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GZIP Introduction

GZIP is a software application used for file compression. It is widely used by many UNIX
systems. GZIP provides an effectively lossless data compression. GZIP is based on DEFLATE algorithm
which is a combination of LZ77 and Huffman coding. The DEFLATE algorithm is specified in RFC1951,
while GZIP file format is specified by RFC1952.

Figure 1 below describes the general architecture of GZIP. GZIP contains an encoder and a
decoder, each of which have Huffman and LZ77 modules. The text input is fed into LZ77 encoder, and
output of LZ77 encoder is connected to the input of Huffman encoder. For the purpose of our final
project we connected the output of Huffman encoder to input of Huffman decoder. This is where the data
becomes compressed. The output of Huffman decoder, in turn, is connected to input of LZ77 decoder.

The output of LZ77 decoder is the uncompressed text.
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LZ77 Overview:
Suppose that you wanted to encode a file that consisted of the sentence “I really, really want to

encode a sentence,” repeated 1000 times. You could determine the optimal way of encoding the sentence
and then repeat that optimal encoding 1000 times. LZ77 eschews this method and instead encodes the
first appearance of the sentence and then replaces all subsequent repetitions of the original sentence with

“pointers” to the first sentence. For instance:

I really, really want to encode a sentence
I really, really want to encode a sentence
I really, really want to encode a sentence
I really, really want to encode a sentence
I really, really want to encode a sentence

I really, really want to encode a sentence
would be encoded as:

I really, really want to encode a sentence
<Pointer to sentence 1>
<Pointer to sentence 1>

<Pointer to sentence 1>



<Pointer to sentence 1>

<Pointer to sentence 1>

A pointer has two parts to its structure: a distance and a length. The distance is a value ranging
from 1 to 32,768 and corresponds to how many spaces prior to the current position the repeated snippet of
text is located. The length is a value ranging from 3 to 258 bytes that represents how long the string to
insert is. Revisiting our example, because the length of the “I really, really want to encode a sentence” is
42, we would get:

I really, really want to encode a sentence

<Distance: 42; Length: 42>

<Distance: 42; Length: 42>

<Distance: 42; Length: 42>

<Distance: 42; Length: 42>
<Distance: 42; Length: 42>

The basic principle behind LZ77 encoding is that one canreplace a phrase that appears multiple
times in a text with a pointer to the previous occurrence of that same piece of text.

The LZ77 specification requires that the encoder have access to either 2KB, 4KB, 8KB, or 32KB
of data prior to the current character or word being encoded. Because the default option for most
software implemented GZIP encoders requires access to 32KB of data, we built our hardware using a
32KB window of accessible values. (However, a single trivial parameter change in our code would allow
for the 2KB, 4KB, and 8KB cases.)

We need some way to keep track of the previous 32KB of data. To accomplish this goal, we built

a separate RAM module that allows reads and writes. To assure a good model of real-world memory, this



decoupled memory module does not allow combinational reads.

We built a controller module for the RAM module called Memory Checker. Its primary purpose
is to check whether valid locations in memory contain characters equal to those passed into it by calls to
its methods. In addition, Memory Checker is responsible for ensuring that, during writes, characters are

inserted into the correct positions in the RAM memory module.

The interface with comments for the Memory Checker module is provided below.

method Action write_next( Char data );
write_next takes in a character of data and puts it in the appropriate space in memory.

method Action check_equals (Rindx nndx, Char val);

method ActionValue#(Bool) get_equals();
check_equals takes in an memory index position (rindx) and a character. The
corresponding call get_equals returns whether the character value passed in was equal to
the element stored in memory at position rindx.

method Action set_find_triplet( Char datal, Char data2, Char data3 );

method ActionValue#(Maybe#(TripletReturner)) get_find_triplet();
set_find_triplet takes in three characters. The corresponding call to get_find_triplet
returns an invalid data type if all three characters were not found consecutively in the
memory. If all three characters were found consecutively in the memory, get_find_triplet
returns the index of the memory where the first of the three characters were found tagged
valid.

The set_find_triplet and get_find_triplet methods are the crux of the Memory Check module.
Figure 2 presents a high level block diagram of the inner workings of Memory Check when
set_find_triplet is called. Briefly:
1. set_find_triplet: A call to set_find_triplet initializes register search_ptr to the earliest memory

index written to.



