
1

March 7, 2008 L12-1http://csg.csail.mit.edu/6.375

Multiple Clock Domains

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc

March 7, 2008 L12-2http://csg.csail.mit.edu/6.375

802.11 Transmitter
Overview

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

headers

data

Clock frequencies: f/52

f

f/13

The relative clock frequency of each block is based on its internal
architecture and the overall performance requirement

2

March 7, 2008 L12-3http://csg.csail.mit.edu/6.375

Synthesis results for
different microachitectures

408 ns

24 ns

7 ns

15ns

Throughput
(1 symbol)

8 ns

8 ns

7 ns

15 ns

CLK Period

0.23

0.83

1.46

1.03

Area (mm2)

S Folded
1 Radix

Folded

Pipelined

Comb.

Design

408 ns

24 ns

21 ns

15 ns

Latency

TSMC .13 micron; numbers reported are before place and route.

Single radix-4 node design is ¼ the size of combination design
but still meets the throughput requirement easily; clock can
reduced to 15 to 20 Mhz

Nirav Dave
Mike Pellauer
Man C Ng

Will have to
run ~20
times faster
for the
same
throughput

March 7, 2008 L12-4http://csg.csail.mit.edu/6.375

BSV point of view

Automate the simplest things

Make it easy to do simple things

Make it safe to do the more
complicated things

3

March 7, 2008 L12-5http://csg.csail.mit.edu/6.375

The simplest case

Only one clock
Need never be mentioned in BSV source

(Note: hasn’t been mentioned in any
examples so far!)

Synthesized modules have an input port
called CLK
This is passed to all interior instantiated
modules

March 7, 2008 L12-6http://csg.csail.mit.edu/6.375

Multiple Clock Domains in
Bluespec

The Clock type, and functions ←
Clock families
Making clocks
Moving data across clock domains
Revisit the 802.11a Transmitter

4

March 7, 2008 L12-7http://csg.csail.mit.edu/6.375

The Clock type
Clock is an ordinary first-class type
May be passed as parameter, returned
as result of function, etc.
Can make arrays of them, etc.
Can test whether two clocks are equal

Clock c1, c2;

Clock c = (b ? c1 : c2); // b must be known at
compile time

March 7, 2008 L12-8http://csg.csail.mit.edu/6.375

The Clock type
Conceptually, a clock consists of two
signals

an oscillator
a gating signal

In general, implemented as two wires
If ungated, oscillator is running

Whether the oscillator is running when it is
gated off depends on implementation
library—tool doesn’t care

5

March 7, 2008 L12-9http://csg.csail.mit.edu/6.375

Instantiating modules
with non-default clocks

Example: instantiating a register with
explicit clock

Modules can also take clocks as ordinary
arguments, to be fed to interior module
instantiations

Clock c = … ;
Reg# (Bool) b <- mkReg (True, clocked_by c);

March 7, 2008 L12-10http://csg.csail.mit.edu/6.375

The clockOf() function
May be applied to any BSV expression,
and returns a value of type Clock

If the expression is a constant, the
result is the special value noClock

The result is always well-defined
Expressions for which it would not be well-
defined are illegal

6

March 7, 2008 L12-11http://csg.csail.mit.edu/6.375

The clockOf() function
Example

c, c1 and c2 are all equal
They may be used interchangeably for
all purposes

Reg# (UInt# (17)) x <- mkReg (0, clocked_by c);
let y = x + 2;
Clock c1 = clockOf (x);
Clock c2 = clockOf (y);

March 7, 2008 L12-12http://csg.csail.mit.edu/6.375

A special clock
Each module has a special “default” clock

The default clock will be passed to any interior
module instantiations (unless otherwise
specified)

It can be exposed in any module as follows:

Clock c <- exposeCurrentClock;

7

March 7, 2008 L12-13http://csg.csail.mit.edu/6.375

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families ←
Making clocks
Moving data across clock domain
Revisit the 802.11a Transmitter

March 7, 2008 L12-14http://csg.csail.mit.edu/6.375

Clock families
All clocks in a “family” share the same oscillator

They differ only in gating

If c2 is a gated version of c1, we say c1 is an
“ancestor” of c2

If some clock is running, then so are all its ancestors

The functions isAncestor(c1,c2) and
sameFamily(c1,c2) are provided to test these
relationships

