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I Introduction to Timing Models:

Software simulation of micro-architecture designs before actually developing the
complete synthesizable RTL for the design is the standard practice to evaluate
microprocessor designs. This has a big advantage. Architects do not have to wait for the
complete design of the micro-architecture in RTL before having to evaluate the
performance of a design. The performance of the entire design can be altered by tweaking
a few parameters which control the timing information of the modules in the simulation,
rather than having to worry about how that module can be designed to meet the expected
timing. This helps the architect focus on the big picture rather than to worry about the
exact details of each internal module in the micro-architecture design. This mode of
simulation will be facilitated by partitioning the simulator into a timing partition and a
functional partition. Figure 1 shows the partition of a simulator into its timing and
functional partitions. In the software simulator, the functional partition can be written
simply as a giant case statement, which maps each instruction type in the ISA into the
corresponding change of architectural states of the processor. This is essentially a 1-cycle
processor in some sense. Now, the timing partition drives instructions into this functional
partition. The timing partition traditionally maintains all the micro-architectural states of
the processor. It determines if the micro-architecture is going to be pipelined or not, the
number of pipeline stages, whether the instructions can execute out-of-order or not, fetch
width of the processor, commit width of the processor, number of parallel functional
units, branch prediction algorithm used etc, to name a few. This difference between the
timing partition and the functional partition can be summarized as shown in Figure 1
where Functional partition can be thought of as just implementing the ISA, whereas the
timing partition implements the actual micro-architecture. Basically the timing model of a
software simulator can be thought of as the control path in the actual processor design,
except that it is written in sequential software, and hence is not going to execute
concurrently. So the timing partition in software can take several cycles of CPU time in
order to model one actual simulated time. So, normally there is some explicit mechanism
to keep count of the actual simulated time, by incrementing a counter in the timing model
each time a model cycle is finished. Also, the functional partition can take any number of
cycles to implement the functionality of the instructions. The timing of the timing
partition is decoupled from the timing of the functional partition. This helps in
decoupling the timing partition completely from the functional partition. So the timing
partition can implement a completely different micro-architecture while still retaining the
same functional partition.
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Timing and Functional partition in a simulator

| Introduction to HAsim

Classically, simulation models decrease accuracy and detail to improve simulation
time. Models of large systems running large benchmark suites can result in simulation
times of days, weeks, or months. At these speeds, simulation time dominates the overall
cost of modeling, as shown in Figure 2.
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Software simulator design-compile-simulate cycle

In an effort to improve simulation speed without degrading accuracy, system
architects are beginning to explore alternatives to software performance models. There
can be considerable improvement in performance of models using FPGAs and high-level
synthesis languages like Bluespec. Presumably this will lead to increased design time
over software, and increased compilation time due to the complexity of FPGA synthesis



and placement tools. Ultimately, then our hope is to redistribute the cost of modeling as
shown in Figure 3
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FPGA simulator design-compile-simulate cycle

HAsim, to be described in one sentence, is a framework to write software-like
simulators, separating the timing partition and the functional partition as in software, but
run the simulator in FPGAs. Michael Pellauer and Joel Emer are the chief architects
behind HAsim. The main defect in software models is that software is inherently
sequential, whereas the microprocessor, which it is trying to model is inherently parallel.
Several operations execute in parallel in the microprocessor. Even in the case of a simple
S-stage MIPS pipeline, there are atleast 5 operations taking place in parallel in the 5-stage
pipeline. So, even a dual core processor will not be able to sustain this level of parallelism
exhibited by the simplest of the processors like the 5-stage MIPS processor.

But, if we use FPGAs, we can configure them to model the hardware directly,
which will enable us to use the parallelism of hardware without any effort. I don’t mean
to implement the entire hardware in the FPGAs, but just to implement the software-
simulator in the FPGAs. This is made possible only by the use of high level hardware
description language like Bluespec, as designing the hardware to implement in the
FPGAs using verilog can be compared to writing a software-simulator in assembly.

The following sections describe some of the concepts in HAsim: the design of the
functional partition, the difference between an FPGA cycle and the model cycle, the
concept of APorts, used to model ticks in the timing partition and finally the AWB GUI
tool used to facilitate reuse of modules.