2. memory request: The Memory Check module requests data from the locations in memory with

indices search_ptr, search_ptr +1, and search_ptr +2.

3. Memory Response: Memory Response returns values.

a) If the memory response contains values equal all three of the values passed in to

set_find_triplet, then we set get_find_triplet to return search_ptr tagged valid.

b) Check search_ptr: If the memory response contains values that do not equal all three of the

values passed in to set_find_triplet, then we increment search_ptr.

1. If we already checked the character value stored in the RAM index search_ptr +2, then we

set get_find_triplet to return invalid data.

ii. If we have not already checked the character value stored in the RAM index search_ptr +2,

then we go back to step 2, memory request.
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Figure 2: High level block diagram of logic for set_find_triplet and get_find_triplet methods of
Memory Checker.
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Figure 3: Semi-hardware level diagram of Memory Checker module.

We have created complete drawings by hand of the hardware generated by the LZ77 encoder
(minus compiler optimizations). They provide a very detailed and specific understanding of how the

hardware for the LZ77 encoder works. Such detail in this report is not necessary, therefore, you can

access the drawings at http://bmistre.mit.edu/6.375/1z77Hardware.pdf. Of particular interest however may
be the hardware for the state variable (which provides the primary guard on most of these rules pictured
above). Therefore, we have added the hardware fore the LZ77 encoder's Memory Checker module in

Appendix A.


http://bmistre.mit.edu/6.375/lz77encode.pdf
http://bmistre.mit.edu/6.375/lz77encode.pdf
http://bmistre.mit.edu/6.375/lz77encode.pdf

The third and last encoding module is titled Lz77_Encode. Lz77_Encode provides a get/put
interface to an external source. The get element of the interface for Lz77_Encode reads in acharacter at a
time from some external source, while the put element outputs the encoded data. The logic behind the
Lz77 encoding is presented as a high level block diagram in Figure 4. Below is the enumerated
explanation of the encoding:

1. Initialization: Reads three values from external file into first[0], first[1], and first[2].

2. check_equals: Sends a request to Memory Check using the set_find_triplet method described
above. data0, datal, and data2 from set_find_triplet are equal to first[O], first[1], and first[2]
respectively.

a) If Memory Checker returns an invalid memory index, then we cannot generate a pointer that
points to any previous values of first[0], first[1], and first[2] because first[0], first[1], and
first[2] do not appear consecutively in the previous 32Kb of data passed into the RAM.

1.  Write first[0]: Because we know that the consecutive characters first[0], first[1], and
first[2] cannot be replaced by a pointer to a previous position in memory, we write first[0]
to our 32Kb window of data through a call to Memory Checker's write_next function. We
also write first[0] through the put interface indicating that there is no compression that
occurs on the character in first[0].

ii. Shift and Read new value: We shift the values in first and load a new character in from

the get interface so that we can look for a new set of three characters in the previous 32Kb



of memory.

b) If Memory Checker returns a valid memory index, then the characters represented by first[0],

first[1], and first[2] can be replaced by a pointer to a previous occurrence of these three

characters.

il

look_for_more: Instead of just writing the characters contained in first to the output as a
pointer straightaway, we first want to check whether we can “grow” the pointer by
matching additional characters coming from the get interface with those that follow the
previous occurrence of first in the 32Kb of data.

check_equals: We peak at the next value coming from the external file and send this

value to Memory Checker along with potential index that would grow the pointer.

I.  Write: If Memory Checker returns that the potential index that would grow the
pointer is not populated with the next value that we are receiving from the get
interface, then we write out our pointer through the put interface.

IT. If Memory Checker returns that the potential index that would grow the pointer is
populated with the next value that we are receiving from the get interface, then we
dequeue from get. In addition, we increment the memory index that we are sampling
to grow the pointer. We then go back to check_equals with a new value in our get

interface and a new position to check in memory.
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Figure 4: High level block diagram for functioning of Lz77_Encode module which encodes

character data passed into it using the get/put interface.

A state variable provides an explicit guard that controls the transitions between these states. We

have included the specific hardware of these state transitions in Appendix B.

LZ77 Decode:

Compared to encoding, decoding is fairly straightforward. The decoding aspect of LZ77 is split

into two modules. One module, Decompressed Window, keeps track of the last 32Kb of decoded data.

