
Automatic Placement and Routing using Cadence Encounter

6.375 Tutorial 5

March 2, 2008

In this tutorial you will gain experience using Cadence Encounter to perform automatic placement
and routing. A place+route tool takes a gate-level netlist as input and first determines how each
gate should be placed on the chip. It uses several heuristic algorithms to group related gates
together and thus hopefully minimize routing congestion and wire delay. Place+route tools will
focus their effort on minimizing the delay through the critical path. To this end, these tools can
resize gates, insert new buffers, and even perform local resynthesis. Place+route tools often have
additional algorithms to help reduce area for non-critical paths. After placement, the place+route
tool will attempt to route the design while minimizing wire delay. Place+route tools often include
additional facilities for clock tree synthesis, power routing, and block level floorplanning. Figure 1
shows how Encounter fits into the 6.375 toolflow.

The following documentation is located in the course locker (/mit/6.375/doc) and provides addi-
tional information about Encounter and the Tower 0.18µm Standard Cell Library.

• tsl-180nm-sc-databook.pdf - Databook for Tower 0.18 µm Standard Cell Library

• encounter-user-guide.pdf - Encounter user guide

• encounter-command-line-ref.pdf - Encounter text command reference

• encounter-menu-ref.pdf - Encounter GUI reference

Getting started

Before using the 6.375 toolflow you must add the course locker and run the course setup script with
the following two commands.

% add 6.375

% source /mit/6.375/setup.csh

For this tutorial we will be using an unpipelined SMIPSv1 processor as our example RTL design.
You should create a working directory and checkout the SMIPSv1 example project from the course
CVS repository using the following commands.

% mkdir tut5

% cd tut5

% cvs checkout examples/smipsv1-1stage-v

% cd examples/smipsv1-1stage-v

Before starting, take a look at the subdirectories in the smips1-1stage-v project directory. Figure 2
shows the system diagram which is implemented by the example code. When pushing designs
through the physical toolflow we will often refer to the core. The core module contains everything
which will be on-chip, while blocks outside the core are assume to be off-chip. For this tutorial
we are assuming that the processor and a combinational memory are located within the core. A
combinational memory means that the read address is specified at the beginning of the cycle, and

6.375 Tutorial 5, Spring 2008 2

Timing
Area

Verilog
Source

Encounter (FP) Design Compiler

Floor
Plan

Gate
Level
Netlist

Timing
Area

LayoutGate
Level
Netlist

Encounter (PAR)

Std
Cell
Lib

Design Vision

Figure 1: Encounter Toolflow

rd0

rd1
Reg
File

>> 2

Sign
Extend

ir[15:0]

Reg
File

Data
Mem

va
l

rw

Cmp

eq
?

Instruction Mem

va
l

pc+4

branch
+4

Decoder
Control
Signals

tohost
tohost_en

testrig_tohost

ir[25:21]

ir[20:16]
Add

wdata
addr rdata

rf_wen

w
b_

se
l

ir[
20

:1
6]

PC

pc
_s

el

Figure 2: Block diagram for Unpipelined SMIPSv1 Processor

6.375 Tutorial 5, Spring 2008 3

the read data returns during the same cycle. Building large combinational memories is relatively
inefficient. It is much more common to use synchronous memories. A synchronous memory means
that the read address is specified at the end of a cycle, and the read data returns during the
next cycle. From Figure 2 it should be clear that the unpipelined SMIPSv1 processor requires
combinational memories (or else it would turn into a four stage pipeline). For this tutorial we will
not be using a real combinational memory, but instead we will use a dummy memory to emulate
the combinational delay through the memory. Examine the source code in src and compare
smipsCore rtl with smipsCore synth. The smipsCore rtl module is used for simulating the
RTL of the SMIPSv1 processor and it includes a functional model for a large on-chip combinational
memory. The smipsCore synth module is used for synthesizing the SMIPSv1 processor and it uses
a dummy memory. The dummy memory combinationally connects the memory request bus to
the memory response bus with a series of standard-cell buffers. Obviously, this is not functionally
correct, but it will help us illustrate more reasonable critical paths in the design. In later tutorials,
we will start using memory generators which will create synchronous on-chip SRAMs.

