Multiple Clock Domains

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc (.

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-1

802.11 Transmitter

O\/erVIeW Clock frequencies: /52

: headers i : f
F /13
Controller Encoder :
Interleaver =] Mapper
The relative clock frequency of each block is based on its internal
architecture and the overall performance requirement
March 7, 2008 http://csg.csail.mit.edu/6.375 L12-2

Synthesis results for

different microachitectures

Nirav Dave
Mike Pellauer
Man C Ng

Design Area (mm?2) | CLK Period Throughput | Latency

(1 symbol)
Comb. 1.03 15 ns 15ns 15 ns
Pipelined |1.46 7 ns 7 ns 21 ns
Folded |0.83 8 ns 24 ns ,\72&
S Folded |0.23 8 ns 408 ns [408 ns
1 Radix

Will have to
run ~20
times faster
for the
same
throughput

TSMC .13 micron; numbers reported are before place and route. ‘

Single radix-4 node design is V4 the size of combination design
but still meets the throughput requirement easily; clock can

reduced to 15 to 20 Mhz

- BSV point of view
®Automate the simplest things
®Make it easy to do simple things
®Make it safe to do the more

complicated things

The simplest case

& Only one clock

& Need never be mentioned in BSV source

= (Note: hasn’t been mentioned in any
examples so far!)

& Synthesized modules have an input port
called CLK

& This is passed to all interior instantiated
modules

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-5

Multiple Clock Domains in
Bluespec

® The Clock type, and functions «
&® Clock families

&® Making clocks

® Moving data across clock domains
&® Revisit the 802.11a Transmitter

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-6

The Clock type

& Clock is an ordinary first-class type

&® May be passed as parameter, returned
as result of function, etc.

&® Can make arrays of them, etc.
& Can test whether two clocks are equal

Clock c1, c2;

Clock ¢ = (b ? cl1 : c2); // b must be known at
compile time

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-7

The Clock type

® Conceptually, a clock consists of two
signals
= an oscillator
= a gating signal

®In general, implemented as two wires

® If ungated, oscillator is running

= Whether the oscillator is running when it is
gated off depends on implementation
library—tool doesn’t care

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-8

Instantiating modules
with non-default clocks

& Example: instantiating a register with
explicit clock

Clock c = ;
Reg# (Bool) b <- mkReg (True, clocked by c);

@® Modules can also take clocks as ordinary
arguments, to be fed to interior module
instantiations

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-9

The clockOf() function

&® May be applied to any BSV expression,
and returns a value of type Clock

@ If the expression is a constant, the
result is the special value noClock

&® The result is always well-defined

» Expressions for which it would not be well-
defined are illegal

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-10

The clockOf() function

® Example

Reg# (UInt# (17)) x <- mkReg (0, clocked by c);
let y = x + 2;

Clock cl1 = clockOf (X);

Clock c2 = clockOf (y);

&c, cl and c2 are all equal

® They may be used interchangeably for
all purposes

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-11

A special clock

@ Each module has a special “default” clock

&® The default clock will be passed to any interior
module instantiations (unless otherwise
specified)

& It can be exposed in any module as follows:

|Clock ¢ <- exposeCurrentClock; |

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-12

Multiple Clock Domains in
Bluespec

® The Clock type, and functions v

® Clock families «

® Making clocks

® Moving data across clock domain
&® Revisit the 802.11a Transmitter

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-13

Clock families

® All clocks in a “family” share the same oscillator
= They differ only in gating

® If c2 is a gated version of c1, we say cl is an
“ancestor” of c2
= If some clock is running, then so are all its ancestors

® The functions isAncestor(cl,c2) and
sameFamily(cl,c2) are provided to test these
relationships

= Can be used to control static elaboration (e.g., to
optionally insert or omit a synchronizer)

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-14

Clock family discipline

& All the methods invoked by a rule (or
by another method) must be clocked by
clocks from one family
= The tool enforces this

