
ASIC Implementation of a Three-Stage SMIPSv2 Processor

6.375 Laboratory 3

March 10, 2008

In the first lab assignment, you built and tested an RTL model of a two-stage pipelined SMIPSv2
processor while in the second lab, you built a Bluespec model of a 3 stage pipeline. In the third lab
assignment, you will be using various commercial EDA tools to synthesize, place, and route your
Bluespec design. In addition, you will attempt to optimize your design to increase performance
and/or decrease area. This lab has two objectives: the first is to introduce you to the tools you
will be using in your final projects, and give you some intuition into how high-level hardware
descriptions are transformed into layout. The second objective is to deepen your understanding of
Bluespec to the point where you can achieve full parallelism in your Bluespec designs. This will
require you to fully grasp what rule scheduling is all about, what makes rules conflict, and what
semantic ugliness we use to bypass the problem: RWIRES and EHRs. CircBSV.tar, which is posted
on the resources page of the course web-site, has some good examples. Remember: RWire and its
relatives pollute the otherwise clean semantics of Bluespec and while a solution to this problem of
sequential rule composition has been proposed, it is not yet in the Bluespec compiler.

The deliverables for this lab are (a) your optimized Bluespec source and all of the scripts necessary
to completely generate your ASIC implementation checked into CVS, and (b) written answers to
the critical questions given at the end of this document. The lab assignment is due at the start of
class on Monday, March 17. As usual, you must submit the written answers by hand in class.

Before starting this lab, it is recommended that you revisit the Bluespec model you wrote in the
first lab. Take some time to clean up your code, add comments, and enforce a consistent naming
scheme. You will find as you work through this lab assignment that having a more extensive
module hierarchy can be very advantageous; initially we will be preserving module boundaries
throughout the toolflow which means that you will be able to obtain performance and area results
for each module. Thus you might want to consider breaking your design into smaller pieces, allowing
you to reason about the performance of isolated components. By default, the Bluespec compiler
flattens all module definitions into one large module. Use of the synthesize annotation before a
module implementation will direct BSC to generate modular verilog. Please refer to the language
guide (/mit/6.375/doc/bsc-reference-guide.pdf) for more information on the use of this directive.
Unfortunately, preserving the module hierarchy throughout the toolflow means that the CAD tools
will not be able to optimize across module boundaries. If you are concerned about this you can
remove the (* synthesize *) directive from your Bluespec code, reverting to the Bluepsec compiler’s
default behavior of generating falttened Verilog. Additionally, you can instruct the CAD tools to
flatten the design before optimization.

Figure 1 illustrates the 6.375 ASIC toolflow we will be using for the third lab. You should already
be familiar with the simulation and compilation paths from the first and second labs. The verilog
code used by the CAD tools will be generated by the Bluespec compilerfrom your BSV code. We
will use Synopsys Design Compiler to synthesize the design. Synthesis is the process of transforming
an RTL model into a gate-level model. For this lab assignment, Design Compiler will take your
RTL model of the SMIPSv2 processor as input along with a description of the standard cell library,
and it will produce a Verilog netlist of standard cell gates. Although the gate-level netlist is at a



6.375 Laboratory 3, Spring 2008 2

low-level functionally, it is still relatively abstract in terms of the spatial placement and physical
connectivity between the gates. We will use Cadence Encounter to place and route the design.
Placement is the process by which each standard cell is positioned on the chip, while routing
involves wiring the cells together using the various metal layers. Notice that you will be receiving
feedback on the performance and area of your design after both synthesis and place+route - the
results from synthesis are less realistic but are generated relatively rapidly, while the results from
place+route are more realistic but require much more time to generate. Place+route for your two-
stage SMIPSv2 processor will take on the order of 15 minutes, but for your projects it could take up
to an hour. After place+route, we will generate and simulate a final gate-level netlist using VCS.
We can use this gate-level simulation as a final test for correctness and to generate transition counts
for every net in the design. Encounter can take these transition counts as input and correlate them
with the capacitance values in the final layout to produce dynamic power measurements.

Each piece of the toolflow has its own build directory and its own makefile. Please consult the
following tutorials for more information on using the various parts of the toolflow.