A Design of the functional partition

The functional partition, as I mentioned earlier, implements the functionality of
the ISA. It executes the instructions one by one and maintains the architecturally visible
states. Figure 4 shows the implementation of the functional partition. The green arrows
coming out of the functional partition represent the interface of the functional partition
with the timing partition. Each of the stages of the functional partition exports a server-
like interface with the timing partition, ie each of the stages have a separate request and a



response port. Similarly, the token generator also has a request-response interface with the
timing partition. Each stage of the functional partition also has a kill-request interface to
which the timing partition sends requests for killing particular instructions. The
functional partition maintains the architectural state of the whole system (processor +
memory) using the RegState and the MemState. Figure 5 gives a more detailed
description of the RegState. It consists of a physical register file (PRF), a mapping from
the logical register to the physical registers, and an ROB to enable rollback of
architectural states. Figure 5 also shows the presence of Checkpoints unit. This takes
checkpoints of the architectural states at certain instances, and this helps in speeding up
reloads (which would have proceeded at one instruction at a time using the ROB
otherwise). Figure 6 shows the MemState of the Functional Partition. It has a store buffer,
which stores all the stores till a global commit is requested by the timing partition. This
store buffer is first checked to service any load request before checking the memory.

The instruction fetch cycle starts with the timing partition requesting a token from the
functional partition. The token is the way of identifying a particular instruction at any
stage in the functional partition. After receiving the token back from the functional
partition, the timing model has to send the PC, and the token to the functional partition’s
fetch stage. The fetch stage in the functional partition associates the token with a
particular instruction. The reply from the fetch stage has the token and the instruction it
read from the memory. The instruction is read from the memory state (MemState) of the
functional partition. The timing model then has to send a token for a decode request. The
decode stage of the functional partition reads the RegState, to find the physical registers
which this particular instruction depends on, and returns the set of these physical
registers. Then the timing partition has to send an execute request. The functional
partition returns an acknowledgement for this request. Then the timing partition has to
send a local commit request followed by a global commit request, both of which are
responded by acknowledgements by the functional partition. At every time instant, only
one stage of the functional partition maintains information about the token, as an
instruction can only be in one stage at a time. So whenever a kill request comes in from
the timing partition to a particular stage in the functional partition, it clears the state for
that instruction in that particular partition.

B FPGA cycle vs Model cycle

The number of cycles to perform a particular operation in real time is decoupled
from the number of cycles the processor which we are modeling is going to take. That is
the timing model maintains its own time, which is completely decoupled from the time
that the functional partition takes to perform a particular function. Also, as mentioned
before, the model doesn’t have to exactly simulate the processor it is modeling. For
example, the CAM structure is highly inefficient when modeling in FPGAs. But, if we
have a mechanism to decouple the modeled time from the real time in the FPGAs, we can
use a sequential lookup instead of a CAM structure.



C APorts — counting ticks in the timing partition

All communication between modules must occur through Asim ports or APorts
([1]). Asim ports also impose a discipline for modeling time. An Asim port is
essentially a FIFO of type r with a user-specified latency [ and bandwidth b. An Asim
port has the following properties:

* A message travels through a port in / model clock cycles.

* At the beginning of every model cycle a module must read all of its input
ports. It may then perform an arbitrary amount of calculation, and ends the
cycle by writing all of its output ports.

* A module may send a message of type ¢, or a special value NoMessage
(represented as an Invalid Maybe type in Bluespec), indicating no activity
on this cycle.

RegState

MemState
>

Figure 4
Functional Partition



o
)
0p)
O
@
o

Checkpoints

Map Table

Figure 5
RegState of Functional Partition

P —— e e e e e e e e e e e -

MemState
StoreBuffer

Figure 6
MemState of Functional Partition



The ASim abstraction offers several benefits to the model-writer. First, it allows
the modules to be implemented separately, perhaps by separate programmers. Second, it
eases verification, as programmers may be sure that there is no communication between
modules except through Asim ports. Third, it enables certain types of design-space
exploration by retiming operations via changing the Asim port latencies. Finally, it allows
the model-writer to not worry about explicitly representing model time at all, but
simply to communicate in a FIFO manner. This system of writing a timing module using
A-Port is shown in Figure 7.

APorts do not restrict the modules to behave exactly in the way shown in Figure 7.
It simply communicates the model time in a FIFO manner. So the ticks are more or less
localized within each port of the module. This means that the module doesn’t have to wait
till it receives messages in all its input APorts before proceeding. If the module does not
wait till it receives data from all the inputs, then we should change the definition of a
model clock tick slightly. We can conceptually view a rising edge of a model clock to be
when all the input APorts are read and a falling edge of a model clock to be when all the
output APorts are written into (This is similar to the Bluespec clock cycle). The
difference from the above definition is that there may not be any physical time between
reading all input APorts and writing all output APorts, ie, some output APort can be
written simultaneously as when some other input APort of the same module is read from.
This abstraction speeds up simulation even more, as we don’t have a barrier
synchronization step where we have to wait to get data from all input APorts.

