Difference of Gaussian Scale-Space Pyramids
for SIFT' Feature Detection

Ballard Blair and Chris Murphy

Group 5

6.375: Complex Digital Systems Design

Final Project Report, Spring 2007

Introduction

The Scale-Invariant Feature Transform (SIFTV algorithm has rapidly been adopted
in the machine vision community as the "best-in-class" standard for feature detection and
matching. Image Feature detection has a variety of applications across many domains,
from object recognition and tracking in robotics to creating photo mosaics in consumer

photography applications.

Developed by David Lowe in 2003 at the University of British Colombia, the SIFT
algorithm takes a single image as input and returns a set of image features. Each point in
the set has a location, scale, orientation, and description vector. Compared to other feature
detecting algorithms, the Sift algorithm's description vectors and identified points are
relatively invariant to illumination, scale, and viewpoint changes. This makes the
algorithm extremely useful for tasks like object recognition where the object or camera may
be moving, or image registration, the process of determining a shared coordinate frame

between images.

A hardware implementing of SIFT would provide the timing and power requirements
necessary for a real-time, mobile system, something current software implementations don't
provide. Current SIFT software implementations typically involve the use of a high-power,
general-purpose processor to achieve less-than-real-time performance (one the order of
seconds per image). For many embedded applications, something that achieves sub-second
performance without high power requirements is essential. With a hardware
implementation, the full potential of the SIFT algorithm could be available to mobile

sensing platforms without the overhead of a dedicated high-power processor.

We have implemented a subset of the SIFT algorithm, a Difference of Gaussian Scale-

Space image pyramid generator. This operation forms the computational "core" of SIFT.

» 1 «

Our implementation takes an input image, repeatedly blurs it a fixed number of times, and
computes the difference between successive blurring iterations. One of the resulting images
is then down-sampled and the blurring/difference operation repeated. The result is a

collection of "Difference of Gaussian" images, several for each scale.

The power of the "Difference of Gaussian" operation provides an efficient discrete
approximation to the Laplacian. The Laplacian is formally defined as the divergence of the
gradient, which in image processing translates to areas of high variation, characteristic of
interesting features. These Laplacian or Difference of Gaussian pyramids were first
identified in 1984°, and since then have been adopted for a variety of applications in image

processing well beyond their role in the SIFT algorithm.

start?

Difference of
Gaussian Result

2X
Downsampling|
T~

[]

e

xCr @

Figure 1: Architectural Overview

Algorithmic Overview
The Difference of Gaussian or Laplacian pyramid is generated from a single input
image. The output is a 'pyramid’ of several images, each being a unique difference of

Gaussian. To generate the pyramid, the input image is repeatedly blurred; the difference

» 2 «

between consecutive blur amounts is then output as one “Octave” of the pyramid. One of
the blurred images is down-sampled by a factor of two in each direction, and the process
occurs again with output in a different size. Figure 1 illustrates this process in greater

detail.

Architecture Overview

Our goal in implementing the difference of Gaussian module was to create an
architecture that was flexible enough to allow for some architectural exploration but rigid
enough to be implementable in hardware. The architecture we decided upon was five

parallel convolution units, identical except for the coefficients of the Gaussian coefficients.

Rather than attempting to do a two-dimensional block convolution, which would
require a large number of multiply units, we exploit the fact that a two-dimensional
Gaussian convolution has the property of separability; we can perform first a vertical
convolution followed by a horizontal convolution, and the result is identical to performing a
full 2D convolution. In the current implementation, each convolution unit requires a frame
buffer large enough to hold the entire image, two address generators, one for read and one
for write, a one dimensional convolution unit hard wired with coefficients, and some FIFOs

and control logic to tie everything together.

In addition to the convolution units we needed additional control units to handle
image reading, down-sampling, and feedback, an additional memory and address
generation units to store the original image for processing, and a difference unit to calculate
the difference between neighboring images. Figure 2 shows a top level block description of
how our blocks fit together. Later sections describe the functionality of the memory and
some of the more important rules and functionality. For a detailed description of each file,

see Appendix A.

