
1

March 5, 2008 L11-1http://csg.csail.mit.edu/6.375

Performance Specifications

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

March 5, 2008 L11-2http://csg.csail.mit.edu/6.375

Simple processor pipeline
RF

iMem dMem

WbIF

bF

Exe

bE

Mem

bW

Dec

bD

Functional behavior is well understood
Intuition about performance is lacking

Should the branch be resolved in the Decode or Execute
stage?
Should the branch target address be latched before its use?

Experimentation is required to evaluate design
alternatives

cycle time?
area?

execution time?

Bz? Bz?

We present a design flow that makes such
experimentation easy for the designer

2

March 5, 2008 L11-3http://csg.csail.mit.edu/6.375

Need for Performance Specs
RF

iMem dMem

WbIF

bF

Exe

bE

Mem

bW

Dec

bD

F = {Fetch} D = {DecAdd,
DecBz,
… }

E = { ExeAdd,
ExeBzTaken,
ExeBzNotTaken,
… }

M = {MemLd,
MemSt,
MemWB,
…}

W = {Wb}

Rules:

•What is the design’s performance / throughput?
•Reference model implies one rule per cycle execution

Designer’s goal is usually different and based on the application!

March 5, 2008 L11-4http://csg.csail.mit.edu/6.375

Pipelining via Performance
specification

The designer wants a pipeline which
executes one instruction every cycle
Performance spec for a pipelined processor:

RF

iMem dMem

WbIF

bF

Exe

bE

Mem

bW

Dec

bD

I0I1I2I3

W < M < E < D < F

A cycle in

slow motion

I4I5 wME?

3

March 5, 2008 L11-5http://csg.csail.mit.edu/6.375

More Performance
Specification

F = {Fetch} D = {DecAdd,
DecBz,
… }

E = { ExeAdd,
ExeBzTaken,
ExeBzNotTaken,
… }

M = {MemLd,
MemSt,
MemWB,
…}

W = {Wb}

We allow the designer to specify performance!

F < D < E < M < W

W < M < E < D < F ≡ pipelined

W < W < M < M < E < E < D < D < F < F

Synthesis algorithms ensure that performance specs are satisfied and
guarantee that functionality is not altered.

1) W < M < E* < D < F
2) W < M < ExeBzTaken

What do the following mean?

≡ unpipelined (assuming buffers start empty)

≡ two-way superscalar!

≡ pipelined except for ExeBzTaken

March 5, 2008 L11-6http://csg.csail.mit.edu/6.375

Why is functionality
maintained?

A few observations about rule-based systems:
Adding a new rule to a system can only introduce new
behaviors
If the new rule is a derived rule, then it does not add
new behaviors

Composed rules:
Given rules:

The composed rule is a derived rule:

Ra: when πa(s) => s := δa(s);

Rb: when πb(s) => s := δb(s);

Ra,b: when πa(s) & πb(δa(s)) => s := δb(δa(s));

4

March 5, 2008 L11-7http://csg.csail.mit.edu/6.375

Scheduling
Specifications
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

rule execAdd
(it matches tagged EAdd{dst:.rd,src1:.va,src2:.vb});
rf.upd(rd, va+vb); bu.deq(); endrule

rule execBzTaken(it matches tagged Bz {cond:.cv,addr:.av}
&&& (cv == 0));

pc <= av; bu.clear(); endrule
rule execBzNotTaken(it matches tagged Bz {cond:.cv,addr:.av}

&&& !(cv == 0));
bu.deq(); endrule

rule execLoad(it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd(rd, dMem.read(av)); bu.deq(); endrule

rule execStore(it matches tagged EStore{value:.vv,addr:.av});
dMem.write(av, vv); bu.deq(); endrule

fetch &
decode

execute

pc rfCPU

bu

execAdd < fetch

execBzTaken < fetch
execBzNotTaken < fetch ?

execLoad < fetch
execStore < fetch

March 5, 2008 L11-8http://csg.csail.mit.edu/6.375

Implications for
modules
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

fetch &
decode

execute

pc rfCPU

bu

rule execAdd
(it matches tagged EAdd{dst:.rd,src1:.va,src2:.vb});
rf.upd(rd, va+vb); bu.deq();
endrule

execAdd < fetch ⇒
rf: sub > upd
bu: {find, enq} > {first , deq}

5

March 5, 2008 L11-9http://csg.csail.mit.edu/6.375

Branch rules
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

fetch &
decode

execute

pc rfCPU

bu

rule execBzTaken(it matches tagged Bz {cond:.cv,addr:.av}
&&& (cv == 0));

pc <= av; bu.clear(); endrule

rule execBzNotTaken(it matches tagged Bz {cond:.cv,addr:.av}
&&& !(cv == 0));

bu.deq(); endrule

execBzTaken < fetch ?
Should be treated as conflict – give priority to
execBzTaken

execBzNotTaken < fetch
bu: {first , deq} < {find, enq}

March 5, 2008 L11-10http://csg.csail.mit.edu/6.375

Load-Store Rules
rule fetch_and_decode (!stallfunc(instr, bu));