Now examine the build directory. This directory will contain all generated content including
simulators, synthesized gate-level Verilog, and final layout. In this course we will always try to keep
generated content separate from our source RTL. This keeps our project directories well organized,
and helps prevent us from unintentionally modifying our source RTL. There are subdirectories in
the build directory for each major step in the 6.375 toolflow. These subdirectories contain scripts
and configuration files for running the tools required for that step in the toolflow. For this tutorial
we will work in the enc-par directory for place+route and in the enc-fp directory for floorplanning.

Since Encounter takes a gate-level netlist as input, we need to run Synopsys Design Compiler to
synthesize this netlist from the RTL. The following commands will run Design Compiler. Consult
Tutorial 4: RTL-to-Gates Synthesis using Synopsys Design Compiler for more information.

% pwd

tut5/examples/smipsv1-1stage-v

% cd build/dc-synth

% make

Automatically Placing and Routing the Processor

We will begin by running several Encounter commands manually before learning how we can au-
tomate the tools with scripts. Encounter can generate a large number of output files, so we will be
running Encounter within a build directory beneath enc-par. Before actually using Encounter to
perform place+route, we need to uniquify our netlist. A unique netlist is one in which the module
hierarchy is a true tree; in other words every module is instantiated once and only once. Use the
following commands to create a build directory and to uniquify the synthesized netlist.

% pwd

tut5/examples/smipsv1-1stage-v/build

% cd enc-par

% mkdir build

% cd build

% uniquifyNetlist -top smipsCore_synth synthesized_unique.v \

../../dc-synth/current/synthesized.v

6.375 Tutorial 5, Spring 2008 4

When this is finished the uniquified netlist is called synthesized unique.v, and it will be in your
Encounter build directory. We can now start the Encounter GUI. Later we will see how to run
encounter without the GUI for scripting purposes. The following command starts Encounter and
leaves you at the Encounter command prompt. We can use man <command> at the Encounter
command prompt to find out more information about any command. Our first step is to import
our synthesized design into Encounter. Use the Design → Design Import menu option to display
the Design Import dialog box. Fill in the following fields of the dialog box.

Field Name Value

Verilog Files synthesized unique.v

Top Cell smipsCore synth

LEF Files /mit/6.375/libs/tsl180/tsl18fs120/lef/tsl18 6lm.lef

/mit/6.375/libs/tsl180/tsl18fs120/lef/tsl18fs120.lef

Max Timing Libraries /mit/6.375/libs/tsl180/tsl18fs120/lib/tsl18fs120 max.lib

Min Timing Libraries /mit/6.375/libs/tsl180/tsl18fs120/lib/tsl18fs120 min.lib

Common Timing Libraries /mit/6.375/libs/tsl180/tsl18fs120/lib/tsl18fs120 typ.lib

Buffer Name/Footprint buffd1

Delay Name/Footprint dl01d1

Inverter Name/Footprint inv0d1

Generate Footprint This should be checked

The LEF files contain physical information about the standard cell library and the metal layers.
This information includes capacitances, resistances, area, and the physical location of pins for each
cell. The LIB files contain timing information about each cell; they are similar to the DB files used
by Design Compiler. We must also specify various footprints. A footprint is a class of cells which
are functionally interchangeable. Encounter needs to know which cells in the library it can use for
buffer insertion.

We also need to specify a constraint file. As with Design Compiler, the constraint file specifies
various input/output constraints on our design such as the target clock period, the drive strength
of inputs, and the load capacitance on outputs. Encounter understands the same constraints we
used for synthesis, so we can just point it to the synth.sdc. Go to the Timing tab of the Design

Import dialog box and enter ../../dc-synth/current/synth.sdc into the Timing Constraint File

field.

After you have filled everything into the Design Import dialog box, click OK. You should see some
output scroll by at the Encounter command prompt. Take a look at the Encounter GUI. Figure 3
shows several key areas of the Encounter GUI. The Toolbar contains various buttons; we will mostly
use the zoom buttons, the redraw button, and the hierarchy buttons. The View Panel allows you
to switch between the Floorplan View, the Amoeba View, and the Physical View. We will spend
most of our time in the Physical View so change to that view now. You should see many empty
rows where the standard cells will be eventually placed. The Tools Panel contains various tools for
doing manual placement, wiring, etc. We will primarily use the Select Tool, the Move Tool, and
the Rule Tool. For now leave the tool set to the Select Tool. The Color Panel allows us to show
or hide various components in the system (the checkboxes in the V column). We can also decide
which components are selectable (the S column). Click on the small color square to change the
color of any component. The fifteen displayed components are really just a subset of the possible
components; you can click on the All Colors button to change the visibility status and/or color of
any component. Directly beneath the All Colors button are two very thin buttons. We will almost

6.375 Tutorial 5, Spring 2008 5

Figure 3: Encounter GUI showing clock skew

always want to choose the rightmost button. This will display many more layers. Try zooming
around a bit to get a feel for the Encounter interface. You can zoom out so the whole design fits
in the window with the f key. Click and drag the right mouse button to zoom in on a specific part
of the design. The arrow keys allow you to pan the design.