[ Done simulating
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Figure 7
Interaction between module and ports



D Plug and Play using AWB

AWB or Asim Architect’s Work Bench ([2]) used to be Intel’s internal tool, which
is now under GPL. This tool provides a graphical interface to plug and play different
implementations of modules which provide the same interface. For example, different
branch predictors which provide the same interface of getPredictedAddr() and
updatePrediction(), can be implemented and all these different predictors will be
displayed in the GUI. This enabled me to make incremental changes in the modules. For
example, for the fetch unit, I had a module which fetched only 1 instruction at a time, then
I had a module which fetched 4 instructions at a time. These have exactly the same
interface, so they can be plugged in interchangeably. Using the first module creates a non-
superscalar out of order processor, whereas the second module creates a superscalar out
of order processor. Figure 8 shows a screenshot using AWB.
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AWB GUI showing the R10k for SMIPS model

Il Cycle accurate simulation model for R10k
architecture using SMIPS ISA

My project was implementing a timing model for R10k architecture, but with the
SMIPS ISA, in the HAsim infrastructure. Figure 9 gives the architecture of MIPS
R10000, which is a superscalar out-of-order 64 bit machine. My timing model
implementation is also for a superscalar out-of-order machine, but for SMIPS ISA which
uses 32 bit registers and 32 bit addresses.
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A MIPS R10000 architecture

This section gives a really brief overview of the architecture of MIPS R10000,
with emphasis on the timing aspects. [3] and [4] describes the MIPS R10000 architecture
in more detail.

MIPS R10000 is a superscalar architecture. It has a fetch width of 4 instructions. It
stores the instructions it fetches into the instruction buffer which has a capacity of 8. The
processor can decode 4 instructions at a time. But decoding stops when it encounters a
predicted-taken branch or jump instruction. Also, in the case of a predicted-taken branch
or a jump instruction, the subsequent sets of 4 instructions are also discarded. Since the
processor speculatively issues instructions to execute, there must be some mechanism to
roll back in case of a misprediction. So whenever a branch instruction is encountered, the
processor saves its microarchitectural state in a branch stack. It has a total of 4 entries in
this stack, so it can speculate upto 4 branches till atleast one of them is resolved. Now the
decode stage maps each instruction’s destination operand into one of the 64 physical
registers. So, at any cycle, utmost 4 physical registers will be allotted at the decode stage.
It also allocates one ROB entry for each instruction it decodes, thus allotting utmost 4
entries in any cycle. There are a total of 32 ROB entries. Each decoded instruction (except
jump instructions) is dispatched into one of the three queues:

1. Integer queue
2. Address queue
3. Floating point queue

Integer queue:

Each instruction that has to be serviced by an integer ALU enters into the integer
queue. All the branch instructions whose condition has to be evaluated also enter into this
queue. 4 instructions can enter the integer queue at any clock cycle and utmost 2
instructions will be issued. This is because there are only 2 ALUs. Also the two ALUs are
asymmetric. Only one of the ALUs can handle shift instructions and can evaluate
conditions for branch instructions. The priority of issuing instructions in the queue is
based on static priority — the static position in the queue determines the priority rather
than the dynamic position with respect to the head of the queue. The ALUs have a latency
of 1 cycle and a repeat rate of 1 cycle. So an instruction can be issued to either ALU at
every clock cycle.

Address queue:

This queue handles all the load and store instructions, so it maintains the
instructions in the order of their dispatch, which is program order. It takes one cycle to
perform the virtual address to physical address translation and another cycle to load or



store the physical address to memory, in case of a cache hit. But the load store unit is
pipelined, therefore it has a latency of 2 cycles and a repeat rate of 1 cycle, in case of a
cache hit. If the load or the store misses the cache, it takes several cycles to service this
request during which time the address queue can not issue instructions into the load/store
unit.

Floating Point queue:

This queue handles all the floating point instructions. It takes variable number of
cycles to execute most of the floating point instructions. This was not implemented as
SMIPS does not support floating point instructions.

