

GZIP Encoding
6.375 Final Project

Behram Mistree &
Dmitry Kashlev

GZIP - Outline

 GZIP
− Lossless compression algorithm
− Specified by RFC 1950, 1951, and 1952.
− Two parts:

 LZ77
 Huffman Encoding

Input
File

Compressed
File

Huffman
Decoder

LZ77 Decoder
Compressed
File

Original File

LZ77 Encoder
Huffman
Encoder

LZ77 – Basic Idea

LZ77 looks at partial strings within text.

− If a particular string occurred within the
previous 32 Kb of data, replace it with a
pointer to the previous string.

− Takes advantage of the repetitive nature of
English text.

LZ77 - Example

Original Text:
This will be encoded.

This will be encoded.

This will be encoded.

This will be encoded.

This will be encoded.

Encoded Text:
This will be encoded.

<21, 21>

<21, 21>

<21, 21>

<21, 21>

LZ77 - Encoder

 Decoupled 32Kb of memory
− Stores last 32Kb of text file

 Memory manager
− Writes to correct position of memory
− Checks memory against input data

 Wrapper
− Receives value from GET/PUT interface
− Writes out either single character or encoded

distance, length pair

LZ77 - Decoder

Deals with two cases:
− Case 1: Receives a character

Pipes character directly to output.

− Case 2: Receives a length-distance pair
Perform a memory lookup and write out string of

characters to output buffer.

LZ77 - Clock Time and Area

 Encoder*:
− 4051.00 µm2

− 3.93 ns critical path
 Decoder*:

− 2015.25 µm2

− 3.93 ns critical path

* We could not get Encounter to synthesize memories correctly, so these values do not include a
32K long, 8 byte SRAM memory.

LZ77 - Initial Results
Compression

Pre-Encoding: 108,673 character text file
input.

Encoded: 27,052 pair and character
values in encoded file.

− 23848 pair values.
− 3204 single characters slip through.
− Encoded gives 89,653 bytes*. 82% the size

of the initial file without Huffman.

*Assuming a 29 bits for each pair.

LZ77 - Limiting Factors

 The encoding algorithm is the primary
bottleneck.

 Relies on repetitive nature of document.
In worst case (no repetitions), to encode
each character will need to examine 32Kb
of data.

 Algorithm is O(n) time. But it has a huge
constant factor.

LZ77 - Exploration

 Memory requests can return more than
one piece of data at a time.

− Increase data from memory

 Increase concurrency
− Can check for multiple characters and single

characters concurrently

Huffman code

Every ascii character has an equivalent Huffman code

Huffman code is a sequence of bits.

The huffman sequences may have the same value, but
different bit length

Example: 0011 and 11 are different huffman codes

Assuming the following alphabet:
D: 00
E: 11
H: 010
L: 011
O: 101
R: 1000
W: 1001
 : 10001

HELLO WORLD

0101101101110110001100110110000
1100

Huffman Tree

Huffman code is a prefix-free
code

Huffman code does not have a
fixed length

During encoding, the ascii
characters are generated by
going down the binary Huffman
tree starting at root node. Leaf

Val=B

Node Node

Leaf

Value=A

Node

Node

Root
node

Leaf

Val=C

Leaf

Val=
D

Node Leaf

Val=
E

0
1

0 1

0 1

0
1

0 1

0 1

A: 00

B: 11

C: 010

D: 011

E: 101

Huffman Encoder

A Table mapping ascii characters to huffman code
stored in a register file.

inde
x

Huffman code

Register 1111111111111111….1111111111111110

1111111111111111….11111111111111110

1111111111111111….111111111111111110

1111111111111111….1111111111111111110

1111111111111111….
11111111111111111110

97

98

99

100

101

‘a’

‘b’

‘c’

‘d’

‘e’

Registers

For every ascii character in a file, perform table lookup
to get huffman code for the character

Lookup is easy. Every register stores huffman code
for equivalent ascii character (A=97 in ascii)

Huffman Decoder

A huffman tree is generated before decoding.

Root Node (leftPointer=2, rightPointer=3)

Leaf, (Value=’a’)

Node (leftPointer=4, rightPointer=5,
Value=1)

Leaf (Value=’b’)

Node (leftPointer=6, rightPointer=7,
Value=1)

Leaf (Value=’c’)

1

2

3

4

5

6

Leaf (Value=’d’)7

Node

Root
node

0
1

Left pointer is taken if bit is “0”

Right pointer is taken if bit is “1”

Leaf

Val=
a

Leaf

Val=
a

Node

Leaf

Val=
a

Leaf

Val=
a

0

0

1

1

Huffman module overview

inQ outQ

inQ outQ

Encoder

Decoder

Huffman
Table

Huffman Tree

Input from LZ77
encoder CHAR or PAIR

Input from Huffman
Encoder (1 bit)

Output to LZ77
Decoder CHAR or PAIR

Output to
Huffman
Encoder (1 bit)

If PAIR, pass to
outQ

If CHAR, look up
huffman code in
table

If PAIR, pass to
outQ

If BIT, go down
huffman tree to
obtain ascii char

LZ77 and Huffman Results

Pre-Encoding: 108,673 character text file
input.

Encoded: 161,177 bytes*.

*Assuming a 29 bits for each pair.

\0

Initialization
Read 3 values
into first[0],
first[1], first[2]
from infifo

check_equals
send request
to mem check
for all values
of first

look_for_more
writes first[0],
first[1], and
first[2] into memory
set count = 0.

Write first[0]
Write first[0]
into memory
and to outfifo.Case 1: Memory

!contain first in
consecutive order.

Case 2: Memory
 contains first in
consecutive order.

Shift
first[0] = first[1]
first[1] = first[2]

Read new value
first[3] = infifo.first()

infifo.deq()

check_equals
tmp = infifo.first()

Case 1: !=

Case 2: ==write tmp to memory
infifo.deq()
++count

Write
Write pair(count +3, distance)

to outfifo. (note: distance
is returned by check_equals)

Things to add and improve

• Compress LZ77 pairs with huffman coding

• Dynamic Huffman

• Instead of large register file, use decoupled memory

Static vs. Dynamic Huffman

Two ways of generating huffman alphabet

2)Static Huffman – the huffman table and tree are
generated before encoding/decoding takes place

3)Dynamic Huffman – The table is dynamically
changing as new ascii characters are introduced,
based on the frequency of ascii characters

 LZ77 - Speed
 Required 2,854,403,040 clock cycles to

perform encoding and decoding with
LZ77 previous file.

 11.2178039 s to perform both lz77
encoding and decoding

 2,853,820,260 clock cycles to perform
encoding and decoding with huffman and
lz77.

 11.2155136 s (assuming 3.93ns critical
path).