Let’s get started using Encounter to perform automatic placement and routing. The following
command will do an initial placement of our design.

encounter> amoebaPlace

Skim over the output from the amoebaPlace command and verify that there are no errors. If
Encounter reports any errors, then it was unable to fully place the design. You will need to
increase the size of the chip. We will discuss how to do this later in the tutorial. After running
amoebaPlace, refresh the GUI using CTRL-R so you can see the placement. Run amoebaPlace

a couple of times. Since the tool uses various heuristics, it does not always result in the same
placement. Notice that there are various holes in the placement. We can add filler cells later to

6.375 Tutorial 5, Spring 2008 6

fill up these empty spaces. Filler cells are just empty standard cells which connect the power and
ground rails.

After this initial placement, we can use the optDesign command to optimize our design. This com-
mand will rearrange cells, insert buffers, and even perform resynthesis as it tries to optimize timing
and area. This is a very powerful command with many options. See the Encounter documentation
for more information.

encounter> optDesign -preCTS

After the optDesign command is finished, refresh the Encounter GUI. You will see that Encounter
has added many wires on the metal layers. These trial routes are not real routes since they are
incomplete and may violate various process design rules. The trial route helps the optDesign

command optimize placement. Now that we have finished our automatic placement, we will route
the most important net in our design: the clock. Use the following commands to synthesize a clock
tree. The tool will add clock buffers and route the clock in attempt to minimize skew between the
various state elements.

encounter> createClockTreeSpec -bufFootprint {inv0d1} -invFootprint {buffd1} \

-output par.clk -routeClkNet

encounter> specifyClockTree -clkfile par.clk

encounter> ckSynthesis

Refresh the GUI to see the routed clock tree. To graphically display the clock skew, use the
following command. Figure 3 shows an example. Colors at the red end of the spectrum indicate
the greatest skew, while colors at the blue end of the spectrum indicate the least skew.

encounter> displayClockPhaseDelay

You can use the clearClockDisplay command to clear the skew coloring. We are now ready to
perform the final routing of our design. The following command will attempt to route all the cells
while minimizing the delay of the critical path.

encounter> globalDetailRoute

After the routing is finished, look over the final lines of output. The tool reports the number of
warnings and failures. If there are any failures, then Encounter was unable to route your design.
You will need to increase the size of the chip. We will discuss how to do this later in the tutorial.

We can now use the Encounter GUI to examine our final layout. Try hiding some of the metal
layers by deselecting them in the Color Panel (use the V column and don’t forget to refresh with
CTRL-R). Notice that each metal layer is only used to route perpendicular to the layers below and
above it. For example, metal 3 routes horizontally while metal 2 and metal 4 route vertically.
Figure 4 shows a closeup of a few cells in the design.

The following commands use Encounter to perform static timing analysis on the design.

encounter> setAnalysisMode -setup -async -skew -clockTree

encounter> buildTimingGraph

encounter> reportSlacks -setup -outfile postroute_setup_slacks.rpt

6.375 Tutorial 5, Spring 2008 7

Figure 4: Encounter GUI showing closeup of standard cells with routing

Figure 5: Encounter GUI showing critical path

6.375 Tutorial 5, Spring 2008 8

Now use the Timing → Timing Debug → Slack Browser menu option to load the
postroute setup slacks.rpt slack file. This will display the Timing Slack Browser. If you double
click on a path, Encounter will display the delay of all the cells on the path. The path will also be
highlighted graphically in the Encounter GUI. The slacks are ordered starting with the worst path,
so the very first path is the critical path in your design. Figure 5 illustrates the critical path in the
SMIPSv1 processor. The path starts at the PC and then goes through the instruction memory,
through the register file read, through the adder, through the data memory, and into the register
file write port.

