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Motivation
Custom hardware design is widely known for its ability to improve performance and increase power efficiency. ASICs
often rely on custom hardware in the form of IP blocks or hardware accelerators. These accelerators typically follow a
completely black-box model and contain all the memory modules required for operation. Including memory in the
accelerator gives the designer full control of the memory, and therefore reliable performance.

The internalized memory approach can result in inefficient use of area, degraded performance during accelerator
interaction, redundant logic and subpar memory power consumption. Area may be wasted because each accelerator may
not utilize all of its memory simultaneously. Further, communication performance between IP blocks may be degraded if
the ASIC must copy large amounts of memory between private memory blocks in each accelerator. By removing inter-
accelerator communication bottlenecks, we can reduce accelerator granularity in some cases by decomposing large
accelerators into several smaller and more widely applicable accelerators. If multiple accelerators require support for
additional memory features such as power reduction (VDD-gating) or data structures (queues or stacks), this logic would
be duplicated across several accelerators. Alternatively, ASIC designers may not be able to add support for memory
power reduction to accelerators that lack native support. 

The accelerator store is a shared memory framework.  It  provides a common interface for each accelerator to read and
write memory in a variety of ways. This allows accelerator designers to separate logic from state and any non-transient
data would be stored in the accelerator store. This simplifies VDD-gating design of the accelerator, since gating a logic-
only accelerator would not lose any state. The accelerator store consists of several memory modules. If the memory
module contains valid data, the module remains on. If the memory module does not contain valid data, it can be VDD-
gated to reduce leakage power.

This design also provides accelerators a richer means of communication. Rather than copying data from one accelerator's
private memory to another's, accelerator-to-accelerator communication can follow a producer/consumer model. Data
producing accelerators can use FIFOs/Queues to insert data into the accelerator store. Data consuming accelerators can
then read this data in order. With this operation style, accelerators do not need to be specifically designed with each other
in mind. Simultaneously, no arbitrating logic is required beyond initializing the accelerator store and pointing the
producers and consumers to the correct FIFOs/Queues.

One large concern with removing memory from within accelerators and creating a shared memory system is a reduction in
performance. Whereas accelerators with embedded memory could specifically design memory accesses to satisfy required
bandwidth for internal operations, the memory accesses with a shared memory system could be limited by the shared
memory's bandwidth. To address this point, we have previously developed a cycle accurate simulator to demonstrate that
the accelerator store does not induce a bottleneck  for these internal operations. We can also use this simulator to show
performance improvements due to improved inter-accelerator communication. 



High Level System Description
Our system reflects the figure shown on the right. A
processor (not pictured) communicates over a system
bus (address/data) to several accelerators. Each
accelerator is memory mapped, so the processor can
read from and write to accelerators using standard
memory instructions.  The system is designed for
maximum energy savings and targets low frequency
applications, such as those found in sensor networks.

A management interface to the accelerator store is
available over the system bus via memory mapped
operation. This management interface allows the
processor to create or remove  “handles” that represent
a portion of memory in the accelerator store. A handle
table in the accelerator store maintains a list of all active
handles and any meta-data required for their operation.
This meta-data includes head and tail pointers required for queue/FIFO operation, and a few mode flags.  This interface is
described in a later section.

The processor is responsible for assigning these handles to accelerators. The accelerators then use these handles when
accessing the accelerator store. 

The accelerator store is able to accept several operation requests per cycle, each sent over an accelerator store port. The
accelerator store bus consists of the full set of these accelerator store ports. However, it may not be able to fulfill requests
from all ports during the same cycle. Our design multiplies the internal accelerator store clock frequency by 4x so that we
can process four requests per accelerator cycle. 

We implemented a cycle accurate simulator in prior work to examine the operation, performance, and memory energy
usage characteristics of the accelerator store design for multiple sensor network applications. We previously found that the
accelerator store was able to reduce powered-on memory, simplify accelerator and application design, reduce memory-
related area with negligible or even beneficial effects on performance. We modified the simulator to emit traces in order
to validate our hardware implementation and quantify the energy, power, and timing overheads due to the accelerator
store.



