
OGG VORBIS BLUESPEC IMPLEMENTATIN

MAREK DONIEC

Contents

1. Introduction 2
2. Ogg Vorbis 2
2.1. The Ogg Container Format 2
2.2. The Vorbis Audio Codec 2
2.3. Overview of the decode process 2
2.4. Vorbis Header Packets 3
2.5. Vorbis Identification Header 3
2.6. Vorbis Comment Header 3
2.7. Vorbis Setup Header Decode 3
2.8. Vorbis Audio Packet Decode 4
3. Implementation 6
3.1. The Decoder 6
3.2. Debug Mode 14
3.3. Supported of the Ogg Vorbis Specification 15
3.4. Possibilities for Parallelization 16
4. Testing Environment 17
5. Results and Discussion 18
References 19

Key words and phrases. Ogg, Vorbis, Bluespec, Verilog, Hardware, FPGA.
The author would like to thank Myron King and Kermin Fleming for making their IMDCT

implementation available. The IMDCT core used in this project is developed entirely by them.
For continious support throughout the project I would like to thank Prof. Arvind and Abhinav
Agarwal.

1

2 MAREK DONIEC

1. Introduction

In this work a Bluespec[1] implementation of an Ogg Vorbis[3] decoder is pre-
sented. Ogg Vorbis is an open source, royalty and licence free audio codec developed
and maintained by the Xiph.org Foundation [2]. Because of its very serial struc-
ture most currently available implementations, even those for embedded systems,
are processor based, frequently with an external inverse modified discrete cosine
transform [7]. This project aims to move all parts of the decode process onto an
fpga with the ultimate goal to explore the possibily of parallizing the decode pro-
cess and making it run in hardware at low clock frequencies. As a first step a
Bluespec implementation is presented and tested in simulation. The fixed point
decoder Tremor is used as a reference decoder [6]. All modules but the inverse
modified discrete cosine transform are implemented purely in Bluespec and can be
thus compiled into verilog and further into hardware. A short analysis is given on
what needs to be done to make this implementation fit into an FPGA.

This report is structures as follows. The second section Describes the Ogg Vorbis
audio format and give a rough outline of the decode process. The third section
presents a Bluespec implementation of an Ogg Vorbis decoder. In the forth section
the test environment is described. The final section presents results and gives a
short discussion.

2. Ogg Vorbis

The Ogg Vorbis audio codec actually consists of two formats, the Ogg media
container format and the Vorbis audio codec. Both formats have been developed
by Xiph.org, are open source, as well as royalty and license free [2].

2.1. The Ogg Container Format. Ogg is a multimedia container format. I is
used to encapsulate compressed data from other codecs. This can be a simple Vorbis
audio stream, mutliple audio streams, or mutliplexed audio and video streams. Ogg
splitts the data stream into ogg packets. The structure of each packet is as shown
in table 1. Each ogg packet can contain up to 255 segments of the underlying data
stream.

2.2. The Vorbis Audio Codec. Vorbis is the actually audio codec used to com-
press the audio signal. The current specification is available at [4]. This section
startes with a very short overview of the decode process and proceeds to explain
more technical details in the following subsections. For an in-depth definition of
Vorbis please refer to the specification.

2.3. Overview of the decode process. A single Vorbis stream can contain up
to 255 audio channels. The encoded audio stream is splitt into frames of a given
blocksize, where up to two different blocksizes are used in one Vorbis stream. Each
frame contains information for all encoded autio channels and is stored in a seperate
Vorbis packet. For each channel in every frame a floor curve and a residue vector
are reconstructed from the logical bitstream. The floor curve contains the rough
audio spectrum, while the residue vector contains the details. If multiple audio
channels are being encoded then inverse coupling is performed after the residues
have been decoded. After this the floor and residue curves are combined for each
channel by performing a per entry dot product of the two. The result is the audio
spectrum for each channel in this frame and is fed into the inverse modified discrete

OGG VORBIS BLUESPEC IMPLEMENTATION 3

pos bytes field

0x0000 4 capture pattern ”‘Oggs”’
0x0004 1 stream structure version
0x0005 1 header type flag
0x0006 8 absolute granule position
0x000e 4 stream serial number
0x0012 4 page sequence number
0x0016 4 page checksum
0x001a 1 page segments n
0x001b n segment table
0x001b + n m packet data segments

Table 1. Ogg multimedia container format packet.

cosine transform (IMDCT). Finally the output of the IMDCT is windowed using a
fixed window function and overlapped with data from the previous frame to form
the output.

The data for the floor curves and residue vectors is encoded using Huffman coding
and vector quantization (VQ) tables. However as oposed to other audio codecs, like
MP3, Vorbis does not assume a fixed probability or physioaccoustic model. This
means that the Huffman trees and VQ tables used are not know a priori but are also
encoded in the Vorbis stream. In particular, the first three packets of the stream
are header packets that contain this setup information. All the packets after this
are audio packets.

2.4. Vorbis Header Packets. Every Vorbis audio stream contains three header
packets, namely the identification header, the comment header, and the setup
header. These packets have to be stored in just that order. Otherwise the stream
is not decodable. Every packet starts with a packet type byte (0x01, 0x03, 0x05
respectively) and the 6 bytes long identification string ”‘vorbis”’. The following
informatin is specific to each packet.

2.5. Vorbis Identification Header. The identification header contains informa-
tion about the Vorbis version used, the number of audio channels, the sample rate,
information about the bitrate of the encoded stream, and finally the two blocksizes
used in this pariticular stream. The Vorbis version supported by this decoder is
the only currently existing version, namely Vorbis I, encoded with a 0.