&® There is no need for special domain-
crossing logic when the clocks involved
are from the same family
» It's all handled by implicit conditions

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-15

Clocks and implicit

conditions

& Each action is implicitly guarded by its
clock’s gate; this will be reflected in the
guards of rules and methods using that
action

= So, if the clock is off, the method is
unready

= S0, a rule can execute only if all the
methods it uses have their clocks gated on
® This doesn’t happen for value methods

= S0, they stay ready if they were ready when
the clock was switched off

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-16

Clocks and implicit
conditions
& Example:

[FIFO #(Int #(3)) f <- mkFIFO (clocked_by c);

& If c is switched off:
» f.enq, f.deq and f.clear are unready

» f.first remains ready if the fifo was non-
empty when the clock was switched off

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-17

The clocks of methods and
rules

& Every method, and every rule, has a notional
clock

® For methods of primitive modules (Verilog
wrapped in BSV):
= Their clocks are specified in the BSV wrappers which
import them
® For methods of modules written in BSV:

= A method’s clock is a clock from the same family as
the clocks of all the methods that it, in turn, invokes

= The clock is gated on if the clocks of all invoked
methods are gated on

= If necessary, this is a new clock

® The notional clock for a rule may be calculated
in the same way

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-18

Multiple Clock Domains in
Bluespec

® The Clock type, and functions v

® Clock families v

&® Making clocks «

® Moving data across clock domain
&® Revisit the 802.11a Transmitter

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-19

Making gated clocks

Bool b = . ;
Clock c0 <- mkGatedClock (b);

& cO is a version of the current clock,
gated by b

= CO’s gate is the gate of the current clock
AND’ed with b

& The current clock is an ancestor of cO

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-20

10

Making gated clocks

Bool b = 3
Clock cO0 <- mkGatedClock (b);

Bool bl = .;
Clock cl <- mkGatedClock (bl, clocked by c0);

&cl is a version of c0, gated by bl

= and is also a version of the current clock,
gated by (b && b1l)

& current clock, cO and c1 all same family
& current clock and cO both ancestors of c1

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-21

More Clock constructors
® nkGatedClock

= (Bool newCond)

& mkAbsoluteClock
» (Integer start, Integer period);

® mkClockDivider
» #(Integer divider) (ClockDividerlIfc clks)

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-22

11

Clock Dividers

interface ClockDividerlfc ;
interface Clock fastClock ; // original clock
interface Clock slowClock ; // derived clock
method Bool clockReady ;

endinterface

module mkClockDivider #(Integer divisor)
(ClockDividerlfc ifc) ;

| | | L
A]

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-23

Clock Dividers

@® No need for special synchronizing logic

@® The clockReady signal can become part
of the implicit condition when needed

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-24

12

Multiple Clock Domains in
Bluespec

® The Clock type, and functions v

® Clock families v

® Making clocks v

® Moving data across clock domains «
&® Revisit the 802.11a Transmitter

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-25

Moving Data Across Clock
Domains

® Data moved across clock domains appears
asynchronous to the receiving (destination)
domain

&® Asynchronous data will cause meta-stability

® The only safe way: use a synchronizer

GO Y R R e

Setup & hold

d ” VIWU{I ‘

AN AAVAS AL
! able datal) |

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-26

13

Synchronizers

&® Good synchronizer design and use
reduces the probability of observing
meta-stable data

& Bluespec delivers conservative (speed
independent) synchronizers

® User can define and use new
synchronizers

& Bluespec does not allow unsynchronized

March 7, 2008 http://csg.csail.mit.edu/6.375

crossings (compiler static checking error)

L12-27

2 - Flop Synchronizer

&® Most common type of (bit) synchronizer

&® FF1 will go meta-stable, but FF2 does not look
at data until a clock period later, giving FF1
time to stabilize

&® Limitations:
= When moving from fast to slow clocks data may be

overrun

= Cannot synchronize words since bits may not be
seen at same time

sDIN dD_OuT

FFO FF1 FF2

sClk_‘ \—‘;dCIk

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-28

14

Bluespec’s 2-Flop
Synchronizer

March 7,

mkSyncBit

send() FFO read()