It is often useful to see a histogram of all the path slacks in your design. You can do this with the
Timing → Timing Debug → End Point Slack Histogram menu option. Decrease the stepsize and
check Report Non Violating to see all of the paths in your design. If there are just a few paths with
large negative slacks, then you may be able to use a local approach to meeting timing. If there are
many paths with large negative slacks then a more global approach is probably needed.

Encounter includes a Design Browser which can help you understand how your design has mapped
physically onto the chip. Select Tools → Design Browser to open the Design Browser. Browse
through the module hierarchy and find the register file. If you click on a module in the Design

Browser it will be highlighted in the GUI (see Figure 6). This can help you gain some intuition
on how Encounter is doing the placement of your modules. It is also should be quite clear how
large the register file is! You can also use the Design Browser to highlight specific standard cells
and nets. When you are browsing you will probably see some standard cells with names which
begin with FE. This indicates that these cells were inserted by Encounter. The name also contains
information on why they were inserted. FE OCPC means that the cell was added when optimizing
the critical path, while FE RC means that the cell was added during local resynthesis. Consult page
599 of the Encounter User Guide (encounter-user-guide.pdf) for more information. Finally, it
is sometimes useful to know the capacitance of a specific net. Select the net in the Design Browser

and then choose Tool → Attribute Editor from the menu to display various parameters about the
net.

Entering in these commands by hand can be tedious and error prone, plus doing so makes it difficult
to reproduce a result. Thus we will mostly use TCL scripts to control the tool. Even so, using the
GUI directly is useful for finding out more information about a specific command or playing with
various options. It is also very useful to use the GUI to examine your design after the automatic
scripts have finished.

Before continuing, exit Encounter and delete your build directory with the following commands.

encounter> exit

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par/build

% cd ..

% rm -rf build

6.375 Tutorial 5, Spring 2008 9

Figure 6: Encounter GUI with the register file highlighted

Automating Place+Route with TCL Scripts and Makefiles

In this section we will examine how to use various TCL scripts and makefiles to automate the
place+route process. There are four files in the build/enc-par directory.

• Makefile - Makefile for driving place+route with the TCL scripts

• par.tcl - Primary TCL script which contains the Encounter commands

• par.conf - Additional configuration information for Encounter

• par.sdc - User specified constraints

First take a look at the par.tcl script. You will see many familiar commands which we executed
manually in the previous section. You will also see some new commands. Take a closer look at the
bottom of this TCL script where we write out several text reports. Remember that you can get
more information on any command by using man <command> at the Encounter prompt. The very
first line of the par.tcl script loads the make generated vars.tcl script. This script is generated
by the makefile and it contains variables which are defined by the makefile and used by the TCL
scripts. Encounter has a constraint file which is very similar to the constraint file used by Design
Compiler. If you change a constraint for Design Compiler you will probably want to change it for
Encounter as well. Since Design Compiler uses very rough wire load models, you might want to use
a slightly smaller clock period constraint for synthesis than what you use for place+route. This will
force Design Compiler to work harder and hopefully make it more likely you will meet the target
clock frequency.

Now take a look at the par.conf script. This is where we set all the parameters which we would
interactively set in the Design Import dialog box such as the input Verilog, the LEF files, and

6.375 Tutorial 5, Spring 2008 10

the toplevel module. Most of these parameters are actually TCL variables which are defined in
make generated vars.tcl. Two key parameters in the par.conf script which you might want to
change are shown below.

set rda_Input(ui_aspect_ratio) {1.0}

set rda_Input(ui_core_util) {0.6}

The ui aspect ratio parameter specifies the aspect ratio of the chip, while the ui core util

specifies the target utilization of the chip. The ui core util parameter is based on the cells in
the gate-level netlist and it sets how big the chip will be. You should keep the utilization relatively
low since Encounter probably needs to do quite a bit of resizing (which will use up more space).
If your design does not place or route, then you will need to further lower the utilization so that
the initial chip size is larger. We will learn how to do more sophisticated floorplanning later in the
tutorial.