2.6. Vorbis Comment Header. The comment header contains metadata like
song name, artists name, or record label. This field is not needed for decoding, but
needs to be identified and skipped properly to guarantee alignment.

2.7. Vorbis Setup Header Decode. The setup header contains the majority of
the information needed to initialize the decoder. It contains the codebooks, the
VQ tables, floor setup information, residue setup information, mappings, and the
audio packet modes used.

First up to 256 Huffman codebooks are encoded using a path-length coding
scheme. For more details please refer to the Vorbis I specificatin [4]. For some
of the codebooks a VQ table is also stored in this header. The VQ table is used
to map the codewords from the codebook into floating point vectors. The size
of these vectors is called dimension. Two different ways are used to store the
corresponding vectors. In type 0, if a codebook has n entries, and dimension d,
the for every codeword the entire floating point vector of d values is encoded in the

4 MAREK DONIEC

header, resulting in a total of d ∗ n values for that particular codebook. In type
1 only logd(n) floating point values are encoded along with the codebook, and the
codeword in base d representation is used to index into these values.

Next the floor setup information is stored. Up to 64 different floors, each of
one of the two possible types can be stored. Since floor type 0 is computationally
much more infeasible that floor type 1, floor type 0 is only used in old versions
of the official Vorbis encoders. Thus most decoders only support floor type 1 and
floor type 0 is skipped in this analysis. Floor type 1 is encoded using a piecewise
straing-line representation. The setup header contains all the x coordinates of the
support points, while the Y values are encoded in each audiopacket. Further the
setup header contains the codebook number to be used for each of the different
floors.

After the floor setup the residue setup information is stored. Up to 64 different
residues, each of one of three possible types can be stored. While the types differ
slightly in the permutation of the encoded vectors, there is little difference in how
these vectors are computed and no difference in the setup information. Setup
information for each residue contains the size of that residue vector, into how many
partitions it is splitt, and what classbooks are used to decode that residue.

Information about up to 64 different mappings follows. Mappings specify how
inverse coupling is performed in the case of multichannel audio. Each mapping also
specifies what floor curve and what residue vector is to be used for every channel.

Finnaly up to 64 possible modes are stored inside the setup header. A mode spec-
ifies which of the two possible blocksizes and what mapping to use for a particular
audio frame.

2.8. Vorbis Audio Packet Decode. Each Vorbis audio packet encodes one frame
of audio for all audio channels encoded in the current stream. Packets start with
a single type bit that always needs to be 0. Then the mode number used in this
packet is stored. The selected mode contains information on what floor curves and
residues to use during decoding and how to perform inverse coupling before feeding
the resulting audio spectrum into the IMDCT module. If the mode dictates the
larger blocksize for this frame, two addional bits in the audio packet specify if the
previous and/or next frames will be of smaller blocksize in which case special care
needs to be taken during windowing to align the frames correctly. After these two
bits have been read the packet is valid no matter what happens. If the packet
end unexpectedly after this point, then an empty frame is returned or whatevery
has been decoded so far. This is possible, because audio packets contain the corse
information at the begining (floor curves) and the finer grained information is stored
towards the end (residue curves). What adds further to this fact is that residue
curves are stored in up to 8 passes, refining the signal further in each pass, and the
passes are encoded one after the other.

2.8.1. Floor 1 Decode. In Vorbis the floor is a vector that very roughly approximates
the frequency domain vector for a given sound frame (called spectral envelope
curve). During floor 1 curve decode the codebook selected by the used floor curve
is used to decode as many Y values from the data stream as there are X values from
the setup header. An algorithm called Bresenham’s algorithm and closely specified
in the Vorbis specification is then used to generate the entire floor curve.

OGG VORBIS BLUESPEC IMPLEMENTATION 5

(a) Windows of the same size. (b) Windows of different size.

Figure 1. Windowing and output overlap. Source: [4]

2.8.2. Residue Decode. In Vorbis the residue is a vector that represents the fine
detail of the audio spectrum for a given audio frame that is left after the encoder
subtracts the floor curve. There are three types of residues which differ only in the
way the vectors are interleaved during decode. Residues are decoded in up to 8
passes per audio channel. The residue selected by the mapping specifies into how
many partitions the residue vector is splitt and in how many passes each partition
is contained. If the dimension of the codebook used is d then for every pass and
partition of size p a total of p/d codewords are read and transformed into vectors
using the VQ lookup table attached to the current codebook. Initially the entire
residue vector is filled with zeros and the decoded values from each pass are added
to the current vector.

After the residues have been decoded there is no more information need from
the audio packet, it is only terminated by a framing bit that should read 1. The
entire further decode process is purely computational.

2.8.3. Inverse Coupling and Dot Product. Acording to the mapping specified residue
vectors can be coupled in this step. For each coupling step the mapping specifies
which two residue vectors to combine. These vectors values are then compared
pairwise and added/subtracted from each other according to a simple algorithm
described in the Vorbis specification. This step has only meaning if there are two
or more audio channels encoded in the data stream.

After inverse coupling the floor vectors are multiplied on a per-element basis
with the residue vectors for each channel. This results in the fully reconstructed
audio spectrum for this audio frame.

2.8.4. Inverse Modified Discrete Cosine Transform. The IMDCT is performed for
each channel as described in Sporer et al. [10]. Not that if the blocksize of this
frame is n, then the data input to the IMDCT is of size n/2 and the result is of
size n.

