
Verilog RTL for a Two-Stage SMIPSv2 Processor

6.375 Laboratory 1

February 2, 2009

For the first lab assignment, you are to write an RTL model of a two-stage pipelined SMIPSv2
processor using Verilog. The deliverables for this lab are (a) your working Verilog RTL checked
into CVS and (b) written answers to the critical questions given at the end of this document. The
lab assignment is due at the start of class on Friday, February 13 and hard-copies of the written
answers must be submitted by hand.

You are encouraged to discuss your design with others in the class, but you must turn in your own
work. The two-stage pipeline should perform instruction fetch in the first stage, while the second
pipeline stage should do everything else including data memory access. Since SMIPS does not have
a branch delay slot, you will need to handle branches carefully to ensure that incorrect instructions
are not accidental executed.

If you need to refresh your memory about pipelining and the MIPS instruction set, we recommend
Computer Organization and Design: The Hardware/Software Interface, Second Edition, by Pat-
terson and Hennessey. More detailed information about the SMIPS architecture can be found in
the SMIPS Processor Specification. For more information about using Synopsys VCS for Verilog
simulation consult Tutorial 1: Simulating a SMIPSv1 Unpipelined Processor Using Synopsys VCS.

For this assignment, you should focus on writing clean synthesizable code that follows the coding
guidelines discussed in lecture. In particular, place most of your logic in leaf modules and use
structural Verilog to connect the leaf modules in a hierarchy. Avoid tricky hardware optimizations at
this stage, but make sure to separate out datapath and memory components from control circuitry.
The system diagram in Figure 4 can be used as an initial template for your SMIPS processor
implementation, but please treat it as a suggestion. Your objective in this lab is to implement the
SMIPSv2 ISA, not to implement the system diagram so feel free to add new control signals, merge
modules, or make any other modifications to the system.

Processor Interface

Your processor should be in a module named smipsProc and must have the interface shown in
Figure 2. We have provided you with a test harness that will drive the inputs and check the
outputs of your design. The test harness includes the data and instruction memories. We have
provided separate instruction and data memory ports to simplify the construction of the two stage
pipeline, but both ports access the same memory space. The memory ports can only access 32-bit
words, and so the lowest two bits of the addresses are ignored (i.e., only imemreq bits addr[31:2]

and dmemreq bits addr[31:2] are significant). To make an instruction memory request, set
imemreq bits addr to the fetch address and set imemreq val to one. The data will be returned
combinationally (i.e. there are no clock edges between when a request is made and when the re-
sponse returns). To make a data memory request set dmemreq bits rw to zero for a load or one for
a store, set dmemreq bits addr to the address, set dmemreq bits data to the store data if needed,
and finally set dmemreq val to one. The data will be returned combinationally for loads, while for

6.375 Lab Assignment 1, Spring 2009 2

stores the data will be written at the end of the current clock cycle. Notice that the data write bus
is a separate unidirectional bus from the data read bus. Bidirectional tri-state buses are usually
avoided on chip in ASIC designs.

imemreq_bits_addr

imemreq_val

imemresp_bits_data

dmemreq_bits_rw

dmemreq_bits_addr

dmemreq_bits_data

dmemreq_val

dmemresp_bits_data

testrig_tohost

testrig_fromhost

clk

reset

clk

reset

smipsProc Magic
Dual Port
Memory

smipsTestHarness

Figure 1: Block diagram for SMIPSv2 Processor Test Harness

module smipsProc

(

input clk, reset,

input [7:0] testrig_fromhost, // Testrig fromhost port

output [7:0] testrig_tohost, // Testrig tohost port (must reset to zero)

output [31:0] imemreq_bits_addr, // Inst mem port: addr to fetch

output imemreq_val, // Inst mem port: is imem request valid?

input [31:0] imemresp_bits_data, // Inst mem port: returned instruction

output dmemreq_bits_rw, // Data mem port: read or write (r=0/w=1)

output [31:0] dmemreq_bits_addr, // Data mem port: read/write address

output [31:0] dmemreq_bits_data, // Data mem port: write data

output dmemreq_val, // Data mem port: is dmem request valid?

input [31:0] dmemresp_bits_data // Data mem port: returned read data

);

Figure 2: Interface for SMIPSv2 Processor

6.375 Lab Assignment 1, Spring 2009 3

Test Harness

We are providing a test harness to connect to your processor model. The test harness is identical
to the one described in Tutorial 1: Simulating a SMIPSv1 Unpipelined Processor Using Synopsys
VCS. The test harness loads a SMIPS executable (VMH format) into the memory. The provided
makefile can build both assembly tests as well as C benchmarks to run on your processor. The test
harness will clock the simulation until it sees a non-zero value coming back on the testrig tohost

register, signifying that your processor has completed a test program. The testrig tohost port
should be set to zero on reset. A very simple test program is shown in Figure 3.

