Performance Specifications

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

March 5, 2008 http://csg.csail.mit.edu/6.375

L11-1

Simple processor pipeline

|Mem

L | ;
& Functional behavior is well understood Cycaiet;?e

@ Intuition about performance is lacking | execution time?

= Should the branch be resolved in the Decode or Execute
stage?

= Should the branch target address be latched before its use?

&® Experimentation is required to evaluate design
alternatives
We present a design flow that makes such

experimentation easy for the designer
March 5, 2008 http://csg.csail.mit.edu/6.375

L11-2

Need for Performance Specs

Qﬁﬁ}]-@} =1

Rules:
F = {Fetch} || D = {DecAdd, || E = { ExeAdd, M = {MemLd, W = {Wb}
DecBz, ExeBzTaken, MemsSt,
.} ExeBzNotTaken, MemWB,
I S

<What is the design’s performance / throughput?
<Reference model implies one rule per cycle execution

Designer’s goal is usually different and based on the application!
March 5, 2008 http://csg.csail.mit.edu/6.375 L11-3

Pipelining via Performance
specification

@® The designer wants a pipeline which
executes one instruction every cycle

@® Performance spec for a pipelined processor:
(W<M<E<D<F

ﬁ@%@}

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-4

®| Wb W)

More Performance
Specification
F ={Fetch} || D = { DecAdd, || E = { ExeAdd, M = {MemLd, W = {Wb}
DecBz, ExeBzTaken, MemSt,
S ExeBzNotTaken, MemWB,
¥ ¥
We allow the designer to specify performance!
W<M<E<DS<F = pipelined

1) W<M<E*<D<F
2) W < M < ExeBzTaken

What do the following mean?

= pipelined except for ExeBzTaken

‘F<D<E<M<W

unpipelined (assuming buffers start empty) ‘

‘W<W<M<M<E<E<D<D<F<F = two-way superscalar! ‘

Synthesis algorithms ensure that performance specs are satisfied and

guarantee that functionality is not altered.

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-5

Why is functionality
maintained?

@® A few observations about rule-based systems:

= Adding a new rule to a system can only introduce new
behaviors

= If the new rule is a derived rule, then it does not add
new behaviors

@® Composed rules:
= Given rules:

R,: when m_(s) => s 5.(s);
5,(s);

= The composed rule is a derived rule:

R,: when m (s) => s

R, ,: when m (s) & m(5,(s)) => s := 8,(5,(s));

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-6

Scheduling
Specifications

ch & _

fett
ecode

rule fetch_and decode (!stallfunc(instr, bu));
bu.eng(newlIt (instr,rf)) ;
pc <= predIa;

endrule

rule execAdd execAdd < fetch
(it matches tagged EAdd{dst:.rd,srcl:.va,srcZ:.vb});

rf.upd(rd, va+vb); bu.deq(); endrule
rule execBzTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& (cv == 0)); execBzTaken < fetch
pc <= av; bu.clear(); endrulicVEGla=yANleldEUCIRIESN (S1(elgie
rule execBzNotTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& !'(cv == 0));
bu.deq() ; endrule
rule execload (it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd(rd, dMem.read(av)); bu.deq(); endryhs
rule execStore (it matches tagged EStore{val execlLoad < fetch
dMem.write (av, vv); bu.deq(); endrule execStore < fetch

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-7

T >
Implications for Lo
modules I)

rule fetch and decode (!stallfunc(instr, bu));
bu.eng(newIt (instr,rf));
pc <= predIa;

endrule

rule execAdd
(it matches tagged EAdd{dst:.rd,srcl:.va,src2:.vb});
rf.upd(rd, va+vb); bu.deq();
endrule

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-8

®execAdd < fetch =
m rf: sub > upd
» bu: {find, enq} > {first , deq}

m CPU
>
Branch rules

rule fetch and decode (!stallfunc(instr, bu));
bu.eng(newIt(instr,rf));
pc <= predIa;

endrule

rule execBzTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& (cv == 0));
pc <= av; bu.clear(); endrule

rule execBzNotTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& '(cv == 0));
bu.deq() ; endrule

® execBzTaken < fetch ?

= Should be treated as conflict — give priority to
execBzTaken

® execBzNotTaken < fetch
bu: {first , deq} < {find, enq}

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-9

m CPU

>
Load-Store Rules

rule fetch _and decode (!stallfunc(instr, bu));
bu.eng(newIt (instr,rf));
pc <= predIa;

endrule

rule execLoad (it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd(rd, dMem.read(av)); bu.deq() ;
endrule

rule execStore (it matches tagged EStore{value:.vv,addr:.av})
dMem.write (av, vv); bu.deq();
endrule

@ execload < fetch ?
= Same as execAdd, i.e.,
rf: upd < sub
bu: {first , deq} < {find, enq}
@& execStore < fetch ?
bu: {first , deq} < {find, enq}

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-10

Properties Required of Register File
& FIFO to meet performance specs

&Regqister File:

» rf.upd < rf.sub

®FIFO
n bu: {first , deq} < {find, enq} =
* bu.first < bu.find
* bu.first < bu.enq
* bu.deq < bu.find
* bu.deq < bu.enq

http://csg.csail.mit.edu/6.375 L11-11

March 5, 2008

The good news ...