System Software Architecture
The accelerator store provides two independent software interfaces:  the configuration/management interface for use by
the general purpose processor over the system bus and the accelerator interface for use by the accelerators in the system.

System software is responsible for configuring the accelerator store and managing the coordination among accelerators,
and between accelerators and the accelerator store. The configuration/management interface allows system software to
perform configuration tasks such as setting up the handles in the accelerator store's handle table. It also provides support
for management functions for coordinating among accelerators, such as when initializing a producer-consumer model.
Additionally, system software also coordinates between accelerators and the accelerator store by updating the priority
table inside the accelerator store, based on the current system load and objectives. Other management functions include
handling interrupts from the accelerator store. Details of the interrupt-based software model are in the following section.

Software running on the microcontroller is responsible for the operation of the accelerators. This  software invokes
memory access routines much like the way it would do if it had local unshared memory to pass handle ids and start
accelerator operations via the system bus. 

Accelerators may wish to access memory during operation and can issue memory read and write operations to memory in
the accelerator store just as it would for a single-cycle private memory.  The only caveat is that an accelerator's memory
request may not be serviced on every cycle. Three situations can cause the accelerator store to reject an accelerator store
request. First, the accelerator store has many more ports (potential requests) than slots for accepted memory requests. As a
result, some requests may be denied if more requests are made by accelerators than can be satisfied in the accelerator store
in a given cycle. Second, the accelerator store can store FIFO and queue data structures. A request may be denied for
these handles if the data structure is empty and an accelerator attempts to remove an element or the structure is full and
the accelerator attempts to add another element. Finally, the accelerator store will VDD-gate (turn off) any memory
module that is unused. If an accelerator attempts to access a VDD-gated memory module, it must wait for a certain
amount of time before the memory module is fully powered up. In this case, accelerator store requests for handles
mapping to powering-up memory modules may be rejected for a brief time.

Provided that a memory request is accepted by the accelerator store, the memory operation will complete after one clock
cycle, so minimal timing adjustments are needed to port existing accelerators to an accelerator store compatible design.
The only modifications to these accelerators is to handle the case where a request is not accepted.

Interrupt Model
System software uses the configuration/management interface to set up threshold triggers in handles that are configured to
model complex data structures such as queues or stacks. Threshold triggers can be configured in the accelerator store to
dispatch interrupts to the general purpose processor whenever the data structure's element count reaches the threshold
value. System software is responsible for implementing interrupt service routines (ISRs) to handle these interrupts in the
event-driven programming paradigm. These trigger values can be used by software to indicate that a FIFO is almost full
or that enough samples have been taken by a sensor to perform an FFT operation. Upon receiving this interrupt, the ISR
would then configure accelerators to process this data. 

Programming Considerations
Hardware accelerators do not know about the memory layout of the accelerator store and do not explicitly request
memory. Memory assignment decisions are specified by the programmer and reside in software executed by the
microcontroller. Handle assignments can be made at compile time to avoid the possibility of memory segmentation or in a
software dynamic memory allocator. The accelerator store is designed to manage faults and provide protection against
accelerators arbitrarily accessing unallocated memory. If a request is made outside the memory allocated to a handle, the
read or write will fail and an error signal will be fired. A memory segment may be accessed by multiple accelerators
during application execution. 



The arbitrating general purpose microcontroller can preserve concurrency by carefully assigning handle ids to
accelerators. Concurrency is generally preserved by allowing any number of agents (whether accelerators, threads, or
computers) to read from a data source or allowing one agent to modify it. With this approach in mind, the general purpose
microcontroller could assign and rescind handle ids to ensure that only one accelerator possesses a handle id when it is
making changes (modifying, adding, or removing elements).

The figure above shows the program flow of a base application implemented in the system. Diamonds represent interrupts
serviced by the general purpose processor. Arrows directed into interrupts indicate raising an interrupt. Arrows directed
away from interrupts indicate actions by interrupt service routines. Rectangles represent accelerators. Parallelograms
indicate memory in the accelerator store, logically separated. Rectangular crescents indicate queues in the accelerator
store.