0x1000: Reset vector.

addiu $2, $0, 1 # Load constant 1 into register r2

mtc0 $2, $21 # Write tohost register in COP0

loop : beq $0, $0, loop # Loop forever

Figure 3: Simple test program

Implemented Instructions

The SMIPS instruction set is a simplified version of the full MIPS32 instruction set. Consult the
SMIPS Processor Specification for more details about the SMIPS architecture. You may also want
to read Tutorial 3: Assembly Programming for the SMIPS Processor. For this first lab assignment,
you will only be implementing the SMIPSv2 subset. Figure 5 shows the 35 instructions which make
up the SMIPSv2 subset.

You do not need to support any exceptions or interrupt handling (apart from reset). The only pieces
of the system coprocessor 0 you have to implement are the tohost and fromhost registers, and the
MTC0 and MFC0 instructions that access these registers. These registers are used to communicate
with the test harness. The test harness drives testrig fromhost, while you should implement an
8-bit register in COP0 which drives the testrig tohost port of the smipsProc module interface.

Getting Started

All of the 6.375 laboratory assignments should be completed on an Athena/Linux workstation.
Please see the course website for more information on the computing resources available for 6.375
students. Once you have logged into an Athena/Linux workstation you will need to setup the 6.375
toolflow with the following commands.

% add 6.375

% source /mit/6.375/setup.csh

Note that to use the toolflow you will need to be using tcsh, the default shell on Athena/Linux. If
you have switched to using bash you will need to change to tcsh before starting to use the 6.375
toolflow. Please ask the TA if you have any questions.

You will be using CVS to manage your 6.375 laboratory assignments. Please see Tutorial 2: Using
CVS to Manage Source Code for more information on how to use CVS. Every student has their

6.375 Lab Assignment 1, Spring 2009 4

own directory in the repository which is not accessible to other students. Assuming your Athena
username is cbatten, you can checkout your personal CVS directory using the following command.

% cvs checkout 2009s/students/cbatten

To begin the lab you will need to make use of the lab harness located in /mit/6.375/lab-harnesses.
The lab harness provides makefiles, scripts, and the Verilog test harness required to complete the
lab. The following commands extract the lab harness into your CVS directory and adds the new
project to CVS.

% cd 2009s/students/cbatten

% tar -xzvf /mit/6.375/lab-harnesses/lab1-harness.tgz

% find lab1 | xargs cvs add

% cvs commit -m "Initial checkin"

The resulting lab1 project directory contains the following primary subdirectories: src contains
your source Verilog; tests contains local assembly tests; bmarks contains local benchmarks; and
build contains makefiles and scripts for building your processor. The src directory contains the
smipsTestHarness Verilog module and various SMIPS instruction constants you may find helpful
in smipsInst.v.

You can now begin to add your code to the src directory. You can use the following commands
to build your simulator, run assembly level tests, run benchmarks in verification mode, and run
benchmarks in performance mode. You will need to modify the makefile so that it has a listing
of all your Verilog source files. Some of the tracing code in smipsTestHarness is specific to the
staff’s reference implementation, so you should feel free to modify it as needed. Consult Tutorial
1: Simulating a SMIPSv1 Unpipelined Processor Using Synopsys VCS for more information.

% cd lab1/build/vcs-sim-rtl

% make simv

% make run-asm-tests

% make run-bmarks-host

% make run-bmarks-smips

Your final lab submission should pass all of the assembly tests and also be able to successfully run
the globally installed benchmarks. When you first start working on your processor it will not pass
the multiply benchmark. This is because the multiply benchmark is incomplete. You will finish
writing the benchmark in Question 4 of this lab assignment (see end of the document for the lab
questions).

Lab Hints and Tips

This section contains several hints and tips which should help you in completing the lab assignment.