» 3 «

: |
o $ HINOILMIOANOD AT] 10413 %
g « |04l « T
mﬂﬂmﬁ-- _ 4 A S 04ld] 14
) AHOWIW) S—
I]
N39 ¥aav [} N35 ¥aav
Lt /43LNNOD /431INNOJ
3 m NOILNTOANOD QT | B
1410k [odly] Iodd [¢ T Fr——— . =
» : ST QTSN _ 0414
m N 7 AMOWIW |,
” Pl e em.... .
m N3O ¥aav |: SLEPE N3 vaay
m Ol [pyarnnoo [1104 T M3INNOD| i
: e SR EE 43INNOD
S sqqay T SRRyl
________ asineia [Toa w Odid jo= =
________________ | NOWIW | m
NIOWaay | o ISAUERIGE N30 yaay
faainnoa [T 1104 | /43LINNOD :
________________________ GG ReNRG

AS pilielAduelssnegyw

» 4 «

Figure 2: Difference of Gaussian image pyramid schematic and file hierarchy

Memory Management and Addressing

Our target design included an image size of 480 pixels by 360 pixels (pixel = 8 bits),
separable convolution, and enough memory in each blur unit to store an entire image.
Therefore, we needed to implement a memory that was large enough to hold 172,800 bytes.
The Synopsis tool chain includes a memory generation tool, but this tool is limited to blocks
of memories of 4096 words or less. In order to meet our target memory size while still
leaving us the flexibility for architectural exploration through pixel precision changes we

used 43 blocks of 4096 8-bit words.

The Bluespec memory block instantiates 43 copies of the RAM modules, which the
memory generate creates in Verilog. Wrapping each of these in a Bluespec interface, we can
simply pass the bottom 12 address bits along to the memory with clever chip select and
enable lines to each memory to allow for simple, clear, interfaces to the memories. We
included a total of 18 bits in our ImageMemAddr data-type to allow for some flexibility in

the actual size of our memories.

Since the block RAM modules created using the memory generator are synchronous,
there is a one cycle delay for either a read or a write. We did not need to worry about read
after write data hazards in our memory since our design did not allow for such collisions.

However, we did need to be careful with the timing for our reads.

We combine a simple rule, moveDataMemConv and a data type in Filter2D, which
determines if the previous pixel was in the image (i.e. not just for convolution buffering, see
convolution section). If the previous pixel read request corresponds to a pixel that was in the
image, it enqueues the pixel value along with the pixel information into a convolution FIFO.
If the pixel is only for convolution buffering, only the value is pushed onto the queue. To
handle the latency in the memory reads, the rule determines if the current pixel request is

the first, last, or some middle read request. If it is the first, it only issues a request with no

» 5 «

read, and if it is the last, it does not issue a request while it is reading it from memory.

Otherwise it concurrently reads and requests.

Convolution Description and Details

The convolution block is at the heart of our difference of Gaussian block. For our
design we decided to take advantage of the property of separation for the two-dimensional
Gaussian blur by performing two one dimensional convolutions. The number of coefficients,
or “taps” we used for each convolution block is the same (our final implementation had 33
taps), and the coefficients are read in from a function stored in a separate file. This allows
us to quickly change the coefficients if need be without having to change any of our

Bluespec directly.

The simplest description of a convolution that aptly describes what our block
accomplishes is a weighted average. The coefficients describe the weightings which are
multiplied by the current and surrounding pixels. The results are all summed together and

output as a new value for the current pixel location.

In order to reduce edge effects (numerical error affecting pixels on the edges and
corners of the image) we have implemented a “reflected” convolution, whereby the
convolution unit is filled with a mirror image of the pixels that come after or before the edge
pixel. For example, if we number the pixels consecutively we would first read in pixels
5,4,3,2 before we read in pixel 1. Next pixels 1,2,3,4 and 5 would be read in so the unit
contains 5,4,3,2,1,2,3,4,5. The pixel value that is then output for pixel one is a weighted
mirrored average which helps to reduce the number of false features detected on the edges

in the SIFT algorithm, and matches typical software implementations.

The convolution is all preformed in the Filter1D block which contains a shift register,

33 multiply units, and a accumulator. If the pixel is not one of the buffer pixels described

» 6 «

above, there is a FIFO which holds other information about the pixel, such as position in the
original image, whether it is the last pixel in the image, and current scale of the pyramid
(i.e. how many times the image has been down-sampled). All pixels are read from memory
and in order to perform the two dimensional convolution, first the image is read vertically

from the memory and then it is read out horizontally and output to the difference block.

Image Down-sampling

Performing a two dimensional convolution with a variance of 3.2 pixels we lose at
least half of the information per pixel. Therefore, after we have performed a two
dimensional Gaussian, we can feed back a down-sampled version of the image that has been
blurred by a Gaussian of variance 3.20. This will accomplish the same effect as if we had
continued to blur images at the same scale, but will use less computational effort and allows
for our hardware to be pipelined. This is the process used in software implementations of

an “Image Pyramid” as well.

