fields who is only read in limited number of entries and 
written in only one rule, it can be fit in the built-in structure RegFile. 

 

Figure 13 Field splitting in ROB module 

After doing this, the compile time also improved greatly, and ROB size 8 can 

be compiled in half an hour, and size16 is done within 2 hours. 

5.3.3. Critical Path Consideration 

Using EHR to solve the confliction is convenient, but it usually results in 
larger area and longer critical path. 

The additional area comes from two places. One is the multiplexers in the 
EHR itself, and another is that the customized combinational logic may be 
duplicated because the EHR index of the input might be different. The longer 
critical path comes from the combinational path introduced by the EHR and 
more gate delays caused by the multiplexers in front of the writing port. 

In order to get high concurrency and similar critical path at the same time, we 
utilize the unsafe EHR hacks and use some domain knowledge to guarantee the 

correctness. 

5.3.4. Safe Non-Coherent EHR Index 

The safe type of non-coherent EHR index usages is to read values early in the 

condition and write late in the body. Moreover, the data written by the other 
rules cannot make the condition of this rule come from false to true, thus it 
doesn’t affect the atomicity in this rule. This is relatively simple to verify if these 
conditions only contains Boolean types and the written data are constants. 

If these given conditions are met, the correctness will also be guaranteed, and 

it only influences the performance. The given condition should be able to be 



verified or analyzed by the compiler, but the current version of bsc doesn’t do 
this. 

After doing this optimization, the combinational path is largely decreased.  

5.3.5. Unsafe Non-Coherent EHR Index 

On the other hand, we also use some non-coherent EHR index that is 
generally unsafe. The correctness is guaranteed by the domain knowledge of the 
protocol we used in the design, and this kind of operation is too hard for the 
compiler to analyze and optimize. 

For example, in the renaming table, the snapshot can be taken and restored at 
the same cycle, and the restoration happens after the taking action in the method 
ordering. However, from the domain knowledge, we know that the copies taken 
and restored cannot be of the same epoch, so we don’t have to search for the 
updated snapshots in the restoration method, thus decrease the combinational 

path. This kind of optimization is error prone, and huge effort is needed to 
analyze the interaction between methods and rules. 

5.4. Results 

5.4.1. Remained Confliction 

The only remained conflictions in the processor are rule aluUpdate, 

memUpdate, and branchStep2Link, as all of them write to the register file, and 
the register file only has one writing port. Consequently, the method being called 
by these three rules, methods aluUpdResult, and linkUpdResult in ROB module 
can be conflicting without affecting the overall performance. Keeping the 
confliction of these two methods also decreases the length of the combinational 
path. 

This results in the optimal concurrency; given the system only has 

one-writing-port register file. 

5.4.2. Critical Path 

The physical numbers are compared with the low concurrency version of the 
design. 

After synthesis, the critical path only increases by 2%, and the area only 
increases by 8%. So we can say that we achieved high concurrency while keep 
the physical overhead low. 



6. Design Exploration and Evaluation 

6.1. Exploration Dimension 

6.1.1. The Size of ROB 

The size of ROB determines how far the processor can re-order instructions. 

If a program has a lot of parallel computations and hence high ILP (instruction 
level parallelism), then it may have instructions independent of previous 
instructions. In order to get better performance, the size of ROB should be larger 

than the length of the pipeline, or at least larger than the length of back-to-back 
dependency loop. However, if ROB is too large then the penalty of misprediction 
also grows because more instructions need to be discarded if the branch 
instruction is resolved late. 

 

Figure 14 IPC of different ROB sizes 

We took ROBs with the size of 4, 8 and 12. As the result shows, we cannot 

expect any benefits by increasing ROB size from 8 to 12 unless we have a 
sophisticated BTB module and bulk retirement architecture. In our final design, 
the size of ROB was chosen to be 8.  

6.1.2. Adjusting Pipeline Stages 

After finishing the first working version with high concurrency, we tried to 
revise the microarchitecture of our processor for possible improvements. 
Merging execute stage with update stage was successful, because it shortened 
end-to-end dependencies from 3 cycles to 2 cycles. The trade-off expected was a 
longer critical path, but post-synthesis results showed that the critical path is 

only 1% longer than the previous version, while IPC is increased by 5.8%, hence 
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the IPS is improved. The implementation of this change was as simple as just 
changing a FIFO to be a Bypass FIFO because we already decoupled the execution 
stage by FIFOs. 