2.8.5. Windowing and Output. The resulting audio frames from the IMDCT are
overlapped for each channel with half of the previous frame if both are of the same
size. If both frames are of the same size, they are overlapped halfway as shown in
figure 1(a). If they are differently sized they are aligned as shown in figure 1(b).
The function used for windowing is

sin(0.5 · π · sin2(
(x+ 0.5)

n
· π))

, however most decoders use a lookup table.

6 MAREK DONIEC

3. Implementation

This section describes the structure of the decoder implementation and gives a
high level walkthrough of the code.

3.1. The Decoder. The module mkVorbisDecoder contains the entire decoder. To
the outside it receives an Ogg Vorbis stream and outputs decoded a decoded PCM
audio stream. It has the following interface IVorbisDecoder :

interface IVorbisDecoder;
method Action reset();
interface Client#(InstReq,InstResp) imem_client;

endinterface

Notice that this is the minimal interface used for development and testing. If
the decoder is to be used in an FPGA for example, a seconder memory interface or
a Get method will be needed to extract the PCM data. Currently all outputs are
written as debug information using the $display command.

After power up the decoder is inactive. A call to the method reset() will ini-
tialize the state of the decoder and start it. After a call to reset() mkVorbisDecoder
will start sending memory requests starting at address 0x00000000. When these
requests are answered mkVorbisDecoder immediatly proceeds with decoding the re-
ceived data. If the decoder is already running when reset() is called (i.e. reset() is
called a second time) the call will cause the current decoder process to stop imme-
diatly and the decoder will restart decoding at address 0x00000000. As mentioned
already above, this is a minimal interface. If needed, simple enable and stop meth-
ods can be added easily since mkVorbisDecoder is heavily state based internally
and the methods need only change the state variable.

The decoder module containes many submodules that facilitate certain parts of
the decode process. These modules and their functionality are:

(1) mkOggReader serializes the incomming data stream and decodes and
removes the Ogg headers from it. The information from the Ogg headers
is used to segment the resulting stream into Vorbis packets which are then
read by mkVorbisDecoder.

(2) mkVorbisMemoryBank contains read and write methods for most of the
variables used by the decoder and serves as a storage component.

(3) mkVorbisTables contains the windowing function lookup tables.
(4) mkVQTable computes and stores the VQ tables from the setup header

information. This module is also used during residue vector decode.
(5) mkFloor1Table computes lookup values from the setup header informa-

tion needed for quick floor1 decode. This module is also used during floor
vector decode.

(6) mkCoupling performs the inverse channel coupling after the residues have
been decoded.

(7) mkIMDCT performs the inverse modified discrete cosine transform. It
is the only module that is not written in pure Bluespec, but uses C based
lookup functions.

(8) mkOutput takes care of audio frame overlapping. It is also the module
that should contain the output interface. Currently the PCM stream is
output using $display statements.

OGG VORBIS BLUESPEC IMPLEMENTATION 7

mkOggReader

Memory

resp.req.

.read(n).skip()

mkVorbisDecoder

Initialization
header FSM

Comment
header FSM

Setup
header FSM

rule based
state control

.start()

Audio packet
decode FSM

.reset()

mkOutput

mkIMDCT

mkVQTable

mkCoupling

MkFloor1Table

spectrum

mkVorbisMemory

residue vectorfloor curve

audio frame

.w_vars()

Huffman
decode FSM

Codebook
generate FSM

.r_
va

rs
()

.w_vars() .s
ta

rt(
)

.s
ta

rt(
)

.re
su

lt(
)

.w
_v

ar
s(

)

.w
_d

at
a(

)

.r_
va

rs
()

Top Level Controller

.reset()

.w
_m

od
e(

)

PCM output

Figure 2. mkVorbisDecoder module outline. Data lines are black.
The skip segment signal is red, and finite state machine start signals
are green. High level control of the decoder is organized as a rule based
state machine that activates finegrained controll finite state machines
for initialization, comment, setup, and audio packet decode, as well
as codebook generation. mkVorbisMemory stores setup information re-
lated to codebooks and general control. mkFloor1Table and mkVQTable
store setup information for floor and residue generation. They are also
invoked by the audio packet decode FSM to compute the floors and
residues for a given frame. mkCoupling performs inverse coupling and
dot producting to create the spectrum for each audio channel. The
spectrum is processed by the mkIMDCT module to create the current
audion frame and overlapped in the mkOutput module to generate the
final PCM output.

8 MAREK DONIEC

The usage of these modules depends on the state of the decoder. The state of
the decoder is controlled by multiple finite state machines (FSMs) that are in turn
controlled by a singled state variable, called state. Each of the possible states that
state can be in activates and runs a different FSM. When that FSM is done it
changes state to the appropriate next state. These states and FSMs are:

(1) VH none is the inactive state in which the decoder does not do any work.
No FSM is associated with this state. This state can only be exited with a
call to reset().

(2) VH initialization is active while the decoder is processing the initializa-
tion header packet of the Ogg Vorbis stream. The FSM fsm initialization is
started when this state is entered. Once the initialization packet has been
processed the state switches to VH comment.

(3) VH comment is active while the decoder is reading the comment header
packet of the Ogg Vorbis stream. The FSM fsm comment is started when
this state is entered and switches the state to VH setup once the comment
packet has been read.

(4) VH setup is active while the decoder is reading the setup header packet
of the Ogg Vorbis stream. The FSM fsm setup is started when this state is
entered. fsm setup is responsible for initializing the modules mkVQTable,
mkFloor1table, mkCoupling, and mkOutput. Also it writes setup informa-
tion related to the codebooks into mkVorbisMemoryBank. When fsm setup
is done it sets the state to VH runinit.