An instruction can be issued from the queue whenever its source operands are
ready (ie completed evaluation) or when the source operands will be ready in the next
cycle. For example, every ALU instruction which depend on the previous instruction can
be issued in consecutive cycles. Similarly an ALU instruction which depends on the result
of a load instruction can be issued speculatively, assuming the load instruction to result in
a cache hit. If the speculation is proved to be false, the next ALU instruction will be
aborted. In the case of branch mispredict, the entries in all the three issue queues which
are speculatively executed after predicting for that corresponding branch will be marked
as aborted. After an instruction finishes executing in the functional units, they will update
the corresponding ROB entry as done. Program commit proceeds in the original program
order, committing 4 instructions at a time. Another thing to note about R10000
architecture is that after a branch mispredict, the instructions are got from the branch
cache instead of from the cache. The instructions enter the branch cache instead of being
discarded in the case of a different branch prediction. This reduces one cycle latency in
the case of branch mispredict. Another point to note is that MIPS ISA has a delay slot
after each branch instruction. The MIPS R10000 architecture also allowed this delay slot
in order to conform to the ISA, even though the superscalar out-of-order processor hides
the branch delay already.

I initially started out with the goal to implement a cycle accurate timing partition
for the MIPS R10000 architecture for the SMIPS ISA using the HAsim infrastructure. But
due to lack of sufficient time, I ended up implementing a slightly different architecture.
Nevertheless, it is still a 4-wide superscalar out-of-order issue processor. In this
subsection, I will describe the differences between the architecture whose timing partition
I implemented, and the MIPS R10000. This architecture will henceforth be called as
S10000.

B Implementation of timing partition

Figure 11 shows the high level implementation of the timing partition for the
S10000 architecture. The red arrows represent the APorts used to communicate between



the modules of the timing partition, whereas the black arrows represent the request and
response messages between the timing partition and the functional partition. The dotted
lines separate the timing partition from the functional partition. All the modules in the
timing partition were implemented by me, whereas the whole of the functional partition
was implemented by Michael Pellauer.
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Figure 11
S10000 Simulator — Timing and Functional partitions

Fetch Stage:

The fetch stage in the timing model starts when it receives information on the
amount of free buffer space available in the instruction buffer (which has a total of 8 spots
), and when it receives information about the branch prediction and whether the
instruction was mispredicted, both from the decode/dispatch stage. It sends utmost 4
token requests to the Token unit of the functional partition. It then sends these 4 tokens to
the decode/dispatch stage. This unit is pipelined in the sense that the instruction fetch
requests will be sent every clock cycle.

Decode/Dispatch Stage:

The actual instruction is received in the decode/dispatch stage so that it can
proceed in parallel with the fetch stage. This stage stores the incoming tokens and the
corresponding instructions into the instruction buffer. It also sends a decode request to the
Decode unit of the functional partition so that it can determine the dependency
information of that instruction and dispatch the instructions correctly, in the sense of



filling the ready bits of the source operands depending on the dependency information
received from the decode unit of the function partition. The decode/dispatch stage also
dispatches the instructions to the issue stage, and fills in an ROB entry, which essentially
maps the token to the physical register and also has flags to determine if the instruction is
a branch or not, if the branch was predicted to be taken or not, if the instruction is a JR or
JALR instruction and the speculated jump address. The decode stage takes as input the
number of free slots left in the integer queue and the address queue of the issue stage so
that it can make a decision on whether to decode a particular instruction or not. The
results of the execute unit, along with the corresponding replies (which are
acknowledgements) from the memory unit of the functional partition, goes into the
decode/dispatch stage and is used to update the isComplete bit of the ROB. While
updating the isComplete bit in the ROB entry, it also checks to see if the instruction is a
valid instruction or not. This is because I don’t abort the instructions in the issue queues.
Rather, during a branch mispredict, I simply update the window of the ROB (and send a
rewind token to the functional partition to rewind to the token corresponding to the
mispredicted branch) , and when an instruction is completed from the execute stage, I
check to see if it lies within the window. If it lies within the window, the ROB entry
corresponding to that instruction is set to Completed, else that instruction is discarded and
its token killed. In parallel to all these operations, utmost 4 instructions are passed on to
the commit stage for commit, and the corresponding commit requests are sent to the
functional partition. This unit exploits all the parallelism available in implementing the
decode/dispatch stage and also pipelines its execution completely. For example,
processing the instructions from the fetch stage and sending instructions to the commit
stage are completely synchronous activities. So they are done in parallel. Similarly
updating the ROB entry after receiving the completed instructions from the execute and
the former two activities can be done in parallel. And by pipelining, I mean, each
instruction (out of the 4 instructions in the superscalar processor) gets processed every
clock cycle. All this leads to a substantial increase in throughput of the simulator.