6.2. Evaluation Results 

6.2.1. Hardware cost 

A. Critical Path 

Post-synthesis 4.44ns 

Post-P&R 9.40ns 

The critical path is on the branch resolution stage. In terms of post-synthesis 
timing, at 1.88ns, a branch instruction is dispatched from ROB so we can see that 
dispatching logic (shifted priority decoder) takes almost half the clock cycle. At 
2.86ns, data is read from the register file and finally at 4.24ns the PC register is 
updated to be a new value. 

The post-P&R critical path is almost twice as long as in Lab 3, as the critical 
path of Lab 3 is between 5 to 6ns. The delay of the shifted priority decode, hence 
the delay of ROB is inevitable for out-of-order architecture. In order to get 
similar critical path, the pipeline stage should be more fine-grained than in-order 

processors like in Lab 3. 

B. Area Analysis  

The total area is reported to be 1.42 mm2 after place and route. Each 
hardware component contributes to the area as the following chart. 

 

Figure 15 Module level area break down after place-and-route 
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Register file takes similar portion of the whole area with the one in Lab 3 

processor while ROB takes the second large portion. ROB is mostly consists with 
data paths instead of flip-flops. This result is from the unified physical register 
file system, and if we used ROB having data field instead, then ROB size would 
have been dominated and the total area could be even larger. The renaming table 
is huge because it contains several copies of snapshots, so the flip-flops take a 
huge area. 

6.2.1. Application Performance 

The IPC results are compared between two variances of Lab 3 processor and 

three variances of out-of-ordering processor. 

Case 1 
LAB3 – low profile version 
wbQ size 2, no bypassing register file 

Case 2 
LAB3 – high profile version 
wbQ size 8, bypassing register file, decoupled wbQ and memory 

Case 3 OoO Superscalar – non-concurrent version 

Case 4 
OoO Superscalar – initial version 
ROB size of 8, execution and update are separate 

Case 5 
OoO Superscalar – merged pipeline stages  
ROB size of 8, execution and update are merged 

 

Figure 16 IPC results of different architectures 
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profile version of LAB3 processors, but overall Lab 3 processors are faster. The 
biggest reason is that, in fact, the Lab 3 processor does not suffer much from data 
dependency. Because SMIPSv2 has a very simple ALU so all instructions other 
than memory instructions have no significant delays. And Lab 3 processor 
decouples writeback and execution by using writeback Queue so it can ‘fill’ the 
bubbles introduced by memory instructions. Furthermore, using bypassing 
register file erases the bubble cycles caused by back-to-back dependency 
completely. If the program can be perfectly predicted by using BTB, and there 
are few memory operations, the IPC of lab 3 can be very close to 1, like the 
multiply benchmark running on high profile lab 3 processor. 

The real bottleneck of Lab 3 processor is the width of pipeline. In order to 

have high performance on a wide pipeline superscalar processor, out-of-order 
execution is even more important. 

This out-of-ordering superscalar processor can achieve IPC larger than 1 if it 

can fetch and retire multiple instructions at one cycle, which will fully exploit the 
superscalar architecture. In particular, when the processor has complex 
execution units such as multipliers and floating point units, then out-of-ordering 
execution will become far more important to utilize multiple execution units 
with different delays. Moreover, this architecture can overcome any size of 
memory latency with larger ROBs. Therefore, we consider the current result is 
good enough to show the potential of out-of-ordering machines. 

6.3. Final Physical Optimization 

After we had a high concurrency version and gave the presentation, we had 
some feedback and we tried to make the critical path as short as an in-order 
processor. This is another direction of optimization. In this scope, the IPC is less 
important than having a shorter critical path. 

6.3.1. Methodology 

As this is the physical optimization, and some of the characteristics of the 

physical device cannot be estimated accurately without actually synthesizing and 
routing, the methodology is to have some intuition about how slow each action is 
by synthesizing various versions of the processor with different task 
segmentation. After that, we can heuristically determine the optimal task 
segmentation by manual analysis. 

There is an optimization loop because we also need to optimize slightly lower 
than microarchitecture level when some single task is the critical path. In order 
to speed up, we only rely on the synthesized result as the physical feedback. 

To sum up, the first step is to cut the tasks into more stages by using FIFOs 

and try to find the slowest tasks and optimize them in circuit level. After 



optimizing all the targets, we put some stages back together if the total delay of 
the stages is not longer than the critical path. 

6.3.2. The Journey of Physical Optimization 

In the beginning, our critical path is at the branch resolution, and it is 4.44ns. 

After cutting all the tasks into tiny stages, instruction read out from the ROB, 
reading the register file, execution/branch resolution/address calculation, and 
update are all separate stages. 