The flow diagram above illustrates how a base application is programmed using a small amount of code on the general
purpose processor and a few general accelerators. The base application first initializes the system. Memory is allocated in
the handle table and pointers to queues, stacks, and unconstrained memory are written to accelerators. Interrupts and
accelerator ports to the accelerator store are prioritized. Accelerator-specific details are also written to the appropriate
accelerators.

The application must sample the sensor every 1ms. The application configures the timer accelerator to raise an interrupt
every 100 cycles. This interrupt executes a few instructions to turn on the sensor accelerator and take a sample. The sensor
accelerator adds the 16-bit reading into the sensor reading queue. The sensor accelerator correctly specifies the output
queue by providing the corresponding handle ID to the accelerator store. The accelerator store only turns on the memory
blocks needed to store the readings and VDD-gates unused memory blocks.



The base application also needs to compute the frequency response when 1024 samples arrive. The base application
configures the accelerator store to raise an interrupt when the sensor reading queue contains 1024 samples. When this
interrupt is called, another small set of instructions turns the FFT on and starts FFT computation. The FFT accelerator
reads in the sensor sample queue and scaling factor constants from the accelerator store. When computation is complete,
the frequency response is inserted into the FFT output queue, also stored in the accelerator store. Note that the FFT
computation may require many cycles but does not prevent other accelerators from processing data and raising interrupts.
The sensor takes several readings during FFT computation and stores them in the accelerator store unaware the FFT was
running.

Next, the base application compresses the frequency response after the FFT computation completes. The application
configures the FFT accelerator to raise an interrupt when the FFT finishes. This interrupt turns the Huffman compressor
on and begins reading in data from the FFT output queue. The Huffman compressor also reads in dictionary entries by
using an unconstrained handle in the accelerator store. As input and dictionary entries are read from the accelerator store,
the compressor inserts compressed data into the radio transmission queue. The compressor's input queue should be empty
when compression is complete; the accelerator store will then VDD-gate the block of memory if no other handles are
storing data in the same block of memory.  

Radio transfers are typically more efficient when sending large amounts of data with a bulk protocol to minimize
overhead. Rather than sending every compressed set of frequency responses immediately, the application waits until 8KB
of data is available and sends the data together. The base application configures the accelerator store to raise an interrupt
when the radio transmission queue reaches 8KB of data. At this point, the application begins trying to send data. The
queue can hold up to 16KB of data before dropping data. If radio contention does not end before the queue fills the 16KB
maximum, the accelerator store can automatically drop the oldest or newest data depending on the application designer's
preference.  When contention stops, the radio transmitter quickly drains the transmission queue.



Handle Table 
Handle Id Valid Type Starting

Address
Size

(bytes)
Head
Offset

Element
Count

Trigger
Level

0 Y Unconstrained 0 1024 0 512 0
1 Y FIFO 1024 1024 2 1 5
2 Y Stack 2048 2048 0 1 5
3 Y CFIFO 4096 4096 0 0 5
... N 0 0 0 0 0 0

Seen above, the entries of a handle table consist of meta data about the various handles active in the system at any given
time.  The handle ID is a unique identifier for each active handle.  The type field describes the type of handle at that entry.
Handle types will be described in the next section.

The starting address corresponds with the physical address where the allocated memory begins.  The size indicates the
amount of space accessible to a handle.  The head offset field is only relevant for constrained handle types.  It indicates
the current offset of the head pointer with respect to the starting address.  The element count filed, also only applicable to
constrained handle types, keeps a count of the number of elements in the data structure.  The trigger level filed is used by
the handle table to fire interrupts based on the current occupancy of the data structure.  For example, for handle 1 above,
whenever the FIFO reaches a size of five elements, an interrupt is sent to the processor. 