Now that we are more familiar with the various TCL scripts, we will see how to use the makefile to
drive synthesis. Look inside the makefile and identify where the toplevel module is defined. Also
notice that the floorplan make variable is set. Initially we will not be using floorplanning, so
comment out the floorplan make variable. The build rules in the makefile will create new build
directories, copy the TCL scripts into these build directories, and then run Encounter. Use the
following make target to create a new build directory.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% make new-build-dir

You should now see a new build directory named build-<date> where <date> represents the time
and date. The current symlink always points to the most recent build directory. If you look inside
the build directory, you will see the par.tcl, par.conf, and par.sdc scripts but you will also see an
additional make generated vars.tcl script. Various variables inside make generated vars.tcl

are used to specify the search path, which Verilog files to read in, the toplevel Verilog name, etc.
After using make new-build-dir you can cd into the current directory, start the Encounter GUI,
and run Encounter commands by hand. For example, the following sequence will perform the same
steps as in the previous section.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% cd current

% uniquifyNetlist -top smipsCore_synth synthesized_unique.v \

../../dc-synth/current/synthesized.v

% encounter

encounter> source make_generated_vars.tcl

encounter> source par.conf

encounter> commitConfig

encounter> amoebaPlace

encounter> optDesign -preCTS

encounter> createClockTreeSpec -bufFootprint {inv0d1} -invFootprint {buffd1} \

-output par.clk -routeClkNet

encounter> specifyClockTree -clkfile par.clk

6.375 Tutorial 5, Spring 2008 11

encounter> ckSynthesis

encounter> globalDetailRoute

encounter> exit

% cd ..

The new-build-dir make target is useful when you want to conveniently run through some En-
counter commands by hand to try them out. To completely automate our synthesis we can use the
par make target (which is also the default make target). For example, the following commands will
automatically place+route the design and save several text reports to the build directory.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% make par

You should see Encounter start and then execute the commands located in the par.tcl script.
Once place+route is finished try running make par again. The makefile will detect that nothing
has changed (i.e. the gate-level Verilog source file and Encounter scripts are the same) and so it
does nothing. Take a look at the current contents of enc-par.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% ls -l

build-2008-02-26_16-15

build-2008-02-26_16-31

current -> build-2008-02-26_16-31

CVS

Makefile

par.conf

par.tcl

par.sdc

Notice that the makefile does not overwrite build directories. It always creates new build direc-
tories. This makes it easy to change your place+route scripts or source Verilog, resynthesize and
place+route your design, and compare your results to previous designs. We can use symlinks to
keep track of what various build directories correspond to. Every so often you should delete old
build directories to save space. The make clean command will delete all build directories so use
it carefully. Sometimes you want to really force the makefile to place+route the design but for
some reason it may not work properly. To force a place+route without doing a make clean sim-
ply remove the current symlink. For example, the following commands will force encounter to
place+route the design again without actually changing any of the source TCL scripts or Verilog.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% rm -rf current

% make par

As we start adding more tools to the toolflow, it is useful to have a toplevel makefile. Take a look at
the makefile in examples/smipsv1-1stage-v/build. You can use this makefile to run simulations,
perform synthesis, and run place+route. The makefile tracks dependencies, so for example, if you
run place+route before synthesis the makefile knows to run synthesis first.

6.375 Tutorial 5, Spring 2008 12

The following commands will run the assembly tests, run synthesis, and and run place+route.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-par

% cd ..

% make run-asm-tests

% make enc-par

Interpreting the Final Layout and Text Reports

The par.tcl script saves the entire design three times during place+route: after clock synthesis
(postclksynth), before routing (preroute), and after routing (postroute). You can examine each
of these designs using the Encounter GUI. For example, to look at the final layout you would move
into the current build directory, start the Encounter GUI, and source the postroute file. The
following commands illustrate this process.

% pwd

tut5/examples/smipsv1-1stage-v/build

% cd enc-par/current

% encounter

encounter> source postroute

Now you can use all of the techniques discussed earlier in the tutorial to examine the routing,
the clock tree, the cell placement, and the critical paths. When you first load the design, press
the f key to zoom out so that you can see the entire chip. Note that you will need to rerun the
extractRC command before you can observe any net capacitances, and you will need to rerun
timing analysis with the Timing → Timing Analysis menu option before using displaying a End

Point Slack Histogram.

One key use of the Encounter GUI is to measure the final area of your chip including filler cells.
Various text reports will only report the area of the standard cells, but it is important to include
the area of filler cells as well. To determine the total area of your chip, simple use the ruler tool
and measure the height and width of your chip in microns.