Then the critical path becomes around 4ns and it is from robbook to robbook, 

which is the EHR register containing the state bits. After optimizing that, the 
critical path is around 3.5ns and it is through the shifted priority decoder in the 
free list. After optimizing that, the critical path is lowered to 3.2ns, from memrob 
to memrob, which contains the ROB table of memory instructions, and then we 
have to focus on the report writing. 

The detail of how we optimized the EHR structure and shifted priority 
decoder is described below. 

6.3.3. EHR Simplification Fallacy 

The reading port of an EHR is dependent on the enable signal of all the 

“previous” writing port. If the EHR is not separately synthesized, bsc can 
optimize the unused reading and writing port away, resulting in fewer 
multiplexers in front of the final real writing port. 

Here is a simplified model of how we used the EHR. Assuming we have an 

EHR register called v, which contains a structure of field A and B, and 
v[i]._read()/._write() is the ith reading or writing port. We write to v[0].A in 
some rule, and read v[1].B in another. This generates an ordering, but since we 
already have a global ordering, this is acceptable. According to the read-write 
pattern, the value v[1].B is dependent on the enable signal of v[1], although 

v[0].B is never updated. 

The fallacy here is that we assumed the synthesizer can use some gate level 

optimization techniques to erase the constant writing values from v[0].B to 
v[0].B. In fact, it cannot be removed. As a result, we have fake dependency 
circuit in after synthesizing. 

In order to optimize this, we put each fields to different EHRs. So the fake 

dependency is removed, and as bsc can erase the unused EHR index, we can keep 
using the old EHR index without worrying about if the hardware is larger. 

6.3.4. Optimizing Shifted Priority Decoder 



The original design of shifted priority decoder is the combination of a vector 

rotator, a normal priority decoder, and an adder with overflow control. The 
critical path can still be improved. 

We use a new priority decoder that receive an answer vector, and return the 

element in the vector with the same index as selected item. The timing and area 
should be the same as the old priority decoder if the answer vector is a constant. 

Now we make an answer vector containing the index, and use the vector 

rotator to rotate both the Boolean input vector and this answer vector, and feed 
them to the new priority decoder. The output of the new priority decoder would 
be just the correct answer. 

After this optimization, the last stage of the adder with overflow control is 

eliminated, and the critical path is shortened. However, the area is larger because 
we use more rotators. 

Compared with a Boolean vector rotator, we cannot just transform the 

answer array to a bit array and use a normal shift operation with shifting amount 
multiplied by the width because the width of an entry in the vector can be larger 
than one, resulting in wider shifting circuit and a multiplier. 

Instead, we transpose the answer array, and chop each bit in the answer to a 

separate bit array. So the number of shifters is the same as the width of the 

element. We are so proud to write such a smart Bluespec hack so we include the 
code in the report. The provisos problem is discuss in section 8.5. 

function Vector#(size, Bit#(1)) rotateN_1( Bit#(TLog#(size)) n, Vector#(size, Bit#(1)) v); 

  let shifted = pack(append(v,v)) >> n; 

  Bit#(size) truncated = shifted[valueof(TSub#(size,1)):0]; 

  return unpack(truncated); 

endfunction 

 

function Vector#(size, Bit#(width)) rotateN_wide( Bit#(TLog#(size)) n, Vector#(size, Bit#(width)) v) 

    provisos ( 

      Bits#(Vector#(size, Vector#(width, Bit#(1))), TMul#(width,size)) 

      ,Bits#(Vector#(size, Bit#(width)), TMul#(width,size)) 

    ); 

  Vector#(size, Vector#(width, Bit#(1))) vv = unpack(pack(v)); 

  Vector#(width, Vector#(size, Bit#(1))) trans = transpose(vv); 

  Vector#(width, Vector#(size, Bit#(1))) trans_shifted = zipWith(rotateN_1, replicate(n), trans); 

  Vector#(size, Vector#(width, Bit#(1))) ansv = transpose(trans_shifted); 

  return unpack(pack(ansv)); 

endfunction 

6.3.5. Result of Physical Optimization 



Although this physical optimization was started after the presentation, and 

we have only a few days to try it out, the result is promising. 

As stated before, the critical path after synthesize decreased from 4.44ns to 

3.2ns, a 28% reduction, and the average IPC is lowered by 5%. The total gain of 
IPS is positive. We have to point out that the post-synthesize timing is similar to 
the in-order processor in lab 3 now, despite of all the ROB overheads. 

7. Conclusion and Future Work 

During this project, we have solved a number of difficult problems in 
designing complex digital logic. It was so challenging to carefully design and 
verify the logic of the complex processor and find a good way to implement it in 
Bluespec. Above all, we dealt with speculative execution of instructions after 
branch and out-of-ordering memory calculation of memory instructions which 
were not easy but helped to improve processor performance.  