Handle Types
The accelerator store supports a number of different handle types.  These include:

Unconstrained 
This handle type allows for accessing memory without any constraints.  An accelerator may directly access any location
within the memory space allocated for this handle, in any order, by specifying a handle ID and offset pair. Adding or
removing elements to the handle is not allowed since reads and writes to all elements in the handle must always be
allowed.

FIFO 
This handle type supports the management of a FIFO data structure.  Elements can be added or removed in a
enqueue/dequeue fashion.  The handle table maintains the head pointer, so that it always points to the oldest element in
the structure.  The handle table also keeps track of the number of elements currently in the structure.  If a FIFO has
consumed all of its allocated space, further enqueues will fail.  In addition to enqueues and dequeues, an accelerator can
also directly read and write anywhere within the first and last element of the FIFO. The tail (the item returned by a get) is
considered handle offset 0. The head is located at handle offset (elemCount -1).

Circular FIFO
This handle type is identical to a FIFO, except that it allows overwriting of its elements if an add is preformed when the
FIFO is full.

Stack 
This handle supports the management of a stack data structure.  Elements can be added or removed in a push/pop fashion.
Similar to how it manages a FIFO, the handle table maintains the head pointer of the stack.  As with a FIFO, an
accelerator can also directly read and write anywhere within the first and last element of the stack.



Accelerator Store Interfaces

General Purpose Processor Interface
The general purpose processor is responsible for managing some aspects of the Accelerator store.  These tasks include
adding and removing handles in addition to setting the priority mapping. Several operations are allowed:

modifyHandle(ModifyHandle hReq)
it'sThe modifyHandle operation allows the general purpose processor to either create or remove a handle from the handle
table, depending on the ModifyHandle object, which is defined as:

typedef union tagged
{

HandleRequest   CreateHandle;
Hid                       RemoveHandle;

} ModifyHandle

When creating a handle, the general purpose processor should build a HandleRequest object, which contains a  handle id
number, the starting physical address of the handle, the size of the handle, and the type of the handle.

To remove a handle, the processor must simply make a request with the handle id of the handle to be removed.

Illogical or inconsistent handle create operations will result in undefined behavior.  The processor is responsible for
ensuring that at most one handle maps to a physical memory address. If this rule is not followed, modifying data in one
handle may change data in other handles and memory modules may be incorrectly VDD-gated. All other handle
modification errors will not corrupt the accelerator store state. For example, removal of a nonexistent handle will not
result in any handle table modifications.

priorityMapChange(PortPriorityMapping pMap)
The  priorityMapChange operation allows the processor to order the priority of the memory requests from the accelerator
ports.  A PortPriorityMapping object is defined as:

typedef struct {PortID portId; PriorityLevel portPriority;} PortPriorityMapping

When invoking a  priorityMapChange operation, the processor provides a numerical port id and a numerical port priority,
which is saved into the priority table, within the accelerator store. A low number will result in a higher priority. For
example, a port with a priority of 0 will always be accepted by the accelerator store whereas larger priority numbers will
be rejected due to contention more often.

changeTrigger(Hid handleId, HElemCount elemCount)
The changeTrigger operation allows the set a threshold trigger on a handleId or turn a threshold trigger off. For example,
the microcontroller could set the accelerator store to raise an interrupt when at least 5 elements are stored in handle 1 by
issusing the command changeTrigger(1, 5). Triggers can also be disabled by setting the elemCount parameter to zero.

Accelerator Interface
Each accelerator communicates with the accelerator store through one or more ASPorts. The ASPorts allow the
accelerator to access the accelerator store memory. Two operations allowed:



portRequest(ASPortReq portReq);
Each ASPort allows an accelerator to issue a portRequest operation.  A request is made by first building an ASPortReq,
which is defined as:

typedef union tagged {
  struct {Hid handleId; HOffset handleOffset;}                             Read;
  struct {Hid handleId; HOffset handleOffset; Data dataWord;}    Write;
  struct {Hid handleId; Data dataWord;}                                      Add;
  struct {Hid handleId;}                                                              Remove;  
}  ASPortReq

The semantics of a ASPortReq vary depending on the type of handle indicated by the handle ID in the request.  