The image down-sampling is performed by throwing away every other row and every
other column. Thus we are throwing away % of the pixels, but only removing half of the
information from a row or a column. The unit that performs the down-sampling uses
counters to keep track of the row and column position so that it can accurately throw away
the correct pixels for each scale. The scale in this case corresponds to the number of times

an image has been down-sampled, so we start with scale 0, then scale 1, etc.

The size maximum number of down-sampling we can perform is a function of our
original image size and the number of taps for the convolution. We need the number of taps
to be less than the length of a row or column. This is why for an image of 360x480, we can
only down sample 3 times (for a total of 4 scales). If we down-sampled any further, the

length of the rows would be less than 33 (after 3 down-samples, each row is 45 pixels long).

» 7 «

Implementation Notes

When we originally started our design, we thought it would be possible to have one
control for both the reads and the writes of the memory units. This turned out to over-
complicate the logic and having separable logic quickly became the obvious answer. The
problem with having coupled logic for both the reads and the writes is that while computing

the horizontal blur, the memory is being simultaneously read and written to.

Our first thought was that we needed the coupling to protect the integrity of the data.
However, the data was protected due to the nature of the feedback, and the only protection
was that a new image could not be read in until the current image buffer had been flushed.
This is a conservative requirement, but allows for a simple scheme to protect the data

integrity.

Another issue involves the current way we are addressing our memories. Since we
decided to have separable convolution, we needed a somewhat complex scheme for
addressing the vertical image, since the data is being read in contiguously. This precluded
us playing obvious games with the word size of the memory, such as switching to 32-bit
blocks in the memory to reduce the number of memories we required by four. In order to
make this change, we would have had to either devised an entirely new scheme for memory
storage that accommodated both horizontal and vertical reading, or decreased the
performance by a factor of two or more due to the latency of the memory and the byte
masking complications. These trade-offs might still make interesting future explorations

but time constraints prevented us from exploring them too much further.

Testing Procedure and Results

During development, we performed a variety of tests at each step of development.

These tests often gave us direction in future development, leading us to, for instance, use 16

» 8 «

bit fixed point values during the convolution's multiplication step. We were able to easily
perform these tests due to Verilog modules we wrote to read and write PGM gray scale
images, viImageStreamReader and vimageStreamWriter. We tested the results of our
Gaussian blur against results from a MATLAB implementation, and found that the results
were excellent. If the same Gaussian blur was performed using full double-precision
arithmetic in MATLAB and then converted back to a standard 8 bit image, we found that

there was no error for many pyramid levels, as shown below.

Figure 3: Gray represents zero error. White or

Figure 4: The image used during testing

black would represent an error of 1 gray level.
The results from the full operation of our Difference of Gaussian Pyramid Generator

were also positive, although there remains some error compared to the DoG pyramid
generated by a MATLAB implementation of SIFT. We believe this error stems from
improper calculation of the amount of Gaussian blur to apply at each level of the pyramid,
and numerical error. In software, the pyramid is generated by iteratively blurring a single
image; this saves some computation time, but does not allow for any parallelization. We
perform all of the blurs for a given image size simultaneously, which means that we must
blur the image with different sized Gaussian. Although it is possible that we calculated
these blur amounts incorrectly, (we didn't have time to consult with somebody who could
confirm our math) the architecture we designed is flexible enough that changing the

coefficients is trivial. The difference between two of our generated Gaussian images,

» 9 «

followed by the results of the full DoG hardware pyramid generation are shown below;

contrast has been increased to improve visibility.

Figure 5: Difference between two Gaussians
generated by hardware.

Figure 6: All DoG levels generated by hardware; contrast has been increased.

» 10 «

Synthesis Results
Using Synopsis synthesis tools, combined with some automatic scripts we obtain the

following results for the top-level design:

Module Size (A%)
mkSift 9111679.0
mkDiffGauss 1267.75
mkGaussianPyramid 9110410.0

We can see that the majority of the area for the synthesized design is in the
mkGaussianPyramid module. This is to be expected since this module contains the
memories. In order to synthesize the memories, we used the memory generator, so these
memories are of an optimal size. For completeness, we include the numbers from the
mkDiffGauss module, since it is nearly a top level module. We can see from the results that

the majority of the mkDiffGauss unit is consumed by one FIFO.