• Tutorial 4: RTL-to-Gates Synthesis using Synopsys Design Compiler

• Tutorial 5: Automatic Placement and Routing using Cadence Encounter

Getting Started

To begin the lab you will need to use the lab harness located in /mit/6.375/lab-harnesses. The
lab harness provides makefiles, scripts, and the Verilog test harness required to complete the lab.
In order to get started, unpack the test harness, copy the src directory from your lab2 project
and check everything into your CVS directory as lab3T. Assuming your lab2 code is located on
2008s/cbatten/lab2, the following commands extract the lab harness into your CVS directory, copy
the relvant files from lab2 and adds the new project to CVS.

% cd 2008s/students/cbatten

% tar -xzvf /mit/6.375/lab-harnesses/lab3-harness.tgz

% cp lab2/src/*.* lab3/src/

<copy over any local tests if they exist>

<make sure you can still compile and run all the assembly tests>

% find lab3 | xargs cvs add

% cvs commit -m "Initial checkin"

The resulting lab3 project directory resembles the structure you used in lab2. Please be aware
that the toplevel test harness has changed a bit. The build directory contains the following
subdirectories which you will use when building your chip.

• bsc-compile - Bluespec compilation generating Verilog

• vcs-sim-rtl - RTL simulation using Synopsys VCS

• dc-synth - Synthesis using Synopsys Design Compiler

• enc-fp - Floorplanning using Cadence Encounter

• enc-par - Automatic placement and routing using Cadence Encounter



6.375 Laboratory 3, Spring 2008 3

Timing
Area

Verilog
Source

VCS

Bmark
Stats

Encounter (FP) Design Compiler

VirSim

Floor
Plan

RTL
Sim

VMH
Prog

Gate
Level
Netlist

Timing
Area

Layout

Encouter GUI

Gate
Level
Netlist

VCS

Gate
Level
Sim

Power

VCD

Encounter (Power)

Encounter (PAR)

Std
Cell
Lib

ASM
Source
Code

Test
Outputs

Assembler Flow

Execute Sim

Design Vision Execute Sim

Figure 1: 6.375 Toolflow for Lab 2



6.375 Laboratory 3, Spring 2008 4

Clk Period (10ns)Clk Period (10ns)

Setup
(2.75)

Worst Case Delay
For Path A (5.75)

Skew
(1.5)

Slack
(1.5)

Skew (-1.5)

Worst Case Delay For Path A (13.5)

(c) Effective Clock Period is 14.75ns(a) Example Circuit

Path A

Clk0 Clk1

(b) Effective Clock Period is 8.5ns

Clk1

Clk0

Slack (-4.75)

Setup (2.75)

Endpoint

Clk0

Clk1

Endpoint
of Path A of Path A

Figure 2: Determining your hardware’s effective clock period

Each subdirectory includes its own makefile and additional script files. You will have to make
modifications to these script files as you push your design through the physical toolflow.
Once you have all the tools working you can use the toplevel makefile in the build directory to
run multiple tools at once. For example, once all the scripts are properly setup you should be able
to use the following command to synthesize, floorplan, and place+route your design.

% pwd

2008s/students/cbatten/lab3/build

% make enc-par

Automatic placement and routing is a very computationally intensive task. On your simple three-
stage project place+route can take anywhere from 10 minutes to 20 minutes. Budget your time
accordingly.

Lab Hints and Tips

This section contains several hints and tips which should help you in completing the lab assignment.

Tip 1: Always Test Your Processor After Making Modifications

When pushing your processor through the physical toolflow, it is common to make some changes
to your RTL and then evaluate their impact on area, power, and performance. Always retest
your processor after making changes and before starting the physical toolflow. You can use the
run-asm-tests make target to quickly verify that your processor is still functionally correct. Keep
in mind, that a fast or small processor which is functionally incorrect is worse than a slow or large
processor which works!