(5) VH runinit is used by the decoder to run additional processing of the
header data before the audio decoding begins. Currently this include the
generation of the Huffman decode trees from the data stored in mkVorbis-
MemoryBank. When this step is done the state variable is set to VH audio.

(6) VH audio is the last state of the high level control. During VH audio the
FSM fsm audio is running. Every runthrough of fsm audio corresponds to
one Ogg Vorbis audio packet and decodes a single frame. When fsm audio
is done it is simply restarted by the high level control. The state VH audio
can only be left through outside influences, like a call to reset().

All FSMs are contructed using the StmtFSM package, except for high level
control, which is done using rules.

The following subsections will give an overview of the data flow from the in-
coming Ogg Vorbis data to the raw PCM output. It will highlight the role of the
different FSMs and modules in mkVorbisDecoder at each point. We start with mk-
DataReader and mkOggReader that are responsible for serializing the data stream
into a bitstream and removing the Ogg headers from it.

3.1.1. Data Serializing and Ogg header Decode. The outline of the mkOggReader
module and its submodule mkDataReader can be seen in figure 3. mkOggReader
connects to a memory or cache on one side and offers read methods to access a
serial bitstream on the other side. It removes the Ogg headers from the bitstream
and stores the segment size tables to allow the Vorbis decoder to skip to the next
data packet when needed. This is the case at the end of almost every packet, since
the segemnts in an Ogg packet are byte aligned, but the Vorbis stream is bitpacket.
Thus when a Vorbis packet has been decoded there are likely a few unused bits left
in the last byte of the segment. mkOggReader guarantees that the decoder does

OGG VORBIS BLUESPEC IMPLEMENTATION 9

Memory

32 bit wide response

request mkDataReader

32 bit 32 bit
4 x 32 bit

read next n bits

mkOggReader

segment
size RAM

Ogg header
decode FSM

.read(n)

.skip segment

Figure 3. mkOggReader module outline. The moduel encapsu-
lates mkDataReader that acts as a bitstream queue. mkDataReader
sends requests to memory and receives 32 bit wide words that it
stores in a 4 element queue. In addition it has a 64 bit wide register
that acts as two 32 bit registers. This register is indexed by the
current read position. A call to .read(n) will return n bits from the
current position and will advance the index pointer. If needed the
registers are shiften by 32 bits and the left part is refilled from the
queue. mkOggReader works with this bitstream. It looks for Ogg
headers and decodes them to find the number and sizes of sege-
ments to follow. mkOggReader also outputs a bitstream that can
be read with a call to .read(), however it keeps track of segments
and allows to skip to the beginning of the next segment with a call
to .skip().

not need to take care of this, instead it simply calls .skip segment() when it is done
with a segment and continues reading bits immediatly from the next segment.

The current implementation of mkOggReader provides a total of 6 different bit
reading functions:
method ActionValue#(Bit#(8)) read_full_byte();
method ActionValue#(Bit#(16)) read_full_short();
method ActionValue#(Bit#(32)) read_full_int();

method ActionValue#(Bit#(8)) read_byte(Bit#(3) n);
method ActionValue#(Bit#(16)) read_short(Bit#(4) n);
method ActionValue#(Bit#(32)) read_int(Bit#(5) n);

The first three methods read 8, 16, and 32 bits respectively and return them
directly. The last three methods read between 0-7, 0-15, and 0-31 bits and return a
zero-padded value of 8, 16, or 32 bits length respectively. Reading 0 bits does not
advance the read position in the file and returns a zero filled value. This is actually
usefull in instances where the decoder is supposed to read variable sized entries
and a zero-length entry is supposed to have the value 0. This happens for example
when the mode number to be used is read at the beginning of every packet.

10 MAREK DONIEC

Note that these 6 methods could all be replaced by a single method with the
following signature:

method ActionValue#(Bit#(32)) read_int(Bit#(6) n);

The decoder would then have to just crop the output to the bit length it needs.
The advantage is that only one 32 bit wide bus will be created in hardware, as
oposed to a total of 112 bits of buslines for the current 6 method implementation.
The current implementation was chosen because of ease of use in the decoder and
because it does not significantly effect the simulation negatively. If the decoder is
to be run of an FPGA however, the one method version should be enforced.

3.1.2. Initialization Header Decode. After a call to the mkVorbisDecoder reset()
method it resets mkOggReader and starts the FSM fsm initialization which waits
until it can read bits from mkOggReader. fsm initialization then proceeds to check
if the first packet is a valid Vorbis information header (type byte is 0x01 folloed
by ”‘vorbis”’) and reads the values stored in it. The most important value ob-
tained is the amount of channels encoded in this Vorbis stream and the blocksizes
used. All information obtained from the initialization packet is stored in mkVor-
bisMemoryBank. When all values have been read fsm initialization calls mkOg-
gReader.skip segment() and sets the decoders state to VH comment. This starts
fsm comment.

3.1.3. Comment Header Decode. fsm comment only checks if the comment header
packet is a valid (type byte is 0x03 followed by ”‘vorbis”’) and immediatly calls
mkOggReader.skip segment() and sets the decoders state to VH setup. This starts
fsm setup.