@It is always possible to transform
your design to meet desired
concurrency and functionality

= Though critical path and hence the
clock period may increase

L11-12

http://csg.csail.mit.edu/6.375

March 5, 2008

Register Interfaces

-
| read < write | | write < read ? |
o D O
write.x 1
write.en —T
read’
read’ — returns the current state when write is not enabled
read’ — returns the value being written if write is enabled
March 5, 2008 http://csg.csail.mit.edu/6.375 L11-13

Ephemeral History Register (EHR)

. [Rosenband MEMOCODE'04]

| read® < write® < read® < writel < |

0
- — D Q (read?)
write0.x B
write.en

write’.x 2 A

write’.en

read’

writei*1 takes precedence over write' ‘

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-14

execAdd < fetch

Transformation for e e =
Performance execLoad < fetch

execStore < fetch
rule fetch _and decode (!stallfunc! (instr, bu));
bu.enq! (newIt (instr,rf));
pc <= predIa;
endrule

rule execAdd
(it matches tagged EAdd{dst:.rd,srcl:.va,src2:.vb});
rf.upd®(rd, va+vb); bu.deq’(); endrule
rule execBzTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& (cv == 0));
pc <= av; bu.clear(); endrule
rule execBzNotTaken (it matches tagged Bz {cond:.cv,addr:.av}
&&& !'(cv == 0));
bu.deq’() ; endrule
rule execload (it matches tagged ELoad{dst:.rd,addr:.av});
rf.upd®(rd, dMem.read(av)); bu.deq’(); endrule
rule execStore (it matches tagged EStore{value:.vv,addr:.av});
dMem.write(av, vv); bu.deq’(); endrule
March 5, 2008 http://csg.csail.mit.edu/6.375 L11-15

One Element FIFO using EHRs

module mkFIFOl (FIFO#(t)); ‘first0 < deq® < enql‘
EHReg2# (t) data <- mkEHReg2U (J7
EHReg2# (Bool) full <- mkEHReg2 (False) ;
method Action enq’(t x) if (!full.read’);
full.write® <= True; data.write? <= x;
endmethod
method Action deq’() if (full.read);
full.write® <= False;
endmethod
method t first?() if (£full.read?);
return (data.read?);
endmethod
method Action clear®();
full.write? <= False;

endmethod
endmodule method Action eng!(t x) if (!full.read!);
full .write! <= True; data.write! <= x;
endmethod

March 5, 2008 http://csg.csail.mit.edu/6.375 L11-16

Experiments in scheduling
Dan Rosenband, ICCAD 2005

& \What happens if the user specifies:
\Wb<Wb<Mem<Mem<Exe<Exe<Dec<Dec<IF<IF\

No Change in rules a superscalar processor!

ﬂ _’E_’ _>
b bD bE bW

Executing 2 instructions per cycle requires more resources but is

functionally equivalent to the original design
March 5, 2008 http://csg.csail.mit.edu/6.375 L11-17

4-Stage Processor Results

Benchmark Area Timing Area Timing
Design (cycles) 10ns 10ns 2ns 2ns
(um?) (ns) (km?) (ns)
1 element fifo:
No Spec 18525 24762 5.85 26632 2.00
Spec 1 11115 25094 6.83 33360 2.00
Spec 2 11115 25264 6.78 34099 2.04
2 element fifo:
No Spec. 18525 32240 7.38 39033 2.00
Spec 1 11115 32535 8.38 47084 2.63
Spec 2 7410 45296 9.99 62649 4.72

benchmark: a program containing additions / jumps / loadc’s

Dan Rosenband & Arvind 2004 |
Marc - - - —+nit.edu/6.375 1L11-18

L
&

Summary

For most designs BSV Compiler does good scheduling of
rules with some user annotations for priority

However, for complex designs sometimes concurrency
control is quite difficult and requires a good
understanding on the part of the designer of the
concurrency issues

Performance specification is a good, safe solution but is
not implemented in the compiler yet.

= user can do manual “renaming” and use EHRs to meet
most performance goals

® RWires can solve any problems but exacerbate the

correctness issue

Synchronous pipelines (single rule) can avoid many
problems but is not recommended for complex designs

March 5, 2008 http://csg.csail.mit.edu/6.375

L11-19

10