If the handle is of type “Unconstrained,” only Read and Write requests are allowed, with Add and Remove causing
“FailStruct” port responses.  Read and Write both take in a handle ID and a handle offset, with Write also containing a
data word.  The accelerator store accesses memory by adding the handle offset to the base address of the handle (stored in
the handle table) to preform a Read or Write operation.

If the handle is of a constrained type (FIFO, Circular FIFO, stack), all four ASPortReq types are allowed.  Read and Write
requests access memory by adding their handle offset with the current base pointer of the structure (which is stored in the
handle table).  Unlike with an unconstrained handle, a constrained handle only allows memory accesses within the bounds
of the data  structure it defines.  Otherwise, a FailStruct response is returned to the ASPort.  Constrained handle types also
support Add and Remove requests.  Depending on the particular handle type, these requests act differently.  In the case of
a stack, an add acts as logical 'PUSH', which appends the data word to the head of the structure.  A remove acts as a
logical 'POP', which remove the data word at the head of the structure.  In the case of a FIFO, an add acts as a logical
“enqueue,” and a remove acts as a logical “dequeue.”  Unlike with Read and Write requests, Add and Remove requests
alter the head and size of the data structure.

ASPortReply portReply();
The portReply operation returns the results of the port request made in the previous cycle.  An ASPortReply object is
defined as: 

typedef union tagged {
  void           WriteSuccess;
  Data           ReadSuccess;
  void           FailBusy;
  void           FailStruct;
  void           FailPower;
} ASPortReply

A Write or Add request which completes without a failure returns an ASPortReply of type WriteSuccess.  Likewise, a
Read or Remove request which completes without a failure returns a ASPortReply of ReadSuccess, along with the
requested data.  

There are a few different possible failure responses.  The first, FailBusy, is returned in the case that the ASPort which
made the request was too low of a priority given the number of concurrent requests.

The second, FailStruct, is returned in several cases.  If the request was a Read or a Write, FailStruct is returned when the
attempted memory access was out of the structure's bounds.  If the request was an Add or Remove, FailStruct is returned
if the structure is full or empty,  respectively.  

The final failure response, FailPower, is returned if the attempted memory access touches a memory block which is
currently unpowered or not yet fully powered up.



Block Level Architecture

The accelerator store is comprised of the accelerator store module and the memory module.

The accelerator store datapath starts at the interface to the Accelerators.

At every cycle, the External Bus Map interacts with every accelerator port. The External Bus Map maintains a priority
queue which is programmable by the system processor to decide which requests are accepted and which are rejected with
a FailBusy response. The priority determines which requests are passed on to memory during this cycle.

The External Bus Map passes up to p prioritized requests to the MMU, where p is the speed-up factor of the Fast Clock
with respect to the Slow Clock. This allows the memory which is in the Fast Clock domain to service p requests within
one cycle of the Slow Clock. If more than p requests are made per cycle, some accelerators will be denied service, and
must retry on a later cycle.  Our target application domain uses slow clock frequencies and as a result memory is clock
well below its maximum speed. 

The external bus map was carefully designed for scalability. In our initial naïve implementation, the Bluespec compiler
was unable to implement an external bus map with more than eight accelerator ports. We created a series of submodules
for selecting one port request at a time with the selected ports passed on to the next submodule. The first submodule
would check if the port with priority 0 was making a request. If so, it would add this port's request to the accepted request
stream sent to the next submodule. This process would continue until all ports were considered or the maximum number
of accepted requests were chosen. Our application domains require slow clock frequencies, so the added delay due to the
serially designed circuit did not cause performance problems. Further, this new design scales well beyond the sixteen
accelerator store ports we require.

The Memory Management Unit runs at the faster clock speed and services requests one at a time. The Memory
Management Unit accesses the Handle Table to perform the necessary address translation and operation translation (read/
write, push, pop, etc.) as well as the Power Tracker for turning memory on and off. 



The memory requests are passed one by one over to the Internal Bus Map. The Internal Bus Map makes a memory request
to the appropriate memory block.