Specifically, Decompressed Window provides methods for writing new decoded data into its 32Kb
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window and returning characters from pointers for the other module, Lz77_Decode to write out. The

logic for writing a character for module Decompressed Window is trivial — we simply write the new

character into the next available spot in the 32Kb window. The complexity of Decompressed Window

comes from decoding pomters. Figure 5 provides a high level block diagram for the logic necessary to

decode a pointer.

1.

set_return_string: set_return_string is called by Lz77_Decode. The two arguments that it is

passed correspond to the distance and length values of a particular pointer. Decode Window

keeps track of the next available position in memory to write a value into (called window_end).

Therefore, the first character that a pointer points to (labeled start_position in the diagram) should

be equal to window_end — dist. Count is aregister that keeps track of the number of characters

that should match the pointer. That is, we know to exit when count is equal to length.

filling_string: filling_string simply makes a memory request. Note that because count is

incremented each time, filling_string effectively makes a memory request once for each character

that is represented by the pointer.

get_return_string: get_return_string is an ActionValue method.

a) If count + start_pos is equal to runUntil, get_return_string returns an invalid character and sets
the system state so that Lz77_Decode can call set_return_string again.

b) If count + start_pos is not equal to runUntil, get_return_string returns a valid character. In

addition, we increment counter so that future memory requests will look for the next value in
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memory. We then return to the filling_string state.

set_return_string
dist | sets start_position to memory index
of data that occurred dist characters

ago; sets runUntil to the value of
length | the updated start_position + length.
Set count to 0.

filling_string
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Figure 5: High level block diagram for Decode Window's set_return_string and get_return_string.

The Lz77_Decode module provides an interface for putting encoded values through the

Decompressed Window module.

1. putInDecodedWindow: reads and dequeues a value from the Lz77_Decode module's get

interface. The value may either be a single character, or a pointer, representing a string of

characters.

a) Write Single Character: The case that tmp is a single character is uninteresting — there is
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nothing to decode, we simply write the character into the Decode Window module and also
write its value through the put interface.

b) Call set_return_string: When tmp is an LZ77 pointer, we need to decode the pointer.
Fortunately, the Decode Window module provides logic that does this decoding for us. We
simply call Decode Window's set_return_string method and wait for a series of character

responses from Decode Window's get_return_string.

Figure 6: High level block diagram for Lz77_Decode.
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Again, for a thorough treatment of the hardware necessary for decoding LZ77 please see

http://bmistre.mit.edu/6.375/1z77Hardware.pdf.

LZ77 Exploration:

We went through several iterations of LZ77 design. Our emphasis was on making the encoding
and decoding faster through algorithmic improvements. Because our encoder was our primary bottleneck
(taking the maximum number of clock ticks out of all the elements to process input), we focused on
streamlining the encoder.

As we learned in previous labs, some of the greatest slow down occurs from reading
from memory. Initially, we read only single characters from memory, progressively comparing these

values to those to be encoded. However, because memory hardware should be able to support more than
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a single character read per clock cycle, we changed our rules to read more memory values and compare

them against our values.

LZ77 Results:

We put the Communist Manifesto, a file consisting of 108,673 characters, into our LZ77 encoder.
Our LZ77 encoder returned an output that consisted of 27,052 character or pointer values (3204 single,
unencoded characters; and 23848 pointer values).

If we assume that each pointer pair is 30 bits (15 bits to represent 32K potential distance values
and 15 bits to represent 32K potential length values), then our LZ77 encoded file is now 92,634 bytes
long. Therefore, if we just use LZ77 compression with no other techniques, our encoded file is 85% the
size of our unencoded file. These results are quite promising as Huffman encoding should reduce this
number still further.

After performing our optimizations, the total area of our LZ77 encoder was 4051.00 um’. Please
note that because we were not able to determine how to use the Encounter tool to place memory on our
chip, this figure excludes the size of our memory 32KB on-chip memory.

The critical path for our LZ77 encoder was also 3.93 ns. This critical path corresponded o
dequeuing from the input fifo that is sending unencoded characters and sending those characters to the
memory manager.

The total area of our LZ77 decoder (again excluding memory) was 2015.25 um’. Strangely, the
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decoder also had a critical path of 3.93 ns. This critical path corresponds to the path from reading a value
from the fifo outputting encoded values, and passing that value to the decoding window of 32KB

described above.