Out-of-order execution 

 ALU instructions and address calculations are speculative and out-of-order. 

 Branch resolutions and memory requests are in order. 

Superscalar architecture 

 ALU execution, branch resolution, address calculation and memory request 

can be dealt simultaneously. 

Optimal concurrency 

 The highest possible rule concurrency with single write-port register file and 

renaming table. 

 ROB compensates memory latency. 

The first possible follow-ups is implementing multiple instruction fetch and 

retire in order to exploit the superscalar architecture, which will results in better 
performance than Lab 3 processor. Furthermore, introducing more execution 
units, especially complex ones such as multipliers and floating point units will 
reveal the true benefits of out-of-ordering machine. We are also interested in 
implementing more features of modern processors including accurate exception 
handling, because it must be a good experience to design and implement more 
complex processors which are more similar to commercial processors. Some 
deeper design explorations of out-of-ordering superscalar SMIPSv2 will be 
interesting because we believe that this relatively simple processor compared to 
other commercial processor will reveal how microarchitectural changes can 
affect to the processor performance more clearly. 



8. Appendix – Work on Bluespec / Bluespec Compiler 

During this project, we have faced different problems working with Bluespec 
compiler and took some time to solve those problems. We think that 
summarizing those problems will be helpful for those who study Bluespec and 
especially those who do similar projects in the future.  

8.1. No automatic multiplexing when the called module is 

synthesized separately 

8.1.1. Symptom 

This could be a known bsc bug, because we faced it since lab2. When a 

module is synthesized separately with compiler directive (* synthesize *), the 
interface is fixed in bit-level, thus is the number of allowed concurrent methods. 

However, even if we manage to fix the number of calling methods, the compiler 
would not generate a multiplexer in front of the input to that particular method. 
Instead, it complains about multiple usage of the method, although these 
multiple usages are mutually exclusive and could be multiplexed into only one 
output. 

8.1.2. Solution 

One way to work around is to manually write a MUX for the method, but this 
is generally tedious. Another way is not to synthesize the called module 
separately, but we cannot analyze the area of the module, and the modular 
boundary is invisible in the lower level. So this is not actually solved. 

8.2. Unusable constant in static elaboration stage 

8.2.1. Symptom 

Some constants available in the static elaboration stage can be used in the 

declaration but cannot be used in the loop-test expression in for-loops. 

8.2.2. Solution 

We use compiler directive `define to declare a macro with the same name, 
and use the macro wherever the typedef version cannot be used. We also use 
some provisos to make sure the `define version and the typedef version are equal. 
After understanding the difference between numerical type expression and 
ordinary static value, we eliminated all the redundant `define macros and use 

pseudo-function valueof() to convert the constants. 



8.3. Run-time system uses up huge memory 

8.3.1. Symptom 

Sometimes when some of the parameters are adjusted to a larger value, the 
compiler would report huge memory usage of the Haskell run-time system, and 
just stops. 

8.3.2. Solution 

Increasing the limitation of the run-time system memory usage by adding 

“+RTS -K320M” to the command line would solve this problem. Fortunately the 
physical memory of the remote vlsifarm workstations is barely enough. 

8.4. Needing explicit hardware decomposition 

8.4.1. Symptom 

When we implement the priority decoder, in some cases the compiler 
generates an extremely long error message in the elaboration stage and stops; in 
the other cases, the generated hardware is far less efficient than expected. 

An example code can better illustrate the situation. The following code 
segment is a function generating the first 0-bit in bit array “used[]”. 

function Maybe#(PRindx) firstFree(); 

  Maybe#(PRindx) ans = Invalid; 

  for(Integer i=PRSize-1; i>=0;i=i-1) begin 

    if( used[i] == 1'b0 ) 

      ans = Valid (fromInteger(i)); 

  end 

  return ans; 

endfunction 

The generated Verilog code is not exactly a simple priority decoder with 
inverted input, although it should be. 

8.4.2. Solution 

If we decompose the logic to the Boolean function part and the priority 
decoder part, then the compiler works fine. 

Take the example again. If we transform the condition “used[i] == 1'b0” to a 
Boolean function, map the bit array “used[]” to a Vector of Bool by using that 

function, and use a for-loop to describe the priority decoder, then the generated 



Verilog code is what we expected. As a result, we always define a Boolean 
function to decompose the condition part out of the for-loop for priority 
decoders. 

8.5. Parameterization and Provisos 

8.5.1. Symptom 

It is generally simple to write functions of modules with specific parameter. 
However, when we try to generalize and parameters, some problems about the 
provisos would appear, and some of them are subtle to solve. 