The memory module is made up of a parameterized number of memory blocks, each of a parameterized number of words.
Each block can be VDD-gated individually based on the power-enable bit vector from the MMU.  



Detailed Datapath

The above figure shows the block level architecture of the system.  The Accelerator store consists of the ExternalBusMap,
the MemoryManagementUnit, the HandleTable, and the InternalBusMap modules.  In every cycle:

First, port requests arrive from each of the ASPorts which are making accesses this cycle.  The ExternalBusMap, after
consulting the priority table, decides which port requests will be serviced, and latches them (except for the 1st request, for
timing reasons elaborated below).  All ASPorts not being serviced this cycle are informed of their failure.  The
ExternalBusMap passes the chosen requests to the MemoryManagementUnit, which lies across a clock domain crossing.
This new clock domain is run at four times the rate of the accelerators and the ExternalBusMap.

During each fast clock period, the MMU queries the handle table for the requested handle's meta data info, including the
physical address of the handle's allocated memory.  Depending on the type of request, the MMU updates the handle's
entry in the handle table.  For example, if the request is a add, and the handle is a FIFO, the handle entry's size and head
pointer fields need to be updated.

After communicating with the handle table, the MMU requests a memory access by passing the physical address of the
request to the InternalBusMap.  Simultaneously,  the MMU saves this memory request in a Bluespec FIFO for use after
the request is completed.

The InternalBusMap decides which memory block the address is located in, and preforms the access.



After the next rising edge of the fast clock, the memory has completed its access.  At this point, the MMU begins
processing the 2nd prioritized port request, while simultaneously requesting a memory response from the InternalBusMap
for the 1st request, if it was a read.  The MMU then builds a ASPortReply based off of the stored active memory request
register, including any response data from the InternalBusMap, in the case of a read.  This reply is stored in a register.

This process continues, with one request being fulfilled every cycle of the fast clock.  The only deviation from this flow is
that the last response from memory is not stored in a register, but is instead passed directly back to the ExternalBusMap
(for timing reasons elaborated below) and out to the accelerator ports, where it can be latched if necessary, along with the
other responses.

This entire cycle repeats for every period of the slow clock, with four requests serviced for each slow clock.

In addition to the structural failure and the busy failure previously discussed, the MMU also houses the PowerTracker
submodule, which is used to determine whether there is a power failure.  If the accessed memory block was not fully
powered at the time of the access, the MMU would build a power failure reply for the associated active memory request.



Timing
It is the goal of the accelerator store to look as much like a normal SRAM to the accelerators as possible.  It is very
important, then, to ensure the system adheres to stringent timing specifications.  A standard SRAM completes a read
access and returns the read data within one cycle. 

The diagram below shows a high level timing diagram of a typical SRAM vs the  accelerator store.  The top timing
diagram illustrates the address and control inputs being driven by an accelerator on clock edge 0. Valid data is returned by
the SRAM on clock edge 1. There is some setup time and hold time associated with the driving of the address and control
inputs. The read data is valid before the next clock edge but some access time later after the address and control signals
were latched by the SRAM.

The bottom timing diagram shows the effective timing introduced by the accelerator store. Note the moderate increase in
setup time, and the slight increase in the access time  for the accelerator store in comparison to the SRAM.

The accelerator store timing acts, from the point of view of the accelerators, just like an SRAM, except for an increased
setup time.  This setup time is comprised of the time necessary to access the priority table, accept up to four requests,
access the handle table for the first processed request (details below), and the basic SRAM setup time.  This extra setup
time seen by the accelerator allows the fast clock of the accelerator store to process four requests using four fast clock
cycles, within a single slow clock cycle,  and returning the result of all requests before the next slow clock edge.



A detailed timing diagram of one slow clock of the accelerator store is shown above.