Huffman Modules:

The Huffman part of the GZIP algorithm consists of 2 major parts — encoding and decoding.
Encoder takes ascii characters as input and produces a sequence of bits’0’s and ‘1’s as output. Decoder
reads the sequence of bits and determines the characters based on the binary tree representation.

Both Decoder and Encoder require prior knowledge of bit-sequence to character mappings and vice versa.
This is why a static Huffman table is generated before encoding and satic Huffman binary tree is
generated before decoding.

Before we delve deeper into the subject of Huffman decoding in gzip, I will describe what
Huffman codeword actually is. A Huffman codeword is a sequence of bits, or “0”’s and “1”’s that have
variable length. The variable length of Huffman code is one most important reason why Huffman coding
has been so successful in the field of data compression. The characters that appear most frequently have
shortest Huffman codeword, while characters that are used rarely get longer Huffman codeword. Instead
of representing each character in a binary format, we can also add another degree of freedom, which is a
bit length. While to a normal human, 0011 and 11 seem to mean the same number, 3, in Huffman context

they actually are two different Huffman codewords. To sum it up, Huffman codeword is a sequence of bits
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that is of variable length.

Huffman code is a prefix-free code. This means that there is no fixed length dictated for every
Huffman codeword. If given a Huffman string, it is necessary to start at the beginning of the stream to
read the Huffman code. Starting in the middle will not work because the location of the end of previous
Huffman code in this stream is not known.

Huffman trees are used in decoding Huffman streams. The usage of the binary tree means that the
character is obtained when the tree iteration algorithm hits a leaf. Every leaf in the tree contains the ascii
character that is represented by a Huffman codeword that can be determined by going from the root node
to the leaf. Since every node in a binary tree can have only 2 branches, each branch taken is either a “0”

or a “1”. See Figure 7 for the illustration of Huffman tree.

Root
node
1
Node
1
A: 00
Node B: 11
C: 010
D: 011
Leaf E: 101
Val=B
Leaf Leaf
Val=C 1 |Val=E
Figure 7.

There are two different Huffman tree generation algorithms, dynamic (adaptive) Huffman and

static Huffman. GZIP uses adaptive Huffman to generate the tree based on pre-determined probabilities
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for each character [1]. However, there have been no past attempts to integrate adaptive Huffman into
hardware, and this has belonged to a software realm for a while. Because adaptive Huffman tree is
generated by moving various nodes of the tree around the tree, and each node may have a variable number
descendants, it’s very hard, if possible at all to store a node in a fixed register in hardware. Storing value
of a variable length in a register would involve resizing the register.

For the purposes of this final project we used static Huffman algorithm which means that a static binary
tree is generated before decoding and a static Huffman table is generated before encoding. The table or
the tree does not get altered in the process of decoding or encoding. This, of course, meant that we could

no longer compare our output to that of the commercial gzip software.

Current Implementation of Huffman Alphabet:

Since we are using static Huffman coding, we generate Huffman table and tree in advance. In the
case of encoder, we generate a Huffman table that maps ascii character to a Huffman codeword. Ascii
characters are represented by indices of the registers in the register file, and their equivalent Huffman

codewords — as 256-bit entries to these registers. Please see Figures 8 and 9 below.

Register

index Huffman code

Figure 8: Huffman code in a register

Indices represent ascii characters. For example, letter ‘a’ if converted to decimal, would be equal

to 97. The Equivalent 256-bit Huffman codeword for character ‘a’ would thus be placed in register 97. For
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safety reasons we are using the 256-bit register to store the Huffman codeword for each ascii character, as

it is the longest Huffman codeword ever possible for an 8-bit ascii character.