FF1 FF2

sClk _| | dClk

interface SyncBitlfc ;
method Action send (Bit#(1) bitData) ;
method Bit#(1) read () :

endinterface

® The desigher must follow the synchronizer
design guidelines:
= No logic between FFO and FF1
= No access to FF1’s output

2008 http://csg.csail.mit.edu/6.375 L12-29

March 7,

Small Example

& Up/down counter, where direction signal
comes from separate domain.

& Registers:

Reg# (Bit#(1)) up_down_bit <-
mkReg(0, clocked by (readClk));

Reg# (Bit# (32)) cntr <- mkReg(0); // Default CIlk

@® The Rule (attempt 1):

rule countup (up_down_bit == 1)" . (o)
cntr <= cntr + 1; Q?Bébkoaﬁﬁ\
endrule AW\ O

OO«\Q

2008 http://csg.csail.mit.edu/6.375 L12-30

Adding the Synchronizer

SyncBitlfc sync <- mkSyncBit(readClk,
readRst, currentClk) ;

Split the rule into two rules where each
rule operates in one clock domain = clocked by readClk

rule transfer (True) f'
sync.send (up_down_bit);
endrule clocked py currentClk
rule countup (sync.read == 1) ;
cntr <= cntr + 1;
endrule

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-31

Full Example

“Ymodule mkTopLevel(Clock readClk, Reset readRst,
Top ifc);

Reg# (Bit# (1)) up_down_bit <- mkReg(O,
clocked_by(readClk),
reset by(readRst)) ;

Reg# (Bit# (32)) cntr <- mkReg (0) ;

// Default Clocking

Clock currentClk <- exposeCurrentClock ;

SyncBitlfc sync <- mkSyncBit (readClk, readRst,
currentClk) ;

rule transfer (True) ;
sync.send(up_down_bit);

endrule

rule countup (sync.read == 1) ;
cntr <= cntr + 1;

endrule

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-32

Other Synchronizers

& Pulse Synchronizer
@® Word Synchronizer
& FIFO Synchronizer
® Asynchronous RAM
@& Null Synchronizer

& Reset Synchronizers

® Documented in Reference Guide

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-33

Multiple Clock Domains in
Bluespec

® The Clock type, and functions v

® Clock families v

® Making clocks v

® Moving data across clock domains vV
® Revisit the 802.11a Transmitter «

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-34

17

802.11 Transmitter
Overview

Clock frequencies: /52
: f
/13

Encoder

v

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-35

The Transmitter

modulle mkTransmitter(Transmitter#(24,81));
function Action stitch(ActionvValue#(a) X,
function Action f(a v));

action let v <- x; f(v); endaction

endfunction)
let controller <- mkController(); What is the .
let scrambler <- mkScrambler_48(); clock domain

let conv_encoder <- mkConvEncoder_24 48();

let interleaver <- mkinterleaver();

let mapper <- mkMapper_48 64();

let ifft <- mKIFFT_PipeQ;

let cyc_extender <- mkCyclicExtender();

rule controller2scrambler(True);
stitch(controller.getData,scrambler.fromControl);

endrule

... more rules ...

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-36

The Transmitter

module mkTransmitter(Transmitter#(24,81));

let clockdivl3 <- mkClockDivider(13);
let clockdiv52 <- mkClockDivider(52);
let clkl3th = clockdivl3.slowClock;
let clk52nd = clockdiv52.slowClock;
let resetl3th <- mkAsyncResetFromCC(0, clkl3th);
let reset52nd <- mkAsyncResetFromCC(0, clk52nd);

let contro
let scramb

ller <- mkController();
ler <- mkScrambler_48();

let conv_encoder <- mkConvEncoder_24 48();
let interleaver <- mkinterleaver(Q);