3.1.4. Setup Header Decode. fsm setup start by checking if the setup header packet
is a valid (type byte is 0x03 followed by ”‘vorbis”’). It then reads the number of
codebooks contained. For each codebook it reads the dimensions, the number of
entries, and the codeword lengths. There are different ways that this information
is stored, but in the end the codeword lengths uniquely identify the Huffman tree.
For more information please refer to the Vorbis specification [4]. This information
is stored in mkVorbisMemoryBank. For every codebook fsm setup also reads the
lookup type that specifies if and what VQ table is used with that codebook. If a
lookup table is used, all information needed to generate this VQ table is also read
from the packet and stored in mkVQTable along with the lookup type. fsm setup
then calls mkVQTable.compute current(i) passing the number of the table to be
computed from the given information.

After this the number of vorbis time domain transforms is read and a type for
each. The expected value is 0 time domain transforms, since the current version of
Vorbis does not support time domain transforms. This is merely a placeholder for
future versions.

In the next step floor setup information is read from the packet. This includes
the number of floors, a floor type for each floor, and the appropriate information
according to floor type. As mentioned before both floor type 0 and floor type 1 are
supported at this stage of the decoder, however only floor type 1 can actually be
decode from the audio packets. Floor type 1 information needed to later decode the
Y support points of the floor curve is stored in mkVorbisMemoryBank since it will
be directly accessed by mkVorbisDecoder. This is mainly information regarding as

OGG VORBIS BLUESPEC IMPLEMENTATION 11

to what codebooks to use for decoding. Floor type 1 information needed to renter
the decoded curve is stored in mkFloor1Table, which will actually perform the
rendering. These are mainly the X support points for each floor curve. After every
floor has been read fsm setup makes a call to mkFloor1Table.compute neighbors(i)
passing the current floor number. This starts an FSM inside mkFloor1Table that
computes the neighborhood funtion described in the Vorbis spec that is later needed
for decode. In addition a sort index for the X support points is computed for
each floor after the neighborhood funtion. This is done with a simple bubble sort
algorithm, since the number of values usually gravitates around 20, and is at most
255 by definition. The hierarchie of the floor information stored and used can also
be seen in figure 6.

After all floor information has been read from the setup header fsm setup reads
the number of residues used. For every residue it reads the residue type, the size
of the residue, its partition size, classifications, cascades, and codebook numbers
to be used. Classifications specifies the number of cascades, and each cascade
specified in which passes a particular partition of the residue vector is updated. All
this information is stored in mkVorbisMemoryBank. The hierarchie of the residue
information stored and used can be seen in figure 7.

In the next step the number of mappings is read from the stream. For every
mapping a type is read and since there is only one mappings type this type should
always be 0. After the type the number of mapping submaps and the number of
coupling steps is read, flowed by the magnitude residue and angle residue indexes
for every coupling. Next muxing information is read that describes what submap
is used by which audio channel. Finally the floor and residue numbers to be used
with each submap are read from the data stream. All this information is stored in
mkVorbisMemoryBank.

Finally the number of modes is read from the stream and for every mode we
read the mapping and blocksize to be used in that mode, along with some other
information that is unused in the current Vorbis version. Mode informatino is stored
in mkVorbisMemoryBank. Figure 4 shows how mode and mapping information is
stored and how it eventually effects floor and residue selection during the decode
process.

After all the information contained in the setup header has been extracted
fsm setup reads a final framing bit that should always be 1. It then calls mkOg-
gReader.skip segment() and sets the decoders state to VH runinit. This starts
fsm cb which uses the just decoded codebook information to generate the Huffman
trees used during decode.

3.1.5. Codebook initialization and Usage. The structure and usage of codebooks is
outlined in figure 5. The problem is to transform the codeword length based rep-
resentation of the Huffman trees into a representation that is still memory efficient
but allows for a quick decode time. Since there seems to be currently no linear
time algorithm that allows decoding with just the length representation or a pure
codeword representation a binary decode tree representation was chosen. However
to save space every node in the tree contains only one 16 bit entry into the RAM
table as oposed to a normal pointer based binary tree that needs a pointer to the
left child and a pointer to the right child. The MSB is used to indicate if the node
has children (0) or is a leaf and thus contains data (1). If the node contains data,
the data is stored in the 15 MSB. That means that only codebooks with at most

12 MAREK DONIEC

215 = 32K words are supported, as opposed to the Vorbis standard that allows up
to 224 = 16M . However in practice the number of entries in a codebook seems to
be below 650, so normal Ogg Vorbis streams should not exceed this limitation. If
the node has children, then the left child is always stored at the next RAM address
realtive to the current node, wheres the right child is stored at the current address
+ the 15 LSB + 1. Because the specificatin guarantees that the left children are
always constructed first during decode this tree can be constructed in a very simple
fashion by simply following nodes for one codeword after the other and every time
an unused node is hit the tree is expanded. This can be easily done by keeping track
of the first unused entry in RAM. To first transform the list of codeword lengths
into a list of codewords the algorithm give in the tremor implementatin is used [6].

The Huffman trees for all codebook are constructed and stored sequentially in
the same ram, with a small offset table at the start of the RAM that stores the
beginning of each tree. Decode can now happen in linear time in the number of
bits read from the data stream. A special decode FSM called fsm decode is used
every time a codeword needs to be read and decoded from the bitstream. That
FSM loads the offset of the active codebook and reads the data stream bit by bit
progressing through the tree until a data entry is found. For a n bit codeword, the
FSM needs to make n+ 2 memory accesses, thus running in linear time. Figure 5
gives an example of a small Huffman tree with 4 entires and what the corresponding
table in the RAM would look like.

Once the huffman trees have been initialized fsm cb sets the decoder state to
VH audio. This starts fsm audio which decodes the actuall audio packets.