bu.enq(newIt(instr,rf));
pc <= predIa;

endrule

fetch &
decode

execute

pc rfCPU

bu

rule execStore(it matches tagged EStore{value:.vv,addr:.av});
dMem.write(av, vv); bu.deq();

endrule

rule execLoad(it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd(rd, dMem.read(av)); bu.deq();

endrule

execLoad < fetch ?
Same as execAdd, i.e.,

rf: upd < sub
bu: {first , deq} < {find, enq}

execStore < fetch ?
bu: {first , deq} < {find, enq}

6

March 5, 2008 L11-11http://csg.csail.mit.edu/6.375

Properties Required of Register File
& FIFO to meet performance specs

Register File:
rf.upd < rf.sub

FIFO
bu: {first , deq} < {find, enq} ⇒

bu.first < bu.find
bu.first < bu.enq
bu.deq < bu.find
bu.deq < bu.enq

March 5, 2008 L11-12http://csg.csail.mit.edu/6.375

The good news ...

It is always possible to transform
your design to meet desired
concurrency and functionality

Though critical path and hence the
clock period may increase

7

March 5, 2008 L11-13http://csg.csail.mit.edu/6.375

Register Interfaces

read < write

D Q
0

1
readwrite.x

write.en

write < read ?

read’

read’ – returns the current state when write is not enabled
read’ – returns the value being written if write is enabled

March 5, 2008 L11-14http://csg.csail.mit.edu/6.375

Ephemeral History Register (EHR)

read0 < write0 < read1 < write1 < ….

D Q
0

1

read1

write0.x
write0.en

read0

0

1write1.x
write1.en

writei+1 takes precedence over writei

[Rosenband MEMOCODE’04]

8

March 5, 2008 L11-15http://csg.csail.mit.edu/6.375

Transformation for
Performance
rule fetch_and_decode (!stallfunc1(instr, bu));

bu.enq1(newIt(instr,rf));
pc <= predIa;

endrule

rule execAdd
(it matches tagged EAdd{dst:.rd,src1:.va,src2:.vb});
rf.upd0(rd, va+vb); bu.deq0(); endrule
rule execBzTaken(it matches tagged Bz {cond:.cv,addr:.av}

&&& (cv == 0));
pc <= av; bu.clear(); endrule

rule execBzNotTaken(it matches tagged Bz {cond:.cv,addr:.av}
&&& !(cv == 0));

bu.deq0(); endrule
rule execLoad(it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd0(rd, dMem.read(av)); bu.deq0(); endrule

rule execStore(it matches tagged EStore{value:.vv,addr:.av});
dMem.write(av, vv); bu.deq0(); endrule

execAdd < fetch

execBzTaken < fetch

execLoad < fetch
execStore < fetch

March 5, 2008 L11-16http://csg.csail.mit.edu/6.375

One Element FIFO using EHRs
module mkFIFO1 (FIFO#(t));
EHReg2#(t) data <- mkEHReg2U();
EHReg2#(Bool) full <- mkEHReg2(False);
method Action enq0(t x) if (!full.read0);
full.write0 <= True; data.write0 <= x;

endmethod
method Action deq0() if (full.read0);
full.write0 <= False;

endmethod
method t first0() if (full.read0);
return (data.read0);

endmethod
method Action clear0();
full.write0 <= False;

endmethod
endmodule

first0 < deq0 < enq1

method Action enq1(t x) if (!full.read1);
full.write1 <= True; data.write1 <= x;

endmethod

9

March 5, 2008 L11-17http://csg.csail.mit.edu/6.375

Experiments in scheduling
Dan Rosenband, ICCAD 2005

What happens if the user specifies:

No change in rules

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Executing 2 instructions per cycle requires more resources but is
functionally equivalent to the original design

Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF

I1 I0I3 I2I5 I4I7 I6I9 I8

A cycle in

slow motion

a superscalar processor!

March 5, 2008 L11-18http://csg.csail.mit.edu/6.375

4-Stage Processor Results

benchmark: a program containing additions / jumps / loadc’s

4.72626499.99452967410Spec 2

2.63470848.383253511115Spec 1

2.00390337.383224018525No Spec.

2 element fifo:

2.04340996.782526411115Spec 2

2.00333606.832509411115Spec 1

2.00266325.852476218525No Spec

1 element fifo:

Timing
2ns
(ns)

Area
2ns

(µm2)

Timing
10ns
(ns)

Area
10ns
(µm2)

Benchmark
(cycles)

Design

Dan Rosenband & Arvind 2004

10

March 5, 2008 L11-19http://csg.csail.mit.edu/6.375

Summary
For most designs BSV Compiler does good scheduling of
rules with some user annotations for priority
However, for complex designs sometimes concurrency
control is quite difficult and requires a good
understanding on the part of the designer of the
concurrency issues
Performance specification is a good, safe solution but is
not implemented in the compiler yet.

user can do manual “renaming” and use EHRs to meet
most performance goals

RWires can solve any problems but exacerbate the
correctness issue
Synchronous pipelines (single rule) can avoid many
problems but is not recommended for complex designs