Module Size (A%) | Multiplicity
mkDiffGauss | 9111679.0 1
FIFO 1035.25 1
sub 46.5 4

Finally, examining the synthesis results from the mkGaussianPyramid block, we note
that obviously our size is dominated by memories. The remainder of the area is roughly
divided between the multiply units, the FIFOs and all other logic. This shows us that
unless we somehow removed the memories, it is not worth exploring anything other than
something which will reduce our memory requirements. However, if we did switch to off
chip memory, we would want to first explore reducing the size of our convolution and

reducing the number of FIFOs that we use in our design to get the maximum impact.

» 11 «

Module Size (A?)
mkGaussianPyramid 9111679.00
mkImageMem_0 1506599.75
mkImageMem_1 1506599.75
mkImageMem_2 1506599.75
mkImageMem_3 1506599.75
mkImageMem_4 1506599.75
mkImageMem_5 1506599.75
multiplication units 20892.25
FIFOs 22191.25
all other logic 28997.00

According to the synopsis tool chain, all of our modules were able to meet our timing

constraint of 5ns, which corresponds to a clock speed of 200MHz.

Clock Period Constraint 5ns

Max Clock Speed (synthesis) 200MHz

Our longest path is from a register in our shift register through a multiply unit, an
add unit and finally to a FIFO. This is not surprising since the memory was set to "don't
touch" so it was not included in this analysis, and it makes sense that the multiply units

would be part of the longest path.

Place and Route Results

Unfortunately, due to the way the current RAM generation tools are set up, we could
either hand place all 258 rams manually or we could write a TCL script to help place them
automatically. We did not have time to place all 258 rams manually. We also could not find
any more than the size of each memory block in the files produced by the memory generator,
so we were not able to automate this process or get final place and route numbers using the

RAMs. However, since we know that each ram is 35016.3, we know that the total RAM size

» 12 «

will be approximately 9,000,000 um”2. This is at least 10 times bigger than the result we
get for all of the other logic from P+R. If we had the time to determine how to appropriately
place the RAMs, given the time constraints, we felt the time was better spent refining our
design. Furthermore, if we were to go forward with this design, we would probably switch

to off-chip memory instead of trying to have so much memory on-chip.

Total Area (w/o mem) 1058572.5 um”2
Total Gates (w/o mem) 112518
Estimated mem area from RAM-gen) | 9,034,205.4 um”2
Estimated Tot Area (w/mem) 10,092,777.9 um”2
mkDiffGauss Area 15905.8 um”2
mkGaussianPyramid Area 1029978.4 um”2
Min Clock Period 6.415ns
Max Clock Speed (P+R) 155MHz
Approx. Clock cycles per image ~75000
Approx. Images per Second ~205

This table shows us that we can easily use our hardware for feature detection in
images from a video stream (30 frames per second). Furthermore, the area, even including
all of the memories (to the first order) is still reasonable. We could fit all of this onto a chip
that is 10 mm”2 and get better performance for the DoG than is available using any current

general purpose CPU.

Architectural Exploration

As this system was built from the base up, Blusepec allowed us to easily switch our
architecture around as our system evolved. Significant architectural exploration was
enabled during the development process, ranging from different memory configurations to

different bit precisions. While many of these changes were trivial in Bluespec (like

» 13 «

redefining a single type) they could have been incredibly complicated to execute in a

standard HDL.

Key explorations were to examine changing the precision of the pixel values for more
better precision mathematics. Even though we were still reading in an 8-bit image, we
thought we might get a lower error if we increased the precision to 16 bits due to the
convolution operation. We discovered that the conversion back to an 8-bit image caused

vastly more error than was possible to gain through intermediate precision.

As the Bluespec fixed point library supports truncation but not rounding, we created
a rounding function which allowed us to have such low error in the Gaussian blur area of

the code. This change was made after developing a significant amount of the system.

Future Improvements

There are several next steps now that we have shown proof of concept for our
difference of Gaussian unit. First, we could use this unit to complete the SIFT tool chain.
This would involve implementing a feature detector, and all other parts of the SIFT
algorithm. This would not be terribly difficult, but would require some thought about how
to further manage the memory so that we could retain all of the information we needed for

the rest of the chain.

Another possible avenue is to explore different ways to manage the memory within
the module we have already built. A streaming or blocking driven architecture that only
works on part of the image could be an easy improvement that would have a large impact on
memory and space requirements. Due to time constraints we unfortunately did not pursue

these avenues further. If we continue this work it will be a logical next step.