let mapper
let ifft

<- mkMapper_48 64();
<- mKIFFT_Pipe(Q;

let cyc_extender <- mkCyclicExtender();
rule controller2scrambler(True);
stitch(controller.getData,scrambler.fromControl);

endrule

March 7, 2008

http://csg.csail.mit.edu/6.375

How should we

1. Generate these
clocks?

2. Pass them to

modules

L12-37

The Transmitter (after)

module mkTransmi

let clockdivl3
let clockdiv52
let clkl3th =
let clk52nd =
let resetl3th
let reset52nd

let controller

let scrambler
let conv_encod
let interleave
let mapper

let ifft

let cyc_extend

rule controlle

tter(Transmitter#(24,81));

What about rules

<- mkClockDivider(13); : :

<- mkClockDivider(52); involving
clockdivi13.slowClock; crossing?
clockdiv52.slowClock;
<- mkAsyncResetFromCC(0, clkl1l3th);
<- mkAsyncResetFromCC(0, clk52nd);

<- mkController(clocked_by clkl13th,
reset_by resetl3th);

<- mkScrambler_48(.. " .);
er <- mkConvEncoder_24 48 (.. " .);
r <- mkinterleaver (.. ™ .);

<- mkMapper_48_64 (.. " .);

<- mkIFFT_Pipe(Q);
er <- mkCyclicExtender(clocked_by clk52nd,

r2scrambler(True);

stitch(controller.getData, scrambler.fromControl);

endrule
...more rules...

March 7, 2008

http://csg.csail.mit.edu/6.375

clock domain

L12-38

19

Clock Domain Crossing

rule mapper2ifft(True);
stitch(mapper.tolFFT, ifft.fromMapper);

endrule

rule mapper2ifft(True);
let x <- mapper.tolFFT(Q);
iTft. fromMapper (x)
endrule

Different methods in an action are on different
clocks — not legal without synchronizers

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-39

Clock Domain Crossing

rule mapper2ifft(True);
let x <- mapper.tolFFT();
ifTft. fromMapper(x)

endrule
‘ split
let mifftFF <-
mkSyncFIFOToFast(2,clockdivl3,resetl3th);

rule mapper2fifo(True);
stitch(mapper.tolFFT, m2ifftFF.enq);
Endrule

rule Fifo2ifft(True);
stitch(pop(m2ifftFF), ifft.fromMapper);
endrule

March 7, 2008 http://csg.csail.mit.edu/6.375

L12-40

Similarly for IFFT to CyclicExt

let ifft2ceFF <-
mkSyncFIFOToSlow(2,clockdiv52, reset52nd);

rule iffe2ff(True);
stitch(ifft.toCyclicExtender, ifft2ceFF.enq);
endrule

rule ff2cyclicExtender(True);

stitch(pop(ifft2ceFF),
cyc_extender.fromlFFT);

endrule

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-41

Did not work...

stoy@forte: ~/examples/80211$ bsc -u -verilog Transmitter.bsv

Error: "./Interfaces.bi", line 62, column 15: (G0045)

Method getFromMAC is unusable because it is connected to a
clock not available at the module boundary.

The method’s clock is internal!

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-42

21

The Fix — pass the clocks out

interface Transmitter#(type InN, type out);
method Action getFromMAC(TXMAC2Controllerinfo x);
method Action getDataFromMAC(Data#(inN) X);

method ActionValue#(MsgComplexFVec#(out))
toAnalogTX();

interface Clock clkMAC;
interface Clock clkAnalog;
endinterface

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-43

Summary

® The Clock type, and type checking ensures that
all circuits are clocked by actual clocks

® BSV provides ways to create, derive and
manipulate clocks, safely

& BSV clocks are gated, and gating fits into Rule-
enabling semantics

& BSV provides a full set of speed-independent
data synchronizers, already tested and verified

& The user can define new synchronizers
® BSV precludes unsynchronized domain crossings

March 7, 2008 http://csg.csail.mit.edu/6.375 L12-44