Registers

‘a’ 97 1111111111111,
1111111111111110

by 08 1111111111111111....
11111111111111110

(o 99 1111111111111111.....
T1T1T1T11111111111110

=y 1111111111111111....
d 100 1111111111111111110

o | 101 | 1111111111111111....
11111111111111111110

Figure 9: Huffman table in a register file

Since Huffman code is a binary number of variable length, and registers in hardware cannot store
elements of variable width, a different approach in storing Huffman code was taken. Instead of Huffman
code in the register, we used a struct of both Huffman code and the bit length of that code. This way, a
Huffman code can be stored in a 256-bit register (actually longer than 256 bits because struct information

and the bit length must also be stored). See figure 10 for precise representation of Huffman code.
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Registers

‘a’ 97 Code: 00000000000000....
0000000011111110

‘b’ 98 Code: 00000000000000....
0000000111111110

Figure 10: Huffman code as stored in registers

As you notice in Figure 9, the Huffman code is a sequence of 1’s and ‘0’s, but it is mostly 1’s.
This was decided because we are not sure what zero-terminated string means. It was assumed that any
two zeros in a sequence would mean the zero-termination symbol. Therefore, each consecutive ascii
character is one bit longer than the other, up to 256 bits (there are 256 ascii characters). This is a very
inefficient Huffman tree, and can be improved by actually trying to build a huffman tree by hand. Since
we are using a static Huffman tree in this project, we wrote an algorithm that generates the Huffman table
and tree by giving certain ascii groups higher priority, and thus lower-length Huffman code. The order of
importance was a-z, 0-9, A-Z, symbols, and other characters, with a-z receiving shortest Huffman
codeword. There is a glitch in a register file in bluespec that for some reason does mt write into an
appropriate register. Whatever we pass to rfile.upd() ends up in adifferent register than specified In the
input to upd() method.

In the case of decoder, instead of a Huffman table, we are using a Huffman tree. Since Huffman

codes have no prefix and can be of a variable length, binary tree is the only way to determine which
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character the code belongs to. The 256-bit implementation of Huffman code makes this binary tree a very

long branch with tiny leaves coming out of this branch at every node. Every node of the branch has a

connection to another node and a leaf. In current implementation, a leaf would mean zero, and node

would mean one. Please see Figure 11 below.

Figure 11: Nodes are white, and leaves
are grey

As seen from figure above, every node has two branches, one pointing to a leaf, and another to

next node in the long branch. Every Huffman code ends with a zero bit with the exception of the bottom

branch. So, for example, if the stream of bits is 1111101101001111110, it means there are 5 characters

(every character has the zero bit at the end). This is accomplished by iterating through the Huffman

binary tree. As I said above, this algorithm is very inefficient, and can be greatly improved by hand-

coding the most optimal static Huffman tree, which we have not had a chance to do due to time

constraints.

Our inefficient implementation can be made efficient easily by modifying the code that builds

Huffman table in the case of encoder and Huffman tree in the case of decoder. The Huffman tree creation
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algorithm in case of decoder would have to be modified to perform a depth-first search. Currently it
considers one of the two branches to always end up as leaf, and the other one to end up as either a leaf or

a node.

Hardware Description:

Huffman coding uses a large register file (256 registers, each is 256 bits plus integer). Each entry
in the Huffman table is a struct of variable-length Huffman code, and a length of that code. This is the
way of keeping track of how many bits are in the Huffman code for a particular character.

For Huffman tree in case of decoding, we use a large register file (with 10-bit index). Each register entry
contains a struct of 4 variables: type, value, left and right pointers. Type can only be a Node or a leaf.
Value is an ascii character. We regard left pointer to always point to ‘0’, and right pointer to always point
to ‘1°. Unlike the table that encoder uses, decoder does not assign Huffman code to a register that is
represented by character’s ascii number. Instead it relies on pointers to keep track of position in the

Huffman tree. Please see Figure 12 for detailed description.
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1 Root Node (leftPointer=2,
rightPointer=23)

2 | Leaf, (Value='a’)

3 Node (leftPointer=4, rightPointer=5,
Value=1)

4 | Leaf (Value='b’)

5 Node (leftPointer=6, rightPointer=7,
Value=1)

6 Leaf (Value='c’)

7 Leaf (Value='d’)

Figure 12: Huffman binary tree implementation

As you can see from the figure, the Huffman tree is alist of nodes, each node entry has 2 pointers,

each of which contain the index of the node or leaf connected to that node. Node (represented by index 3)

points to a leaf (register 4) and another node (register 5). This implementation only works for our scenario

of long branch with leaves coming out of it (so that the left node is always a leaf and right node is either a

node or a leaf). In case where the branches all have variable length, we would have to add the back

pointer to keep track of parent nodes. For example, in register 5, there should be a back pointer to register

3 because there is a node in register 3 that points to a node in register 5.