Can be used to control static elaboration (e.g., to
optionally insert or omit a synchronizer)

8

March 7, 2008 L12-15http://csg.csail.mit.edu/6.375

Clock family discipline
All the methods invoked by a rule (or
by another method) must be clocked by
clocks from one family

The tool enforces this

There is no need for special domain-
crossing logic when the clocks involved
are from the same family

It’s all handled by implicit conditions

March 7, 2008 L12-16http://csg.csail.mit.edu/6.375

Clocks and implicit
conditions

Each action is implicitly guarded by its
clock’s gate; this will be reflected in the
guards of rules and methods using that
action

So, if the clock is off, the method is
unready
So, a rule can execute only if all the
methods it uses have their clocks gated on

This doesn’t happen for value methods
So, they stay ready if they were ready when
the clock was switched off

9

March 7, 2008 L12-17http://csg.csail.mit.edu/6.375

Clocks and implicit
conditions

Example:

If c is switched off:
f.enq, f.deq and f.clear are unready
f.first remains ready if the fifo was non-
empty when the clock was switched off

FIFO #(Int #(3)) f <- mkFIFO (clocked_by c);

March 7, 2008 L12-18http://csg.csail.mit.edu/6.375

The clocks of methods and
rules

Every method, and every rule, has a notional
clock
For methods of primitive modules (Verilog
wrapped in BSV):

Their clocks are specified in the BSV wrappers which
import them

For methods of modules written in BSV:
A method’s clock is a clock from the same family as
the clocks of all the methods that it, in turn, invokes
The clock is gated on if the clocks of all invoked
methods are gated on
If necessary, this is a new clock

The notional clock for a rule may be calculated
in the same way

10

March 7, 2008 L12-19http://csg.csail.mit.edu/6.375

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks ←
Moving data across clock domain
Revisit the 802.11a Transmitter

March 7, 2008 L12-20http://csg.csail.mit.edu/6.375

Making gated clocks

c0 is a version of the current clock,
gated by b

c0’s gate is the gate of the current clock
AND’ed with b

The current clock is an ancestor of c0

Bool b = … ;
Clock c0 <- mkGatedClock (b);

11

March 7, 2008 L12-21http://csg.csail.mit.edu/6.375

Making gated clocks

c1 is a version of c0, gated by b1
and is also a version of the current clock,
gated by (b && b1)

current clock, c0 and c1 all same family
current clock and c0 both ancestors of c1

Bool b = … ;
Clock c0 <- mkGatedClock (b);

Bool b1 = …;
Clock c1 <- mkGatedClock (b1, clocked_by c0);

March 7, 2008 L12-22http://csg.csail.mit.edu/6.375

More Clock constructors
mkGatedClock

(Bool newCond)

mkAbsoluteClock
(Integer start, Integer period);

mkClockDivider
#(Integer divider) (ClockDividerIfc clks)

12

March 7, 2008 L12-23http://csg.csail.mit.edu/6.375

Clock Dividers
interface ClockDividerIfc ;

interface Clock fastClock ; // original clock
interface Clock slowClock ; // derived clock
method Bool clockReady ;

endinterface

module mkClockDivider #(Integer divisor)
(ClockDividerIfc ifc) ;

March 7, 2008 L12-24http://csg.csail.mit.edu/6.375

Clock Dividers
No need for special synchronizing logic

The clockReady signal can become part
of the implicit condition when needed

13

March 7, 2008 L12-25http://csg.csail.mit.edu/6.375

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks √
Moving data across clock domains ←
Revisit the 802.11a Transmitter

March 7, 2008 L12-26http://csg.csail.mit.edu/6.375

Moving Data Across Clock
Domains

Data moved across clock domains appears
asynchronous to the receiving (destination)
domain
Asynchronous data will cause meta-stability
The only safe way: use a synchronizer

clk

d

q Meta-stable data

Setup & hold violation

14

March 7, 2008 L12-27http://csg.csail.mit.edu/6.375

Synchronizers
Good synchronizer design and use
reduces the probability of observing
meta-stable data
Bluespec delivers conservative (speed
independent) synchronizers
User can define and use new
synchronizers
Bluespec does not allow unsynchronized
crossings (compiler static checking error)