3.1.6. Audio packet decode. A highlevel overview of how data the data obtained
from the setup header packet is used during audio packet decode is given in figure
4. The beginning of every audio packet is a single bit that needs to read 0. After
that the mode number is stored with which the decoder is setup for this particular
frame (see figure 4). Decode proceeds by readings the Y-values of the appropriate
floors for each channel in channel order as described in figure 6. After that residues
are decoded from the stream in submap order as shown in figure 7. After the floors
and residues have been read from the audio packet there is no more data in the
packet, except for the framing bit. To generate the current frame the decoded
residues are inverse coupled according to the current mapping (see figure 4) and
dot prodcuted with the floor curves. The spectrum generated for each channel is
inverse transformed by the IMDCT module, windowed using the mkVorbisTables
lookup module and overlapped with the previous frame by the mkOutput module.
Currently the resulting data is simply printed as 4-digit hexadecimal values per
sample using $display.

3.1.7. Floating Point and Fixed Point Representation. According to the Vorbis
specification floating point values should be used. This decoder follows the example
of the Tremor implementation and uses a mixed version of floating point and fixed
point representation. When residues are decoded from the setup header packet, the
are stored as vectors according to the dimension of the codebook. Each entry in
this vector is stored in a 32 bit wide signed mantissa with a common floating point
for the entire vector stores in an extra 8 bits value. For ease of implementation
currently these 8 bits are attached to each mantissa to form a 40 bit wide RAM.

OGG VORBIS BLUESPEC IMPLEMENTATION 13

m Modes

blocksize
mapping

mode[0]

...
mode[m-1]

mode[1]
mode[2]

packet
mode
number

n Mappings c Couplings

magnitude[0]
angle[0]mapping[0]

...
mapping[n-1]

mapping[1]
mapping[2]

current
channel
number

2 Blocksizes

blocksize[0]
blocksize[1]

...

magnitude[c-1]
angle[c-1]

mux[0]
...

mux[a-1]
s Submaps

submap floor[0]
submap residue[0]

...

submap floor[s-1]
submap residue[s-1]

f Floors

floor[0]

...
floor[f-1]

floor[1]
floor[2]

r Residues

residue[0]

...
residue[r-1]

residue[1]
residue[2]

a Muxes

coupling
step
number

Figure 4. Floor and residue selection during audio packet decode.
The numbers of modes m, mappings n, floors f , residues r, and
audio channels a are fixed for the entire stream. The numbers of
couplings c and submaps s can be different for every mapping. For
every audio packet a packet mode is selected that dictates what
blocksize and mapping to use. For every audio channel the map-
ping information is used to select the appropriate submap which
dictates what floor and residue to use for this particular audio
packet and channel. Once the floors and residues have been com-
puted for all channels the current mapping is used to set the num-
ber of inverse coupling steps and select the magnitude residue and
angle residue vectors for each inverse coupling step.

However all vectors are normalized to have the point at the same place for each
entry.

When residues are genereated during audio packet decode, the entire residue
vector is normalized to a 32 bit fixed point value with 8 bits before the point and
24 bits after the point. Floor curves are generated using integers values between
0 and 255 and a lookup table filled with the same 8/24 fixed point representation
is used to generate the final floor curve during rendering. The IMDCT block also
works with 8/24 fixed point values. The final output is generated by croping each
value to ±1 and cutting it down to 16 bits.

14 MAREK DONIEC

Huffman Tree RAM

+1

multiplicand[0]

n Codebooks

codebook[0]
codebook[1]
codebook[2]

...
codebook[n-1]

d dimensions
e entries

lookup type

case (lookup type)
1: l = log (e) lookup values
2: l = e / d lookup values

huffman ram offset

d

...
multiplicand[l-1]

Optional: if lookup type > 0

0
01

+30
+10
11
21
31
11
......

0

1 2

3

0

0

0

1

1

1

bit stream
from packet

decoded
entry number

VQ RAM

...

value[0,d-1]
...

value[0,0]
...

value[e-1,d-1]

value[e-1,0]
...

...

......

codeword length[0]
...

codeword length[e-1]

VQ ram offset +

·d

return
fixed point vector

VQ context?
yes

no

return
integer

codebook
number

delta value
min value

Figure 5. Codebook and VQ table structure. The number of
codebooks n is fixed for the entire stream. The values codebook
dimensions d and codebook entires e can be different for every
codebook. The value lookup values l is computed based on d and e.
Note that the entries codeword lengths, min value, delta value, and
multiplicands are only used to compute the appropriate entires in
the Huffman tree RAM and VQ RAM. When a particular codebook
is selected it provides an offset into the Huffman tree RAM to
the position of the decode tree. The tree is used to decode one
codework from the incoming bitstream. If we are decoding in VQ
context that entry is further used in conjunction with the VQ ram
offset (codebook dependent) to return a fixed point value vector of
size d.

3.2. Debug Mode. Most of the modules take a boolean parameter called debug
when created. If debug is set to True the modules will print a lot of data as
they decode streams and generate the floors, residues, spectra, and output vectors.
If debug is set to True for mkVorbisDecoder then almost all debug information
available is printed to the output stream. This is A LOT of information, but all
of it is human readable. Most of this information is self explanatory, if not, please
look inside the code to see what is being shown. When debug is disabled, only the
PCM output vectors are being printed to the output stream.