» 14 «

Conclusions

We have shown that it is possible to implement the difference of Gaussian unit in
hardware. This piece of hardware is the core of the SIFT algorithm and so with some more
work we think it would be possible to implement the whole algorithm, opening up new

avenues for research and possibilities in feature detection and robotic navigation.

We explored the design space by looking at ways to improve our numerical accuracy
through both improving the precision of our computation and through the use of better
rounding techniques. The results using only 8 bits of precision were still within one pixel
value (1/256) of being correct, so the added area trade-off did not really seem worthwhile.
We used simple rounding instead of truncation to improve our results slightly since this

addition was at no great hardware cost.

Through our work we have created a complete tool chain that allows us to perform a
difference of Gaussian operation in hardware along with test-benches such that we can read
in and read out an arbitrary image from memory. We have also left our architecture
sufficiently flexible such that it would be possible to continue to build upon and expand the

hardware we have created to implement more complicated and higher functioning systems.

Thanks

The authors would like to thank the TAs and Professors for this class, in addition to

the very helpful individuals on the Bluespec-support mailing list (Thanks Nirav, Mike!).

References

1. Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints”.

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

”»

2. Burt, Peter J. and Adelson, E. “The Laplacian Pyramid as a compact image code”.

IEEE Transactions on Communications, 31, 4 (1983), pp. 532-540.

» 15 «

Appendix A. Bluespec File Descriptions

mkSift.bsv: This file is the top level of our architecture. It instantiates a difference of
Gaussian pyramid block which includes 5 convolution blocks and a memory and outputs
data packed as a ConvPacket (see the SiftTypes.bsv section for a description of data types).
This data is streamed into a difference unit and finally gathered and sent out through an

output interface.

mkGaussianPyramid.bsv: Top level file of the Gaussian image convolution pyramid. This
file serves as a wrapper combining together control logic which handles either feeding in an
outside image or feeding back an appropriate image from the convolution units. There is a
rule to pass the data from the control logic into the convolution unit. There is a separate

rule to feed back the data and to enqueue the data into an output queue.

DiffGauss.bsv: Difference unit which takes in a ConvPacket, a vector of 5 pixels plus some
additional image information such as location in the original image, if it is the last pixel in
an image stream, and the scale of the current convolution (see Image down-sampling

section).

mkPyramid.Addr.bsv: Bluespec file describing two counters for reading in an image from
the input, or some additional logic to down-sample an image that is fed back from the

convolution block.

mkPyramidMem.bsv: Memory block for storing image while convolution is happening in
convolution blocks. This file is very similar to Filter2D.bsv, except that there is no
convolution unit, and the control block does not contain logic for reading the image out

vertically or feeding the image back.

mkPyramidMemAddr.bsv: Control logic and address generation for the mkPyramidMem

» 16 «

block. The control is two counters combined with a look up table to determine the correct

memory position based on the pixels placement in the image stream and the current scale.

Filter2D.bsv: Two dimensional convolution is implemented in this top level file. The data is
passed to a control block that generates a memory address based on scale and position in
the stream and then stores the pixel value in memory. The pixel is then read from memory
by a separate block and fed into a convolution unit, first in vertical order (down the
columns) and then in horizontal order. While the horizontal convolution is being computed,
the image is fed to the output. While the vertical convolution is being computer, the image is

fed back into its local image buffer.

mkGaussianFBAddr.bsv: Control logic for reading in an image from the input or feeding
back an image from the 1D convolution unit. The control is two counters, one for row and
one for column along with a lookup table for the appropriate step size based on the scale of
the image. The scale is fed in from the outside, but the scale register is only updated at the
beginning of an image. Thus it is not possible to accidentally change the scale in the middle

of an image, so that the data is not accidentally corrupted.

ImageMem.bsv: A small amount of logic and a wrapper for housing the generated RAM
modules from the Synopsis RAM generator. The bottom 12 bits of the input address are fed
directly into the RAM blocks and the top 6 bits are used for chip enable lines to each of the
blocks. There is as little logic as possible in this block, so all of the control for the memories,

including read/write timing must be handled externally.

mkDataRam.bsv: Bluespec wrapper for the Verilog RAM modules generated form the
Synopsis tool chain. This file is set to have one read port, one write port, and to have no
conflict between simultaneous reads and writes (although if the same data is read and

written in the same clock cycle, the returned data will be stale). Also, it is currently set up

» 17 «

for 8-bit words.
mkDataRam_h.v: Verilog wrapper for RAM module generated from Synopsis tool chain.

mkGaussianAddr.bsv: control logic for reading out the image stored in memory for the
convolution unit. It is hard-coded to read the image first vertically and then horizontally.
Also, this the output address type is a tagged union indicating when the last pixel is being
read from memory to handle the memory read latency. The module includes methods to
read the last address, whether the last pixel was in the image, the previous pixel position,
whether the last pixel was the end of the image, and the scale of the last pixel. Note that the
address generation is not simple linear in either the horizontal or vertical case since this
file also handles pre-filling the convolution unit with reflected pixels to remove edge effects

from the convolution.