March 7, 2008 L12-28http://csg.csail.mit.edu/6.375

2 - Flop Synchronizer
Most common type of (bit) synchronizer
FF1 will go meta-stable, but FF2 does not look
at data until a clock period later, giving FF1
time to stabilize
Limitations:

When moving from fast to slow clocks data may be
overrun
Cannot synchronize words since bits may not be
seen at same time

sClk dClk

sDIN dD_OUTFF0 FF1 FF2

15

March 7, 2008 L12-29http://csg.csail.mit.edu/6.375

Bluespec’s 2-Flop
Synchronizer

The designer must follow the synchronizer
design guidelines:

No logic between FF0 and FF1
No access to FF1’s output

sClk dClk

send() read()FF0 FF1 FF2

mkSyncBit

interface SyncBitIfc ;
method Action send (Bit#(1) bitData) ;
method Bit#(1) read () ;

endinterface

March 7, 2008 L12-30http://csg.csail.mit.edu/6.375

Small Example
Up/down counter, where direction signal
comes from separate domain.
Registers:
Reg# (Bit#(1)) up_down_bit <-

mkReg(0, clocked_by (readClk));

Reg# (Bit# (32)) cntr <- mkReg(0); // Default Clk

The Rule (attempt 1):
rule countup (up_down_bit == 1) ;

cntr <= cntr + 1;
endrule Ille

gal C
lock

Domain Crossing

16

March 7, 2008 L12-31http://csg.csail.mit.edu/6.375

Adding the Synchronizer
SyncBitIfc sync <- mkSyncBit(readClk,

readRst, currentClk) ;

rule transfer (True) ;
sync.send (up_down_bit);

endrule

rule countup (sync.read == 1) ;
cntr <= cntr + 1;

endrule

clocked by readClk

clocked by currentClk

Split the rule into two rules where each
rule operates in one clock domain

March 7, 2008 L12-32http://csg.csail.mit.edu/6.375

Full Example
module mkTopLevel(Clock readClk, Reset readRst,

Top ifc);
Reg# (Bit# (1)) up_down_bit <- mkReg(0,

clocked_by(readClk),
reset_by(readRst)) ;

Reg# (Bit# (32)) cntr <- mkReg (0) ;
// Default Clocking

Clock currentClk <- exposeCurrentClock ;
SyncBitIfc sync <- mkSyncBit (readClk, readRst,

currentClk) ;
rule transfer (True) ;

sync.send(up_down_bit);
endrule
rule countup (sync.read == 1) ;

cntr <= cntr + 1;
endrule

17

March 7, 2008 L12-33http://csg.csail.mit.edu/6.375

Other Synchronizers
Pulse Synchronizer
Word Synchronizer
FIFO Synchronizer
Asynchronous RAM
Null Synchronizer
Reset Synchronizers

Documented in Reference Guide

March 7, 2008 L12-34http://csg.csail.mit.edu/6.375

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks √
Moving data across clock domains √
Revisit the 802.11a Transmitter ←

18

March 7, 2008 L12-35http://csg.csail.mit.edu/6.375

802.11 Transmitter
Overview

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

headers

data

Clock frequencies: f/52

f

f/13

March 7, 2008 L12-36http://csg.csail.mit.edu/6.375

The Transmitter
module mkTransmitter(Transmitter#(24,81));

function Action stitch(ActionValue#(a) x,
function Action f(a v));

action let v <- x; f(v); endaction
endfunction
let controller <- mkController();
let scrambler <- mkScrambler_48();
let conv_encoder <- mkConvEncoder_24_48();
let interleaver <- mkInterleaver();
let mapper <- mkMapper_48_64();
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender();
rule controller2scrambler(True);

stitch(controller.getData,scrambler.fromControl);
endrule
... more rules ...

What is the
clock domain ?