Tip 2: Reporting Clock Period

As discussed in the tutorials, you need to specify a clock period constraint during both synthesis
and place+route. The tools will try and meet this constraint the best they can. If your constraint is
too aggressive, the tools will take a very long time to finish. They may not even be able to correctly



6.375 Laboratory 3, Spring 2008 5

place+route your design. If your constraint is too conservative, the resulting implementation will
be suboptimal.

Even if your design does not meet the clock period constraint it is still a valid piece of hardware
which will operate correctly at some clock period (it is just slower than the desired clock period).
If your design does not meet timing the tools will report a negative slack. Similarly, a design which
makes the timing constraint but does so with a positive slack can run faster than the constrained
clock period. For this lab we are more concerned about the effective clock period of your design as
opposed to the clock constraint you set before synthesis. The effective clock period is simply the
clock period constraint minus the worst slack (Tclk−Tslack). The synthesis and place+route timing
reports are all sorted by slack so that the path with the worst slack is listed first. To determine
the effective clock period for your design simply choose the smaller of the rising and falling edge
slacks. Figure 2 illustrates two examples: one with positive slack and one with negative slack. In
this example, our clock period constraint is 10 ns. In Figure 2(b), the post-place+route reports
indicate a positive slack value of 1.5 ns and thus the effective clock period is 8.5 ns. In Figure 2(c),
the post-place+route reports indicate a negative slack value of 4.75 ns and thus the effective clock
period is 14.75 ns. Notice that the effective clock period in Figure 2(c) is not equal to the worst
case combinational critical path (i.e. 13.5 ns). This is because we must also factor in setup time
and clock skew.

Critical Thinking Questions

Question 1: Evaluate Your Baseline Processor

Push your baseline processor (no branch predictor, RWires or EHRs) through the physical toolflow
and report the following numbers. Initially push your design through without any floorplanning
and then try floorplanning the register file, the memory, and any other modules you wish. For the
remaining questions in this lab you can choose to either use floorplanning or not.

• Post-synthesis area of the register file, datapath (excluding register file), and control unit
in “abstract units” from synth area.rpt

• Post-synthesis total area of processor (excluding dummy memory) in “abstract units”
from synth area.rpt

• Post-synthesis critical path and corresponding effective clock period in nanoseconds from
synth timing.rpt

• Post-place+route area of the register file, datapath (excluding register file), and control
unit in square micron from postroute area.rpt (no floorplanning)

• Post-place+route total area of the processor (excluding dummy memory) in square micron
from postroute area.rpt (no floorplanning)

• Post-place+route total area of the processor (including dummy memory and power ring)
in square micron from the Encounter GUI (no floorplanning)

• Post-place+route critical path (and just the critical path) and corresponding effective
clock period in nanoseconds from postroute setup timing.rpt (no floorplanning)



6.375 Laboratory 3, Spring 2008 6

• Post-place+route critical path and corresponding effective clock period from
postroute setup timing.rpt (with floorplanning)

Your post-place+route numbers will probably be significantly worse than your post-synthesis num-
bers. Explain why the place+route tool is reporting more area and a longer clock period than the
synthesis tool. In Question 2 of the first lab you made some predictions concerning the critical
paths and the area of your design. Were these predictions correct? If they differ how has your
intuition changed after pushing your processor through the physical toolflow?

Question 2: Evaluate a Simple Branch-Predictor

If you didn’t do so in Lab2, implement the simple branch predictor described in lab2 handout, and
verify its correctness by running the assembly tests and benchmarks. Although predictors generally
increase the IPC, they may negatively impact the area or speed of your processor. In this question
we want to evaluate whether or not the branch predictor is a benficial addition to the processor.
Report the change in post-place+route are (use postroute area.rpt) and timng after adding the
branch predictor. Factoring in the advantages of the predictor (increased IPC) and the possible
disadvantages (increased area and clock period), do you think adding the predictor is a good idea?
Given that you baseline processor has poor rule concurrency (you probably won’t have gotten pcgen
and exec to fire in the same cycle), the increase in IPC is most likely negligble. What does this say
about the benefits of action lebel specultation in the absence of action level concurrency?

Question 3: Refining using Ephemeral History Registers

Identify the source of conflict between the rules implementing the three pipeline stages of your
processor. Through a combination of rule decomposition (you may want to think about having a
separate exec rule for branch and jump instructions) and EHRs, you should be able to increase
your IPC to something close to 1.