The par.tcl script also saves the final gate-level netlist as par.v in the build directory. This post-
place+route netlist can be different than the post-synthesis netlist because Encounter resizes gates,
adds buffers, and does local resynthesis. In addition to the final gate-level netlist, the par.tcl script
also generates several text reports. Reports usually have the rpt filename suffix. The following is
a list of the place+route reports.

• postroute area.rpt - Contains area information for each module instance

• postroute critpath.rpt - Contains the combinational critical path of your design

• postroute setup timing.rpt - Contains paths which violate setup timing

• postroute setup slacks.rpt - Contains the slack values for many paths in your design

• postroute hold timing.rpt - Contains paths which violate hold timing

• postroute hold slacks.rpt - Contains the slack values for many paths in your design

• postroute wire.rpt - Contains information about many of the wires in your design

6.375 Tutorial 5, Spring 2008 13

Clk Period (10ns)Clk Period (10ns)

Setup
(2.75)

Worst Case Delay
For Path A (5.75)

Skew
(1.5)

Slack
(1.5)

Skew (-1.5)

Worst Case Delay For Path A (13.5)

(c) Effective Clock Period is 14.75ns(a) Example Circuit

Path A

Clk0 Clk1

(b) Effective Clock Period is 8.5ns

Clk1

Clk0

Slack (-4.75)

Setup (2.75)

Endpoint

Clk0

Clk1

Endpoint
of Path A of Path A

Figure 7: Determining your hardware’s effective clock period

• par.cal - Capacitance values of all nets in the design

• enc.log - Log file of all output during Encounter run

There are also preroute versions of these files which can be used to quickly look at the progress
of your design while the lengthy routing process is still running. The postroute area.rpt report
shows the area in micron for each module instance in the design. Remember that this ignores filler
cells, so to measure the area of your entire chip use the GUI. The par.cal and postroute wire.rpt

reports can be useful for learning more about the interconnect in your design. The par.cal is
particularly useful since it breaks down the capacitance for every net in your design into the wire
capacitance and the gate capacitance.

Although the postroute critpath.rpt report will show you the longest combinational critical
path in your design, the setup timing information in postroute setup timing.rpt and
postroute setup slacks.rpt are much more important for determining your final effective clock
period. Figure 8 shows a fragment from postroute setup timing.rpt. The paths are sorted such
that the first path in the file is the worst case path in your design (and thus sets the effective clock
period). It is important to note that the post-place+route critical path can be different than the
post-synthesis critical path. Furthermore, the effective clock period after place+route can be much
worse than after synthesis. This is because the synthesis tool uses a relatively primitive wireload
model, while the Encounter is able to estimate wire delay much more accurately. As shown in
Figure 8, the postroute setup timing.rpt lists the delay of each cell on the critical path, the
slew for each cell input, and the capacitive load of each net. Figure 9 shows a fragment from
postroute setup slacks.rpt. This report provides a very brief summary of hundreds of paths
in your design. The first column is the start of the path (i.e. the rising clock edge) and the final
column is the end of the path. The second column is the constraint; in this case the only constraint
is the clock period. The third column shows the slack for that path for both the rising and falling
edge. A positive number means that the path made timing and a negative number means that the
corresponding path did not make timing by the listed amount in nanoseconds.

In Figure 9 you can see that the design did not make timing by 1.595 ns on a path which ends
at bit 19 of register 25 in the register file. Even though this design did not make the 5 ns clock
period constraint it is still a valid piece of hardware which will operate correctly with some clock
period (it is just slower than 5ns). Similarly, a design which makes the timing constraint but does
so with a positive slack can run faster than the constrained clock period. We are more concerned

6.375 Tutorial 5, Spring 2008 14

Path #: 1

Startpoint: proc/dpath/pc_pf/q_np_reg[21]/Q (latency: 2.657)

Endpoint: proc/dpath/rfile/registers_reg[25][19]/D (Setup time: 0.307, latency: 2.660)

Data required time: 5.003 (skew: 0.003 adjusted 1 cycle)

Data arrival time: 6.598

Slack: -1.595 (SETUP VIOLATION)

Object name Delta r/f (ns) Sum r/f (ns) Slew (ns) Load

proc/dpath/pc_pf/q_np_reg[21] CP->Q (dfnrq4) 0.466f/0.418r 0.466f/0.418r 0.150f/0.170r 0.045

imemreq_bits_addr[21] 0.008f/0.007r 0.473f/0.426r

...