General Overview of Our Huffman Algorithm

Encoder
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After the Huffman table is generated by encoder, the encoder reads the input stream from the
input FIFO (which is the output of LZ77 encoder), character by character, and places Huffman code bit
by bit into an output FIFO. The output of LZ77 Encoder can be of one of the two types: an ASCII
character, or a length-distance pair, so the input FIFO of Huffman encoder follows the same format. For
the purpose of this project we are not encoding the pairs. We are simply passing the length-distance pairs
to the output FIFO. Each element in output FIFO is either a bit or a length-distance pair. Each element in
output FIFO is mostly one-bit wide because Huffman code is a stream of bits, and a FIFO cannot handle
elements of variable bit length. Since ASCII alphabet is very large (128 standard characters, and 128
extended characters), having 128-256 choices for an element in the FIFO is not feasible. Since Huffman
codes are of variable length, it would be very hard to utilize a FIFO with elements of variable length.
Therefore, we update the FIFO one a bit at a time. The output FIFO would thus contain a stream of bits,
one bit per element of a FIFO, and the contents of that FIFO would be saved to a file by test bench. The

same output is connected to the input of the Huffman decoder.

Decoder

After the Huffman tree is generated by the decoder, the decoder reads the input stream from the
input FIFO on abit by bit basis. The input FIFO is connected to the output FIFO of Huffman encoder.
Each element in the input FIFO is either a length-distance pair or a single bit. If it is a pair, then the pair
is passed to the output FIFO. If it is a bit, then the Huffman tree is used to obtain the ascii character. For
every bit in a sequence, the Huffman decoder goes down from a node to a child node based on the bit. It
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takes a left pointer to a left child node (leaf), or a right pointer to the right child node. Once a leaf is hit,
the character that is stored in that leaf as a value is placed in the output FIFO. Then test bench reads

characters from the output FIFO and either saves into a text file, or passes the characters to LZ77

algorithm.
Encoder
If PAIR, pass to outQ -
If CHAR, look up |
huffman code in table
— >
: Huffman Table
inQ outQ
Input from LZ77 encoder
Output to Huffman
CHAR or PAIR I:“ | I:“ | Encoder (1 bit)
Temp registers/counters
Decoder -
If PAIR, pass to outQ ]
If BIT, go down
huffman tree to obtain | |
ascii char I
Huffman Tree
inQ outQ
Input from Huffman I:” | I:” | Output to LZ77 Decoder
Encoder (1 bit) Temp registers/counters CHAR or PAIR
Figure 13: General overview of Huffman encoder and
decoder

Detailed overview of Decoder and Encoder
Encoder
There are 5 main stages in the Huffman encoder pipeline: { HUFFMAN_INIT,

HUFFMAN_GENERATE_TABLE, HUFFMAN_COMPRESS, HUFFMAN_GENERATE_BITSEQ,
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and HUFFMAN_FINISH}. There is an optional HUFFMAN_TREE_CHECK stage for displaying the
contents of the regfile. This was used to check if Huffman codewords were assigned to correct registers
after the table has been generated (HUFFMAN_GENERATE_TABLE).

The Huffman table is generated during HUFFMAN_GENERATE_TABLE.
HUFFMAN_COMPRESS and HUFFMAN_GENERATE_BITSEQ work together. The latter is called
from inside the former. HUFFMAN_COMPRESS looks at one character at a time and saves the 256-bit
code along with the bit length of the code in temporary registers. HUFFMAN_GENERATE_BITSEQ
looks at those temporary registers and generates the bit sequence based on the length of codeword. This is
the stage that inputs bits to the output FIFO bit by bit. Figure 13 shows how stages interoperate with each

other.

HUFFMAN INIT Temporary registers

$ i\ code ><i length

HUFFMAN GENERATE TABLE T Curr i

v A AN

HUFFMAN COMPRESS < ’ HUFFMAN GENERATE BITSEQ

v

HUFFMAN FINISH

Figure 14: Stages of Huffman encoder
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Decoder

There are 5 pipeline stages in Huffman decoderr { HUFFMAN_INIT,
HUFFMAN_GENERATE_TREE, HUFFMAN_TABLEADD, HUFFMAN_DBCODE, and
HUFFMAN_FINISH}.