In the BSVCLib there’s an package called EHR2. In this package you’ll find mkEHReg2 an imple-
mentation of an Ephemeral History Register. The interface is similar to a normal register except
with “subscripts” added:

interface EHReg2#(type valType);

method valType read_0();

method valType read_1();

method Action write_0(valType val);

method Action write_1(valType val);

endinterface

Recall that the schedule for the EHR is as follows:

read_0 < write_0 < read_1 < write_1

This package also contains mkEHRFile2, a register file which has the Ephemeral History structure.
It has the following interface:



6.375 Laboratory 3, Spring 2008 7

interface EHRFile2#(type addrType, type valType);

method Action wr_0(addrType rindx, valType data);

method Action wr_1(addrType rindx, valType data);

method valType rd1_0(addrType rindx);

method valType rd1_1(addrType rindx);

method valType rd2_0(addrType rindx);

method valType rd2_1(addrType rindx);

endinterface

The schedule for this register file is as follows;

rd1_0, rd2_0 < wr_0 < rd1_1, rd2_1 < wr_1

Finally, the package provides mkEHRFIFO2 and mkEHRSFIFO2. These have the following interface:

interface EHRFIFO2#(type valType);

method Action enq_0(valType d);

method Action enq_1(valType d);

method Action deq_0();

method Action deq_1();

method valType first_0();

method valType first_1();

method Action clear_0();

method Action clear_1();

endinterface

These have the following schedule:

first_0 < find_0 < deq_0 < enq_0 < clear_0 < first_1 < find_1 < deq_1 < enq_1

< clear_1

Note that there is no bypassing version of these FIFOs. With EHRs this same bypassing effect can
be achieved by using enq 0 and first 1 with deq 1.

Using these constructs, create a version of your design which has the following scheuling property:

writeback < execute < pcGen

To do this you will need to mechanically transform your design as described in class. After iden-
tifying the state elements responsible for the rule conflicts, change them to the appropriate EHR
type. Then label all method calls in writeback with subsript 0, and proceed from there.

Toggle your brnach-predictor and report the IPC numbers with and without branch prediction.
With the addition of action level concurrency (more rules firing in parallel), how does the branch
predictor (action level speculation) effect performance? What throughput does this version of your



6.375 Laboratory 3, Spring 2008 8

design acheive? Synthesize this version of the design as you did for Question 1. How have the
results changed and what was the cause of the biggest change? In your opinion is the difference
worth it? How does this method compare to experimentally sizing your FIFOs as in Question 1 of
lab2?

Question 4: Use RC Modeling to Design a Register-File Write Bit-line Driver

In this question you will be designing a simple buffer for a write bit-line in a register file. The
write bit-line (i.e. the write data) must drive the D input port of 32 flip-flops. The combined gate
capacitance of these flip-flops can be a significant load on the write bit-line. The load on the write
bit-line is further increased by wire capacitance, since flip-flops are usually large and thus often
spread apart.

To witness the problem first hand, use Encounter to isolate the portion of your critical path which
is contained in the register write bit-line. If the write bit-line is not on your critical path then
browse through the paths in postroute setup timing.rpt until you find a path which includes
the write bit-line. Figure 3 shows a fragment of an Encounter timing report. You can see the
critical path going through the writeback mux and into the write data port of the register file.
Notice the very large capacitive loads on the nets along this path. More specifically, the load on
the final inverter is a portion of the capacitive load of the write bit-line (0.136 pF). You can see
how the physical toolflow has inserted two buffers to help drive this large load. The par.cap file
contains a breakdown between wire and gate capacitance for each net in the design. Searching for
the dpath/rfile/n255 net reveals that this final inverter is driving 12 other gates; so the tools
have created a tree of inverters to help drive all 32-bits of the write-bit line. The wire capacitance
is 96 fF and the gate capacitance is 40 fF for a total load of 136 fF. In your answer to this question,
you should include a similar analysis of the impact the write bit-line has on your critical path.