Filterld.bsv: One dimensional convolution block. This file include invokes a shift register,
reads in coefficients from mkGaussianCoeffs1D.bsv (a generated file), and performs a one
dimensional convolution with a fixed 33 taps. The one dimensional convolution can be used

in concert with clever memory management to synthesize a two dimensional convolution.

ShiftReg.bsv: Simple parameterizable shift register, used in the convolution block.

mkGaussianCoeffs1D.py: Python file which creates mkGaussianCoeffs1D.bsv, a lookup
table for the Gaussian coefficients. This file is necessary since Bluespec does not contain

support for fixed point or floating point static elaboration.
SiftTypes.bsv: Description of data types used throughout files. See appendix B.

* Note that all files included in the source directory which end in “TH.bsv” or
“TH_wrapper.bsv” are tests harnesses for the corresponding files. While they were used in

development, some may have since fallen out of date as interfaces changed.

» 18 «

Appendix B: SiftTypes.bsv

This file describes all of the data types used by our Bluespec design.

//**

// Datatypes for the SIFT Algorithm

package SiftTypes;
import FixedPoint::*;
import Vector::*;

// Data types for the Pixel values and 1-d convolutions
typedef FixedPoint#(1,8) Pixel;

typedef FixedPoint#(1,16) FilterCoeff;

typedef FixedPoint#(2,8) DOGPixel;

// Some pixels (to deal with edge effects) should be used in calculations
// but should not have filtered values calculated for them.
typedef struct { Pixel data; Bool compute; } FilterPixel deriving (Bits);

typedef Bit#(8) PxByte; // determines how bit of a chunk to use for pixels
typedef Bit#(9) FullPxByte; // determines how big pixel is when FP
typedef Bit#(18) ImageMemAddr;

// Tagged Union Type for Address
typedef union tagged {
ImageMemAddr ImagePixelAddr;
void LastPixel;
void NonPixel; // indicates no address was sent
} ConvAddr deriving (Bits, Eq);

// State Types for the Convolution Block
typedef enum { ReadIn, Vertical, Horizontal } GaussState deriving(Eq,Bits);

// size for counters in image
typedef Bit#(9) CountType;

// for keeping track of scale

typedef Bit#(2) ScaleType;

// position of pixel in original image

typedef struct { CountType row; CountType col; } PixelPos deriving(Bits);

// output of Difference of two dimensional convolution

typedef struct { Pixel data; ScaleType scale; PixelPos pos; Bool eof; } SiftPixel

deriving (Bits) ;

// Output of the Gaussian Pyramid block

typedef struct { Vector#(6,Pixel) data; ScaleType scale; PixelPos pos; Bool eof; } ConvPacket
deriving (Bits) ;

// two identical data types for the output of the the difference of Gaussians block (different
implementations)
typedef struct { Vector#(5,Pixel) data; ScaleType scale; PixelPos pos; Bool eof; } DiffPacket
deriving (Bits) ;
typedef struct { Vector#(5,Pixel) data; ScaleType scale; PixelPos pos; Bool eof; } DOGPacket
deriving (Bits) ;

// Data type for memory address
typedef struct { ImageMemAddr addr; PxByte data; } MemPktType deriving (Bits);

// Data type to pass into GaussianAddr for enable and state setup

typedef struct { ScaleType scale; GaussState state; } ImRdyType deriving (Bits);
endpackage

» 19 «

	Difference of Gaussian Scale-Space Pyramids
for SIFT1 Feature Detection
	Ballard Blair and Chris Murphy
	Introduction
	Algorithmic Overview
	Architecture Overview
	Memory Management and Addressing
	Convolution Description and Details
	Image Down-sampling
	Implementation Notes
	Testing Procedure and Results
	Synthesis Results
	Place and Route Results
	Architectural Exploration
	Future Improvements
	Conclusions
	Thanks
	References
	Appendix A. Bluespec File Descriptions
	Appendix B: SiftTypes.bsv