imemresp_bits_data[21] 0.004f/0.004r 1.385f/1.459r

proc/dpath/rfile/U78 I->Z (buffda) 0.218f/0.197r 1.603f/1.656r 0.118f/0.125r 0.260

proc/dpath/rfile/n548 0.026f/0.027r 1.629f/1.683r

proc/dpath/rfile/FE_RC_0 I->Z (buffda)

...

proc/dpath/rf_rdata0[5] 0.002f/0.002r 3.107f/3.084r

proc/dpath/op1_mux/FE_RC_1 A2->ZN (nd12d2) 0.056r/0.055f 3.163r/3.139f 0.160f/0.167r 0.010

proc/dpath/op1_mux/FE_RN_3 0.001r/0.001f 3.164r/3.139f

proc/dpath/op1_mux/FE_RC_4 A2->ZN (nd12d2) 0.072f/0.070r 3.236f/3.210r 0.107r/0.104f 0.020

proc/dpath/op1_mux_out[5] 0.000f/0.000r 3.236f/3.210r

proc/dpath/adder/add_29/FE_RC_5 I->ZN (inv0d2)

...

proc/dpath/adder/add_29/FE_RC_6 A1->ZN (nd02d2) 0.105f/0.102r 4.847f/4.837r 0.098r/0.096f 0.030

dmemreq_bits_addr[19] 0.002f/0.002r 4.849f/4.838r

...

dmemresp_bits_data[19] 0.001f/0.001r 5.933f/6.046r

proc/dpath/wb_mux/FE_RC_7 A2->ZN (nd12d2) 0.050r/0.050f 5.983r/6.096f 0.103f/0.111r 0.010

proc/dpath/wb_mux/FE_RN_8 0.001r/0.001f 5.984r/6.097f

proc/dpath/wb_mux/FE_RC_9 A2->ZN (nd12d2) 0.064f/0.064r 6.048f/6.160r 0.110r/0.108f 0.017

proc/dpath/rf_wdata[19] 0.001f/0.001r 6.049f/6.162r

proc/dpath/FE_0_rf_wdata_19_ I->Z (buffda) 0.196f/0.172r 6.245f/6.333r 0.127f/0.131r 0.208

proc/dpath/FE_1_rf_wdata_19_ 0.046f/0.047r 6.291f/6.380r

proc/dpath/rfile/registers_reg[25][19] CP^^D (denrq1)

0.307f/0.158r 6.598f/6.538r 0.203f/0.225r

Figure 8: Fragment from postroute setup timing.rpt

Analysis mode: -setup -skew -caseAnalysis -async -noClkSrcPath

reportSlacks -setup -outfile postroute_setup_slacks.rpt

Format: clock timeReq slackR/slackF setupR/setupF instName/pinName

#

ideal_clock1(R) 5.000 -1.549/-1.595 0.158/0.307 proc/dpath/rfile/registers_reg[25][19]/D

ideal_clock1(R) 5.000 -1.548/-1.594 0.158/0.307 proc/dpath/rfile/registers_reg[27][19]/D

ideal_clock1(R) 5.000 -1.546/-1.592 0.158/0.307 proc/dpath/rfile/registers_reg[18][19]/D

ideal_clock1(R) 5.000 -1.546/-1.591 0.158/0.307 proc/dpath/rfile/registers_reg[23][19]/D

ideal_clock1(R) 5.000 -1.545/-1.591 0.158/0.307 proc/dpath/rfile/registers_reg[21][19]/D

Figure 9: Fragment from postroute setup slacks.rpt

6.375 Tutorial 5, Spring 2008 15

about the effective clock period of your design as opposed to the clock constraint you set before
synthesis. The effective clock period is simply the clock period constraint minus the worst slack