For example, a simple vector rotating module is implemented as follows: 

function Vector#(size, Bool) rotateN( Bit#(TLog#(size)) n, Vector#(size, Bool) v); 

  return unpack(truncate(pack(append(v, v)) >> n)); 

endfunction 

This seems correct in concept, but bsc requires a provisos Add#(size, size, 
TAdd#(size, size)). That requirement is always true, but bsc fails to conclude 
that. Manually adding the provisos wouldn’t solve the problem at once, because 
the requirement is propagated upstream the hierarchy. 

8.5.2. Solution 

One possible solution is to add the tautological provisos in all the upstream 

hierarchy, but that is ugly. Another one is to explicitly write the lower level 
assignment like this: 

function Vector#(size, Bool) rotateN( Bit#(TLog#(size)) n, Vector#(size, Bool) v); 

  let shifted = pack(append(v,v)) >> n; 

  Bit#(size) truncated = shifted[valueof(TSub#(size,1)):0]; 

  return unpack(truncated); 

endfunction 

The tricky part is that if we replace let shifted... by 
Bit#(TAdd#(size,size)) shifted..., then the original provisos is still needed. 
However, if Bit#(size2) shifted... is used instead, then we also need the 
provisos Add#(size, size, size2), but this provisos won’t propagate upstream. 

8.6. Assignment on Vector 

8.6.1. Symptom 



If we have a variable of type Register of Vector, and we try to update the 

value in some of the elements in the vector, it might be some problems. If we 
write the code like this: 

Reg#(Vector#(size, int)) arr <- mkReg(?); 

for(Integer i=0;i<valueof(size);i=i+1) begin 

  if( some_condition(...) ) 

    arr[i] <= val; 

end 

The compiler can handle it if the size is extremely small (<5). However, if the 
size is slightly larger, the static elaboration step would take a long time and 

generate a huge error message saying it finds some conflicting assignment which 
doesn’t exist. 

8.6.2. Solution 

The code can be rewritten like this: 

Reg#(Vector#(size, int)) arr <- mkReg(?); 

Vector#(size, int) arr_w = arr; 

for(Integer i=0;i<valueof(size);i=i+1) begin 

  if( some_condition(...) ) 

    arr_w[i] = val; 

end 

arr <= arr_w; 

By using a temporary variable to receive all the updated value, and assign it 
back to the original register of vector, the compiler doesn’t have to check if we 
have conflicting assignment as these assignments are similar to the blocking 
assignment in Verilog. 

The static elaboration time is also reduced. 


	Project Description
	Introduction to Re-Order Buffer and Superscalar Processor
	Out-of-Ordering Execution
	Re-Order Buffer with Unified Physical Register File

	High-level Processor Design
	Life Cycles of Instructions in Re-order Buffer
	ALU instructions
	Branch/Jump instructions
	Memory instructions

	Branch Unit, Branch Resolution and Snapshots
	Memory Address Unit
	Pipeline Stages
	Data Dependency Loop
	Architectural Summary of High-level Design

	Microarchitecture and Bluespec Implementation
	Processor Module
	Re-ordering Module
	Leaf Modules
	Free List
	Renaming Table
	Physical Register File
	ALU ROB
	Memory ROB
	Shifted Priority Decoder


	Obtaining High Rule Concurrency
	Calling Relationship
	Read-Write Pattern
	Read-Write Pattern in ROB
	Read-Write Pattern in the Physical Register File
	Multiple Write Problem

	Methodologies
	Structural Coding Style vs. EHR
	Field Splitting
	Critical Path Consideration
	Safe Non-Coherent EHR Index
	Unsafe Non-Coherent EHR Index

	Results
	Remained Confliction
	Critical Path


	Design Exploration and Evaluation
	Exploration Dimension
	The Size of ROB
	Adjusting Pipeline Stages

	Evaluation Results
	Hardware cost
	Application Performance

	Final Physical Optimization
	Methodology
	The Journey of Physical Optimization
	EHR Simplification Fallacy
	Optimizing Shifted Priority Decoder
	Result of Physical Optimization


	Conclusion and Future Work
	Appendix – Work on Bluespec / Bluespec Compiler
	No automatic multiplexing when the called module is synthesized separately
	Symptom
	Solution

	Unusable constant in static elaboration stage
	Symptom
	Solution

	Run-time system uses up huge memory
	Symptom
	Solution

	Needing explicit hardware decomposition
	Symptom
	Solution

	Parameterization and Provisos
	Symptom
	Solution

	Assignment on Vector
	Symptom
	Solution