6.375 Laboratory 3, Spring 2008 9

Object name Delta r/f (ns) Sum r/f (ns) Slew (ns) Load (pF)

-------------------------------------------------------------------------------------

...

dpath/wb_mux/U212 I0->Z (mx02d1) 0.164r/0.208f 6.064r/5.624f 0.110r/0.102f 0.009

dpath/wb_mux/n148 0.001r/0.001f 6.064r/5.625f

dpath/wb_mux/U24 I1->Z (mx02d4) 0.372r/0.419f 6.436r/6.043f 0.143r/0.122f 0.186

dpath/rf_wdata_Xnp[7] 0.128r/0.124f 6.564r/6.167f

dpath/rfile/U545 I->ZN (invbd2) 0.219f/0.164r 6.783f/6.332r 0.685r/0.447f 0.054

dpath/rfile/n254 0.003f/0.003r 6.786f/6.335r

dpath/rfile/U198 I->ZN (inv0d7) 0.104r/0.065f 6.890r/6.399f 0.274f/0.227r 0.136

dpath/rfile/n255 0.030r/0.028f 6.920r/6.427f

dpath/rfile/registers_reg[19][7] CP^^D (denrq4)

0.189r/0.131f 7.109r/6.558f 0.227r/0.175f

Figure 3: Example fragment from the postroute setup timing.rpt

Multi-Stage Driver

Bit-Cell

Write Bit-Line Input (D) Port

Figure 4: Multi-Stage Driver for a Register File Write Bit-Line

Transistor Process Parameters Value

Desired ratio of PMOS/NMOS widths 2

PMOS gate capacitance per µm of transistor width 1.5 fF/µm

NMOS gate capacitance per µm of transistor width 1.5 fF/µm

PMOS drain capacitance per µm of transistor width 0.3 fF/µm

NMPS drain capacitance per µm of transistor width 0.3 fF/µm

PMOS effective on resistance 6.7 kΩµm

NMOS effective on resistance 3.3 kΩµm

Parameters for Metal 2 Wire Value

Wire resistance per unit length 0.4 Ω/µm

Wire capacitance per unit length 0.2 fF/µm

Table 1: Process Parameters



6.375 Laboratory 3, Spring 2008 10

We will now use a simple RC model to design a similar driver for a write bit-line. We will use process
parameters from a 0.18 µm TSMC process, but they should be similar to the Tower 0.18 µm process.
Table 1 shows the various parameters. Your first task is to model the write bit-line. Assume that
the register file is using DENRQ1 standard cells for the register file bit-cells. Use the standard cell
databook to determine the input capacitance for the D input in picofarads and to determine the
size of the bit-cell. The databook is located in the course locker at (/mit/6.375/doc/tsl-180nm-
sc-databook.pdf). All of the Tower standard cells are 5.6 µm tall and the width of each standard
cell is listed in “Gate Equivalents”. One “Gate Equivalent” is 2.24 µm. Assume that the bit-cells
are arranged as shown in Figure 4 and that the D input is located directly in the middle of each
bit-cell. We will not be designing a tree; instead we will design a series of drivers which drive the
design from one end of the bitline. The write bit-line will use metal 2 wire. Create a distributed
RC model of the bit line which includes the bit-cell gate capacitance, the wire capacitance, and the
wire resistance.

Now we will try and design a multi-stage driver suitable for driving the bit-line. You do not need
to use standard cell inverters for the driver; assume we can use custom inverters that are whatever
size we wish. Assume that it is okay to invert the signal (we can just add another inverter at
the read port). The input capacitance of your driver should be a minimum sized custom inverter
(i.e. NMOS width is 0.36 µm and PMOS width is 0.72 µm). Use a lumped model of the bit-line
capacitance to estimate how many inverter stages we need. What should be the size of each stage?
Use a simple RC model to estimate the worst case delay (in RC time constants) to drive the very
last bit on the bit-line. You can use a π model for the bitline and assume that after one RC time
constant the next inverter turns on.