Commit Stage:

This stage accepts instructions to commit from the decode/dispatch stage as well
as the local commit responses (acks) from the functional partition and sends global
commit requests and receives responses (again acks) from the functional partition for the
same. This stage is also pipelined.

Issue Stage:

The issue queue splits the instructions it gets from the decode/dispatch stage into
the integer queue and the address queue. It also has a one entry jump queue (not for JR
and JALR), which is used to handle the jump instructions, as they also have to be sent
through the entire pipeline. This does not affect the timing information as their execution
is overlapped with other instructions. The fundamental reason for why this is being done
this way is that the functional partition allows only one module of the timing partition to
communicate with each module in the functional partition. This means that the execute
request can only be sent from the execute stage of the timing partition. In the original



MIPS R10000 architecture, the jumps do not enter the issue queues, but I made a special
queue to allow them to enter in order to complete their execution in the functional
partition. Each of the 4 instructions entering the issue stage is inserted in either the
integer queue or the address queue or the branch queue. The issue stage also maintains a
scoreboard which determines the position of the destination register in each of the
functional units. Once the source operands of the instructions are ready to be issued, the
issue queue employs oldest-first priority to issue instructions into the two ALUs and the
Load/Store unit. The first APort connecting the issue stage with the execute stage’s ALUs
has a latency of 1, whereas the second APort connecting the issue stage with the execute
stage’s Load/Store unit has a latency of 2. The execute requests to the functional partition
is also sent for the issued instructions at this stage.

Execute Stage:

This stage simply forwards the message it receives from the issue stage into the
decode/dispatch stage. It also receives the replies from the execute unit of the functional
partition, and sends in requests to the memory unit of the functional partition to these
instructions.

C Differences in implemented processor from MIPS R10000

* SMIPS ISA has no floating point instructions. So I didn’t implement the timing
model for the floating point unit, or the floating point queue

e SMIPS compiler doesn’t account for a delay slot. So in my timing partition, I
didn’t have any delay slot.

* The priority of the Integer issue queue is different from that in MIPS R10000

* [ didn’t implement a branch cache. Instead I simply have a counter which counts
till 4 (which is the size of the branch cache), and if the branch counter reaches 4,
the decoder will not decode any branch instruction. But this has an effect in the
number of cycles wasted during branch mispredict. In the case of the MIPS
R10000 architecture, during a branch mispredict, the right instructions are taken
from the branch cache which stores the discarded instructions, rather than from
the fetch unit. But in the case of my timing model, I had to waste the cycle to fetch
instructions from the fetch unit always.

e The JR and JALR instructions had to go through the integer queue. This was a
requirement because JR and JALR had to wait for the source operand to be ready
before the done bit can be set in the ROB. If the register read gave a value
different from that speculated, then it is a misprediction and the ROB has to be
restored to the JR or JALR instruction which caused the misprediction. So the
result of a prediction is seen as soon as an instruction updates the value of the
source register for the JR or JALR instruction. But in HAsim framework, the
functional partition does not allow the timing model to look at the values of
registers, in order to prevent misuse by the timing partition. So the timing
partition has to wait till JR or JALR instruction is executed before it can make a



prediction. Let us say we introduced a new queue to handle JR and JALR
instructions. Now this introduces another complexity as the number of JR and
JALR instructions in flight will be restricted to the queue size. This means that we
will introduce an artificial limit on the number of JR and JALR instructions in
flight. Of course we can easily bound the maximum number of JR or JALR
instruction in flight (which will be 32), but this solution seems to be a hack and a
waste of clock cycles. Currently we are investigating techniques to allow multiple
timing partition modules to communicate to a single functional partition module
via the request-reply interface. This solves this problem because whenever an
instruction writes to the register whose value a JR or JALR reads, then we can
bypass the path through the issue and execute stages of the timing partition (which
increments the clock cycles as represented by APorts), and instead use a separate
path to the execute unit of the functional partition to execute the JR and JALR
instructions. If this is done, even the other jump instructions can take this path for
execution.

D Simulation results

SMIPS v2’s ADDUI test case was run successfully at the time of writing this and
the simulation took a total of 239 FPGA cycles to run. The total number of model cycles
it took was 7. Also the number of lines of code to write the entire timing model was
approximately 1300, in comparison to write the whole of SMIPS processor which took
approximately 1200 lines of Bluespec code, excluding the memory or the caches. So
writing a timing model in the HAsim framework is relatively an easy task.
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