On a cycle which an accelerator wishes to preform memory accesses, it must have all of its requests stable on its ASPort
request lines for a period of time before the clock edge.  This period of time must be long enough for the AcceleratorStore
to prioritize all requests, and for the first chosen request, to access the handle table, and for the first request to have its
physical memory address be stable on the SRAM address lines.  In the diagram, this is denoted by Tsetup, which is broken
down into priority processing time (PRIsetup), handle table lookup time (HTsetup), and the SRAM setup time (SRAMsetup).
We denote the sum of the handle table lookup time and SRAM setup time as M0setup.  Since the first request is processed
and sent to the SRAM before the slow clock cycle edge, it is not latched by the accelerator store, whereas the other
requests are.

After the next fast clock edge, the result of the first request is available from the SRAM, and is latched by the MMU.  As
can be seen in the diagram, each subsequent fast clock edge incurs the same Msetup time.  However, while M0setupis exposed
to the accelerator, the subsequent Msetup times are absorbed by the accelerator store.

In the diagram, the time necessary for a read to be returned from memory is denoted as Macc.  The bullets represent the
latching of the port response (including any read data) within the MMU.  Note that the final memory response is not
latched.  Rather, it simply is passed directly to the accelerator reply port, along with all other replies.  The accelerator is
responsible for latching or otherwise using the replies to their requests by the rising edge of the slow clock.



Current Implementation and Simulation Results
The accelerator store is implemented in Bluespec, as described in this document.  Some Verilog was used in order to link
certain modules with the rest of the design, such as memory compiler generated SRAM.  Currently, the accelerator store
supports eight 4KB blocks, for a total of 32KB of memory.

The system has been thoroughly unit tested, and operates as specified.  The implementation is highly parametrized.  This
allows for a significant amount of future design exploration.  The following parameters are easy to change:

• Number of ASPorts

• Number of memory accesses per system clock cycles

• Number of handles in the handle table

• Memory power up time

• Size and quantity of SRAM blocks

The design has been successfully synthesized using Design Compiler, and easily meets the slow clock requirement
intended for the system.  Synthesis reports exhibit favorable power numbers, which support the practicality of a shared
memory architecture such as the accelerator store.  Design Compiler power estimates our dynamic power at 105uW and
leakage power at 400nW at the 180nm TSMC process. We estimate this translates to a total system power of about 55uW
at the 130nm UMC process used by our memory compiler. The accelerator store uses less than 33% of the power of one
4KB memory block and is roughly only 4.2% of the power consumed by all 32KB blocks if they were on. If, through the
automatic VDD-gating of unused portions of memory, just one of the eight 4KB blocks can be powered down, the
accelerator store has already more than made up for its power cost. 

Area is roughly 21,700 um2 and maximum frequency (at a target 100KHz external / 400KHz internal) to be 15.7MHz at
180nm TSMC. These numbers should only improve as we transition to 130nm. Area and timing results were beyond
acceptable for our needs but could be rebalanced with modifications to our Design Compiler settings if desired.

We also validated our accelerator store implementation against our simulator for up to 150,000 cycles of execution from
the application previously described. Although we were able to generate larger traces from our simulator, we were unable
to run larger simulations due to trace file sizes exceeding our account disk quotas. However, we believe our 150kcycle
trace is large enough to demonstrate the accuracy of our implementation as well as its low energy, area, and timing costs.



Conclusion
ASICs are a necessary component of embedded systems in today's world.  Hardware accelerators used in such systems
often take a black box approach and self contain all the memory they require, which can lead to inefficient use of power
and area.  Our work provides a solution to these inefficiencies, creating a shared memory framework for accelerators.

This framework addresses memory limitations of typical private memory architectures with the accelerator store, a
centralized memory structure with built in power management, address translation stacks, and interrupt triggering. 

The accelerator store simultaneously simplifies accelerator design by hiding all physical addressing information from the
hardware accelerators, fulfilling the memory requirements of individual accelerators, and reducing leakage current by
providing hardware managed VDD-gating.

Our implementation in Bluespec, validated by traces of a cycle accurate simulator, has confirmed the benefits of using a
shared memory framework.  If just one memory block out of eight in the accelerator store can be automatically VDD-
gated, then the accelerator store has already more than made up for its power cost, thus justifying its existence.