Question 5: Use Logical Effort to Design an Optimal Branch Comparator (Extra
Credit)

In this question, you will be using logical effort to implement the branch equality comparator in
your SMIPSv2 processor. If you eliminated the branch comparator in your design, then use the
examples/smipsv1-1stage-v project to complete this question. Before answering this question
you should read the first chapter of “Logical Effort: Designing Fast CMOS Circuits” by Sutherland,
Sproull, and Harris. It is available in the course locker at /mit/6.375/doc/logical-effort-ch1.pdf.
You should make use of the tables contained in that chapter when answering this question.

For our process, the unit-less delay scaling factor (τ) is 10.5 ps and the unit-less parasitic delay of
an inverter (Pinv) is approximately one. You may assume that we are using gates with balanced
rise/fall times. Your branch equality comparator should take two 32-bit inputs and produce a 1-bit
output. If the output is one then the two inputs are equal, and if the output is zero then the two
inputs are not equal. The input capacitance of your comparator should be around 5 fF. The output
must drive a capacitive load of 5 fF. You should limit yourself to the logical gates in the Tower
0.18 µm Standard Cell Library. The databook for the standard cell library is located in the course
locker at /mit/6.375/doc/tsl-180nm-sc-databook.pdf. Although you should limit yourself to
the standard cell logical gates (for example, a two-input XOR gate), do not limit yourself to the
standard cell physical gates (for example, a two-input XOR gate with 2X drive). In other words,
you can choose the size of each gate to be whatever you wish; you are not limited to the sizes in the
standard cell library. You should assume that the XOR/XNOR gates are implemented with static
CMOS logic, not transmission gates. The logical effort of XOR and XNOR gates is the same. A
two input XOR gate and a two input XNOR gate both have a logical effort of four.



6.375 Laboratory 3, Spring 2008 11

Your goal is to design the optimal gate topology for the branch comparator and to identify the
optimal input capacitance for each gate in that topology. You do not need to convert the input
capacitances into transistor widths. You should identify at least three likely candidate gate topolo-
gies (preferably with different numbers of stages) and calculate the path effort, optimal stage effort,
and optimal path delay for each. How much difference is there between the optimal delay of the
various topologies? For the topology with the minimum delay, work backwards from the output
capacitance to calculate the optimal input capacitance in femtofarads for each stage.

Once you have completed your calculations, examine the topology chosen by Design Compiler and
include it in your answer. You may need to isolate your branch comparator in its own module so
that it is synthesized separately. What is the load capacitance that Design Compiler is using for
the output of the branch comparator? You can determine this using the following command from
the Design Vision prompt after synthesis. You will need to use the hierarchical net name which is
appropriate for your design.

design_vision-xg> report_net proc/dpath/branch_cond_gen/out \

-significant_digits 5

Now examine the gate-level netlist for the branch comparator after place+route and include it in
your answer. You can get a feel for this using the Design Browser window in the Encounter GUI.
What cells did Encounter decide to use? Did it resize the gates? Did it add any new cells? Why do
you think Encounter might change the design? What is the actual load capacitance for the output
of the branch comparator according to Encounter? You can find this through the Encounter GUI.
You will need to execute the extractRC command first, and then locate the branch comparator
output net in the Encounter Design Browser. Choose the Tool → Attribute Editor menu option to
display various properties (including the capacitance) of the net.

You can use Design Vision to visualize the final netlist. After finishing place+route, move into
your current dc-synth build directory. Use the read file command to read in the par.v file
located in the place+route build directory. The following commands illustrate how to load the
post-place+route netlist into Design Vision.

% pwd

2008s/students/cbatten/lab2/build

% cd dc-synth/current

% design_vision-xg

design_vision-xg> source libs.tcl

design_vision-xg> read_file -format verilog ../../enc-par/current/par.v

design_vision-xg> current_design smipsCore_synth

We need to use the current design command, because otherwise Design Vision will set the current
design to a module lower down in the design hierarchy. You can now use Design Vision to view a
schematic of the post-place+route branch comparator.

Compare and contrast the three gate topologies: the topology you designed using logical effort,
the topology synthesized by Design Compiler, and the final topology after Encounter finishes
place+route. How do you think these results would change if the branch comparator output had
to drive a load of 5000 fF instead of 5 fF?