HUFFMAN_GENERATE_TREE creates 2 children nodes (anode can be of NODE type or
LEAF type) and puts them in their corresponding temporary registers. The node structure is explained in
Figure 15. HUFFMAN_TABLEADD is needed because there are two concurrent register file accesses for
updating the Huffman tree. Each node entry requires a dedicated register file access, and since there are
two nodes, two register file accesses are needed. They cannot run concurrently, so
HUFFMAN_TABLEADD sage makes sure that the two accesses are executed sequentially.

Once the Huffman tree is generated, HUFFMAN_DBCODE stage performs the top-down iteration to
obtain the ascii character based on Huffman codeword. HUFFMAN_DECODE goes to the register
specified by leftPtr (left pointer) if the bit is zero. If the bit is one, HUFFMAN_DBCODE goes to
register specified by rightPtr (right pointer). As soon as the leaf is reached, the value of that leaf is
extracted and is used as an ASCII character output. Figure 15 shows how stages interoperate with each

other.
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HUFFMAN INIT Temporary registers

$ i~ node ><J leaf

HUFFMAN GENERATE TREE Curr

v A AN

HUFFMAN DECODE < > HUFFMAN TABLEADD

v

HUFFMAN FINISH

Figure 15: Stages of Huffman decoder

Huffman Node
- value (ascii character)
- type {NODE | LEAF}
- leftPtr pointer to left Node (taken if bit is zero)
- rightPtr pointer to right Node (taken if bit is one)

Figure 16: Node structure for Huffman
tree

Overall Results:

We put the Communist Manifesto, a file consisting of 108,673 characters, into our LZ77 and

Huffman encoders. The encoded output was 161,177 bytes long. Not only is this result vastly inferior to

the default gzip software implementation that we used for testing which produced a 34.4 KB compressed
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file, but it also actually expanded the file that we were working with.

We speculate that the expansion of these files is due to the naive way in which we did our

Huffman encoding. Specifically, we could not find the actual Huffman code values that gzip uses to do

static Huffman encoding. Therefore our poor compression rate can probably be explained by the fact that

our mapping between Huffman codes and characters was sub-optimal.
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Appendix A: State transition logic for Memory Checker module

state logic for mem check

module (part 1) FIND THREE
- lait for three signal

mem_resp[0]. FOUND_ THREE
first_t} 0] == et
mem rgsp|ﬂ|
_first_three[0){ == And
mem_resp[0],
sl threefl). — o Or

window_end

_sea:ch:pir_+3

We use a state element titled “state” to determine
which rules and methods are allowed to fire.
Above is the logic governing the state logic
created in the wait_for_three rule. The output of
this logic will be used in the next slide to
determine the overall state logic.

More state logic for
mem check (part 2)

WAITING FOR THREE

FIND THREE

set find triplet enable . 1
_ state

wait_for_three signal ]

X

wait for three enable ‘

wait_for_three enable
look for thr nabl

set_find_triplet_enable

Or

This logic governs the state of the mem check module. Note, state
can only be changed when the wait_for_three, look_for_three, and
set_find_triplet methods/rules are enabled. 32



Appendix B: State Logic for LZ77_Encode Module

state logic from LZ77_Encode module

count | —

get3 enable

state

LZ7/_SEARCH

init_enable

searchd enable

And

:|And LZ77 GET3 |

state controls the
rules and methods
which can fire. More

Y

logic governing state
appears on the next
= slide.
|

!

get find triplet

LZ77 SHIFT

LZ77_LOOK_FOR_MORE

(from mem check)
search3 resp enable

Valid? |

And

\L;taie from

IsearchS, init, get3,
g

- and search3_resp
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state from search3, init,

get3, and search3_resp

more state logic for
LZ77_Encode
module .

s |

LZ77_GET3
o
shift enable e )
MORE_MORE
look_for_more_fill enable .
And
count |53

look_for_more_more

LZ77 LOOK FOR_MORE

-

state controls the
rules and methods
which can fire.
More logic
governing state
appears on the next

enable
check_equals

¥

(from mem check)

And

Not

And

state enable
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more state logic for state controls the rules and
LZ77_Encode module methods which can fire. This
is the logic for state enable.

Cﬂum_ ==2

|
get3 enable o And
init_enable | i) Or

|
search3 resp_enable | -
search3 enable | 3

: _state enable

shift_enable | J Or
look_for_more_more enable : e

|
look_for_more_fill_enable . =

| And

|

<= 2