OGG VORBIS BLUESPEC IMPLEMENTATION 15

x X-values
multiplier
class[c-1]

c Classes

f Floors

floor[0]

...
floor[f-1]

floor[1]
floor[2]

p Partitions
partition class[0]

...
partition class[p-1]

X-value[0]
...

X-value[x-1]

 for each partition i = 0..p {
 select class[partion class[i]];
 if s > 0 { cval <= decode using CB masterbook } else { cval <= 0}
 for each dimension j = 0..d {
 book <= subclass books[cval[s-1:0]]; cval <= cval >> s;
 if (book >= 0) {
 next Y-value <= decode using CB book;
 } else {
 next Y-value <= 0;
 }
 }
 }

masterbook
d dimensions

s^2-1 Subclasses

subclass book[s^2-1]

subclass book[0]
... ...

class[0]

to floor curve
renderer

from
mapping

Figure 6. Floor curve generation. The number of floors f is the
same for the entire stream. The number of partitions p, classes c,
and X-values x can be different for different floors. The number of
dimenions d and subclasses s (where there are s2 − 1 subclasses)
depends on the floor number and class number. The FSM given
is a simplified part of fsm decode responsible for extracting the
Y support points from the data stream. The final floor curve is
rendered using Bresenhams algorithm.

3.3. Supported of the Ogg Vorbis Specification. In its current state mkVor-
bisDecoder is capable of decoding all types of supported Vorbis I headers. This
includes floor types 0 and 1, residue types 0, 1, and 2, and mapping and mode
types 0. Types undefined in the Vorbis I spec currently issue a debug warning and
are further ignored. In an FPGA version this should eventually cause a decoder
interrupt / error condition. The audio decode side currently supports floor type 1
and residue types 0 and 1. Floor type 0 is not supported, since this type is not
used anymore in current Vorbis encoders and since it requires a great deal more
computation that floor type 1. Decoding residue type 2 is based on the residue type
1 decoder. It was not added since none of the test streams required it, however if it
needed it should not require too much work to added suport for residue type 2 de-
coing. The decoder is written to support mutlichannel streams, however it was not
tested in this configuration. Mutlichannel decoding only differs from single channel
audio in that inverse coupling is used and multiple residues have to be decoded at
once.

16 MAREK DONIEC

r Residues

residue[0]

...
residue[r-1]

residue[1]
residue[2]

from
mapping

begin

c Classifications
classbook

end
partition size

8 Books
cascade

book[0]

book[7]
...

classification[0]
...

classification[c-1]

 part_2_read = (end – begin) / partition size;
 for each pass=0..7 {
 partition_count <= 0;
 while (partition_count < part_2_read {
 if (pass = 0) {
 for each audio channel j=0..a {
 if (floor[j] is nonzero) {
 temp <= decode using CB classbook;
 for each dimension of CB classbook i=0..d {
 index[j, partition_count+i] <= temp & c;
 temp = temp / c;
 }
 }
 }
 }
 for each dimension of CB classbook i=0..d while (part_count < part_2_read) {
 for each audio channel j=0..a{
 vqbook <= classifications[index[j, partition_count]].book[pass];
 if (vqbook >= 0) {
 decode vector in VQ context using codebook vqbook.
 Store it at position begin + partition_count * partition size;
 }
 }
 partition_count++;
 }
 }
 }

Figure 7. Residue vector generation. The number of residues r
is the same for the enitre stream. The number of classifications c
can be different for different residues. Every classification contains
up to 8 codebook numbers for up to 8 passes where cascade is an
8 bit vector specifying what passes are active. The FSM given is
a simplified part of fsm decode responsible for residue vector de-
code.

It is important to note that the decoder very closesly follows the Vorbis speci-
fication and the Tremor implementation. This is especially the case for functions
that have not been described closely in this manual, as they are often stating the
specification verbatim, only in Bluespec.

3.4. Possibilities for Parallelization. Most of the above modules are stand alone
enough to be instantiated multiple times in order to reduce computation time and
allow for real time decoding of more audio channels should this be necessary. As
mentioned above, clearly the IMDCT, which is the computationally most intensive
module, can be instantiated multiple times to parallelize decoding. However also
the floor and residue decoder can be parallelized. For the floor decoder, once the
y-values for a floor curve have been read from the audio packet, that particular
floor can be generated independently of the rest of the packet. Therefore multiple

OGG VORBIS BLUESPEC IMPLEMENTATION 17

floor decoder instantiations can be possibly used to speed up the decoder. Similarly
for residue curves, a great amount of RAM that is currently used for lookup tables
can be saved at the expense of additional divisions for every decoded partition of
a residue vector (residue vectors are split into partitions, each of which is encoded
using a single Huffman encoded codeword). However these partitions can be de-
coded independently of each other, an so multiple such decoders can be used in
parallel to decode the residue vector. Each partition decoder requires a division
circuit and a small FSM and thus relatively little area compared to the RAM used.
This can easily save on the order of dozens to hundreds of kilobytes of RAM for
lookup tables and increase overall throughput.

4. Testing Environment

The hierarchy of modules and their functionality for the testing environment is
as follows:

(1) mkTestBench is the toplevel module in Bluespec simulation.
(a) mkMainMem is the RAM that holds the Vorbis file to be decoded.
(b) mkCore instantiates the decoder and connects it to the RAM passing

though a cache.
(i) mkInstructionCache is the cache used. It allows for request

tagging. This is used to discard memory requests that happend
before a reset of the decoder.

(ii) mkVorbisHeaderReader is the decoder described in the sec-
tions above.