(Tclk − Tslack). postroute setup timing.rpt and postroute setup slacks.rpt are both sorted
by slack so that the path with the worst slack is listed first. To determine the effective clock period
for your design simply choose the worst of the rising and falling edge slacks. Figure 7 illustrates two
examples: one with positive slack and one with negative slack. In this example, our clock period
constraint is 10 ns. In Figure 7(b), the post-place+route reports indicate a positive slack value of
1.5 ns and thus the effective clock period is 8.5 ns. In Figure 7(c), the post-place+route reports
indicate a negative slack value of 4.75 ns and thus the effective clock period is 14.75 ns. Notice that
the effective clock period in Figure 7(c) is not equal to the worst case combinational critical path
(i.e. 13.5 ns). This is because we must also factor in setup time and clock skew. Note that just
because the design did not make timing at 5 ns, this does not mean it cannot go faster. If we set
the clock period constraint to 4 ns it might result in a design with an effective clock period of 4.2 ns.
Lower clock period constraints force the tools to work harder and they may or may not do better.
So from Figure 9 we can see that the effective clock period of our unpipelined SMIPSv1 processor
is 6.595 ns which is equivalent to a clock frequency of about 150 MHz.

Using Encounter for Floorplanning

In the previous sections we let Encounter handle all of the placement for our design. With larger
designs it is critical that we have more input into the floorplanning of our design. Floorplanning is
the positioning of various large blocks on the chip. Power distribution is often closely coupled with
floorplanning, since it is important to carefully manage how power gets to the various macroblocks.
In this section we will learn how to use Encounter to perform floorplanning and power routing.

In the previous sections we disabled floorplanning by commenting out the floorplan make variable
in the place+route makefile. Before continuing, uncomment this variable as follows.

floorplan = ../enc-fp/current/floorplan.fp

We perform floorplanning in a different build directory than place+route. Move into the floorplan-
ning build directory and take a look at the following three files.

• Makefile - Makefile for driving floorplanning with the TCL scripts

• fp.tcl - Primary TCL script which contains the Encounter commands

• fp.conf - Additional configuration information for Encounter

The floorplanning scripts are setup similar to the synthesis scripts and the place+route scripts. The
fp.tcl script has three main parts. In the first part we set some variables and call the floorPlan

command which defines the dimensions of our chip and the margins. The margins create an area
around the edge of the chip where there will be no standard cells. We will put a power ring in this
area. Be aware that these floorplan commands will override our settings for ui asepect ratio and
ui core util in par.conf.

After executing the floorPlan command, the script positions two modules on the chip using the
setObjFPlanBox command. The TCL code positions the register file in the lower portion of the
chip, and positions the dummy memory in the upper right hand corner. Notice that we use several

6.375 Tutorial 5, Spring 2008 16

TCL variables to create a very flexible relative floorplan; we can change the chip size and the
modules will be automatically repositioned. A module floorplan box is really just a suggestion to
help Encounter produce better placements. Encounter is free to place some cells which are in the
module outsize of the floorplan box, or place some cells which are not in the module inside the
floorplan box. Finally, we use the addRing and addStripe commands to create a power grid on
the metal 5 and metal 6 layers. The following commands use the makefile to run the commands in
fp.tcl with Encounter.

% pwd

tut5/examples/smipsv1-1stage-v/build

% cd enc-fp

% make fp

The floorplan is contained in the current/floorplan.fp file. During place+route, Encounter will
read in this file. To view the floorplan, move into the current build directory, start encounter, and
source the floorplan script.

% pwd

tut5/examples/smipsv1-1stage-v/build/enc-fp

% cd current

% encounter

encounter> source floorplan

You should be able to see the power ring, metal 5 horizontal stripes, and metal 6 vertical stripes.
Figure 10 shows a closeup of the upper left corner of the chip. To see the module floorplanning,
choose the floorplan view on the View Panel. Although you can adjust the floorplan interactively
using the Move tool and the hierarchy buttons on the toolbar, it is best to script your floorplans in
TCL. Once you have finished floorplanning, you can now rerun place+route. Figure 12 shows the
final layout after using floorplanning. The dummy memory is highlighted in red and the register
file is highlighted in green.

Review

The following sequence of commands will setup the 6.375 toolflow, checkout the SMIPSv1 processor
example, synthesize the design, perform floorplanning, and place+route the gate-level netlist.

% add 6.375

% source /mit/6.375/setup.csh

% mkdir tut5

% cd tut5

% cvs checkout examples/smipsv1-1stage-v

% cd examples/smipsv1-1stage-v/build

% make enc-par

6.375 Tutorial 5, Spring 2008 17

Figure 10: Encounter GUI showing the power grid after floorplanning

Figure 11: Encounter GUI showing the floorplan

6.375 Tutorial 5, Spring 2008 18

Figure 12: Encounter GUI showing the final placement with floorplanning