19

March 7, 2008 L12-37http://csg.csail.mit.edu/6.375

The Transmitter
module mkTransmitter(Transmitter#(24,81));

...

let controller <- mkController();
let scrambler <- mkScrambler_48();
let conv_encoder <- mkConvEncoder_24_48();
let interleaver <- mkInterleaver();
let mapper <- mkMapper_48_64();
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender();
rule controller2scrambler(True);

stitch(controller.getData,scrambler.fromControl);
endrule

How should we
1. Generate these

clocks?
2. Pass them to

modules

let clockdiv13 <- mkClockDivider(13);
let clockdiv52 <- mkClockDivider(52);
let clk13th = clockdiv13.slowClock;
let clk52nd = clockdiv52.slowClock;
let reset13th <- mkAsyncResetFromCC(0, clk13th);
let reset52nd <- mkAsyncResetFromCC(0, clk52nd);

March 7, 2008 L12-38http://csg.csail.mit.edu/6.375

The Transmitter (after)
module mkTransmitter(Transmitter#(24,81));

let clockdiv13 <- mkClockDivider(13);
let clockdiv52 <- mkClockDivider(52);
let clk13th = clockdiv13.slowClock;
let clk52nd = clockdiv52.slowClock;
let reset13th <- mkAsyncResetFromCC(0, clk13th);
let reset52nd <- mkAsyncResetFromCC(0, clk52nd);

let controller <- mkController(clocked_by clk13th,
reset_by reset13th);

let scrambler <- mkScrambler_48(… " …);
let conv_encoder <- mkConvEncoder_24_48 (… " …);
let interleaver <- mkInterleaver (… " …);
let mapper <- mkMapper_48_64 (… " …);
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender(clocked_by clk52nd, …);

rule controller2scrambler(True);
stitch(controller.getData, scrambler.fromControl);

endrule
...more rules...

What about rules
involving clock domain
crossing?

20

March 7, 2008 L12-39http://csg.csail.mit.edu/6.375

Clock Domain Crossing
rule mapper2ifft(True);

stitch(mapper.toIFFT, ifft.fromMapper);
endrule

???

Different methods in an action are on different
clocks – not legal without synchronizers

rule mapper2ifft(True);
let x <- mapper.toIFFT();
ifft.fromMapper(x)

endrule

March 7, 2008 L12-40http://csg.csail.mit.edu/6.375

Clock Domain Crossing
rule mapper2ifft(True);

let x <- mapper.toIFFT();
ifft.fromMapper(x)

endrule

let m2ifftFF <-
mkSyncFIFOToFast(2,clockdiv13,reset13th);

rule mapper2fifo(True);
stitch(mapper.toIFFT, m2ifftFF.enq);

Endrule

rule fifo2ifft(True);
stitch(pop(m2ifftFF), ifft.fromMapper);

endrule

split

21

March 7, 2008 L12-41http://csg.csail.mit.edu/6.375

Similarly for IFFT to CyclicExt
let ifft2ceFF <-

mkSyncFIFOToSlow(2,clockdiv52,reset52nd);

rule ifft2ff(True);
stitch(ifft.toCyclicExtender, ifft2ceFF.enq);

endrule

rule ff2cyclicExtender(True);
stitch(pop(ifft2ceFF),

cyc_extender.fromIFFT);
endrule

March 7, 2008 L12-42http://csg.csail.mit.edu/6.375

Did not work...

stoy@forte:~/examples/80211$ bsc -u -verilog Transmitter.bsv

Error: "./Interfaces.bi", line 62, column 15: (G0045)
Method getFromMAC is unusable because it is connected to a

clock not available at the module boundary.

The method’s clock is internal!

22

March 7, 2008 L12-43http://csg.csail.mit.edu/6.375

The Fix – pass the clocks out

interface Transmitter#(type inN, type out);
method Action getFromMAC(TXMAC2ControllerInfo x);
method Action getDataFromMAC(Data#(inN) x);

method ActionValue#(MsgComplexFVec#(out))
toAnalogTX();

interface Clock clkMAC;
interface Clock clkAnalog;

endinterface

March 7, 2008 L12-44http://csg.csail.mit.edu/6.375

Summary
The Clock type, and type checking ensures that
all circuits are clocked by actual clocks
BSV provides ways to create, derive and
manipulate clocks, safely
BSV clocks are gated, and gating fits into Rule-
enabling semantics
BSV provides a full set of speed-independent
data synchronizers, already tested and verified
The user can define new synchronizers
BSV precludes unsynchronized domain crossings