All test modules and all decoder modules are stored in the
src directory. There is a make file located in
build
build-bluesim that will generate the simulator and run it on a list of test files
specified inside the make file. The Ogg Vorbis test files are located in the
tests directory. They are encoded from a 5 minute long sound sample consisting
of five 1 minute long song samples. Each test file has been encoded from the same
sound sample, but using different quality settings, ranging from −1 (lowest quality)
to 10 (highest quality). To be input into the encoder the need to be stored in vmh
format, since this is the format that Bluespec register files can be initialized with.

To simply generate the simulator type
make

This will generate the executable a.out. To run the simulator on all the test files
specified in the make file type
make run-ogg-tests

For each .vmh testfile a .out output file will be generated.
In addition there are three C programs located in the

tools directory that facilitate verification of the output. wavegen takes a filename
as a first parameter and the number of samples to encode from it and generates a
wave file that can be played in almost any media player. Notice that wavegen is
written for mono wave files, encoded at 16 bits per samples and 22050 Hz, however
this can be easily change inside the c code that is less than 100 lines long. ogginfo is
also usefull, as it generates human readable information from all 3 Vorbis headers.
Finally there is a modified version of Tremor located in

18 MAREK DONIEC

tests
tremor that will also take an output file as an argument and an ogg stream on
stdin. This tremor implementation compares the PCM output it generates with
the PCM values stored in the file that was passed to it. It outputs a single line for
every PCM sample that contains the output tremor generated, the output from the
.out file, and the difference between the two. On stderr it output only lines where
the difference was larger than 1 LSB. By using a simple tool as wc on sdterr the
total number of errors (count lines) can be easily computed.

5. Results and Discussion

The decoder has been tested with 4 different test files from the test directory
with quality settings −1, 3, 6, and 10. The PCM output was verified using the
modified Tremor implementation mentioned above. All errors were within 1 LSB,
with most values decoded identical. The decoder was also hand verified at the pre-
IMDCT stage, at which it is bitwise perfectly identical with Tremor pre-IMDCT
output. The difference thereafter is to be attributed to the fact that the IMDCT
implementation used follows the paper [10] very closely, while Tremor makes some
optimizations by using sine and cosine lookup tables.

Performance was loosely measured by simulating 200 million cycles and measur-
ing the amount of samples decoded. For lowest quality the decoder output more
than 207 seconds of samples, thus it would be able to run at 1 MHz if compiled
down to hardware. This is before many optimizations have been made, as the de-
coder currently is mainly working in serial mode, although many blocks could be
parallelized with some additional work. In highest quality more than 100 seconds
were decoded, so 2 Mhz would be sufficient for highest quality decoding.

In the end I have implemented a functional Ogg Vorbis Decoder that is almost
entirely Bluespec based (all but the IMDCT) and can thus be complied into hard-
ware. But as with many project (especially of this size) much work remains t be
done. Multichannel decoding needs to tested and the likely hidden bugs for this
functionality need to be fixed. Also there are many blocks that can be parallelized
to achieve a significant speedup. Further optimizations can be done regarding
memory usage. In summary there are still many memory optimizations to be made
before this design will be able to fit into a medium sized-FPGA.

However despite all the work that remains I am very happy with the outcome
of this project. A previous group of two people at MIT has tried to implement
a Vorbis decoder in pure Verilog and was not able to do so within a single term
[11]. The University of Waterloo ASIC Design Team is trying to implement a
VHDL based Ogg Vorbis decoder in an FPGA in a time frame of many student-
terms [12]. The project has been ongoing for a few terms now. In another hardware
implementation called Ogg on a Chip [9] two students moved only the IMDCT onto
and FPGA and left the rest of the decoder running on a publicly available LEON
software processor inside the FPGA. Ogg on A Chip was implemented using VHDL,
the code was written in two months by two people. This Bluespec implementation
was written in only 1 month by a single person. However to be fair it has to be
said that the current state of the decoder is in the simulation stage. But in spite of
all future work I hope that the current implementation will prove useful to many
others!

OGG VORBIS BLUESPEC IMPLEMENTATION 19

References

[1] Bluespec ESL Design website, http://www.bluespec.com/, 2008.
[2] ”The Xiph Open Source Community”, http://www.xiph.org, 2008.

[3] ”Vorbis website”, http://www.vorbis.com, 2008.

[4] ”Vorbis I specification”, http://xiph.org/vorbis/doc/Vorbis I spec.html, 2008.
[5] ”Ogg Logical Bitstream Framing”, http://xiph.org/vorbis/doc/framing.html, 2008.

[6] ”Tremor SVN repository”, http://svn.xiph.org/trunk/Tremor/, 2008.

[7] ”Vorbis Hardware Wiki”, http://wiki.xiph.org/VorbisHardware, 2008.
[8] ”VLSI Solution website”, http://www.vlsi.fi/, 2008.

[9] ”Ogg-on-a-Chip Project website”, http://oggonachip.sourceforge.net, 2008.
[10] T. Sporer, K. Brandenburg, and B. Edler, ”The use of multirate filter banks for coding of

high quality digital audio”, In Proceedings of the 6th European Signal Processing Conference,

pages 211-214, 1992.
[11] J. Stritar and M. Papi, ”Ogg Vorbis Audio Decoder”,

http://web.mit.edu/6.111/www/f2005/projects/mpapi Project Final Report.pdf, December

14, 2005.
[12] emphUniversity of Waterloo ASIC Design Team, http://www.asic.uwaterloo.ca/project/ogg.php,

2008.

office 32-376, MIT CSAIL
E-mail address: doniec@mit.edu