Tip 1: Use Incremental Development

We suggest taking an incremental approach when implementing the two-stage SMIPSv2 pro-
cessor. Start by implementing just a few instructions and verify that they are working before

6.375 Lab Assignment 1, Spring 2009 5

slowly adding more instructions. Feel free to make use of the examples/smipsv1-1stage-v code
discussed in Tutorial 1. You can begin by moving some of the smipsv1-1stage-v code into
your lab 1 project directory and verifying that it still passes the SMIPSv1 tests. Then cre-
ate a two-stage SMIPSv1 processor and verifying that it can pass the five SMIPSv1 tests. The
simplest approach for handling branches is for the fetch stage to always “predict” not-taken.
Branches and jumps resolve in the execute stage; thus if the branch or jump was actually taken
then you simply set the PC multiplexer appropriately and kill the instruction currently in the
fetch stage. You can kill an instruction by inserting a NOP into the instruction register. Once
you have a two-stage SMIPSv1 processor working, begin to refine the system into the two-stage
SMIPSv2 system show in Figure 4 (for example you might want to create a separate branch ad-
dress generator). After adding support for lui and ori, your processor should be able to pass the
following SMIPSv2 tests: smipsv2 simple.S, smipsv2 addiu.S, smipsv2 bne.S, smipsv2 lw.S,
smipsv2 sw.S, smipsv2 ori.S, and smipsv2 lui.S.

Now you can gradually add additional instructions and attempt to incrementally pass more of the
assembly test suite. We strongly discourage implementing the entire system and all instructions
before trying to pass any tests. A more incremental approach will greatly reduce your verification
time.

Tip 2: Make Use of the Verilog Component Library

We have provided you with a very simple Verilog Component Library (VCLIB) which you may find
useful for this lab. VCLIB includes simple mux, register, arithmetic, and memory modules. It is
installed globally in the locker at /mit/6.375/install/vclib. Examine the makefile included in
the lab harness to see how to link in the library.

Tip 3: Use a Semi-Behavioral ALU

Consider using a more behavioral implementation of the ALU. Instead of trying to design an
optimized gate-level ALU, use a conditional statement to select the result from among the various
built in Verilog operators. For example, an incomplete ALU module might use the following Verilog.

assign out = (fn == 4’d0) ? (in0 + in1)

: (fn == 4’d1) ? (in0 - in1)

: (fn == 4’d2) ? ($signed(in0) < $signed(in1))

: (fn == 4’d3) ? ($signed(in1) >>> in0[4:0])

: 32’bx;

It would not be surprising if this code synthesized into four separate arithmetic blocks (an adder,
a subtracter, a comparators, and a shifter) and an output multiplexer. This is obviously not
the desired hardware; we would like to use the same adder for the addition, subtraction, and
comparison operations. Although not an ideal representation of the desired hardware, this ALU is
still synthesizable making it “semi-behavioral”. It makes an excellent initial ALU implementation.
Implementing signed arithmetic in Verilog can be tricky. The above example shows one way to
implement a signed comparison and an arithmetic right shift.

Notice that in the system diagram shown in Figure 4, LUI would be implemented by using the
ALU to shift the zero-extended immediate 16 bits to the left. You can select the constant 16 in the
operand 1 mux to act as the shift amount for this shift.

6.375 Lab Assignment 1, Spring 2009 6

Tip 4: Handle Reset Carefully

It is very important to plan how you will handle reset. Figure 4 highlights those state elements
which you should probably reset. The SMIPS Processor Specification states that the tohost register
must be reset to zero. Ask yourself what should the PC and the IR be reset to? If you would like,
you can use the vcRDFF pf module in the VCLIB for these state elements.

Tip 5: Use Text Tracing Wisely

When you first try compiling with the lab 1 harness you will probably see several “Cross module
resolution failed” VCS errors. These errors are because the smipsTestHarness module includes
references to signals and nets that are in the staff’s implementation of lab 1 but are probably not
in your implementation. They are there to illustrate a technique for text tracing. We recommend
adding some text tracing to your smipsTestHarness such that the value of various nets in your
processor are displayed each cycle (one cycle per line). See the smipsv1-1stage-v code for an
example of text tracing. A common debugging technique is to first try running a test program on
your processor. From examining the text trace you should be able to get a good feel for how your
processor is executing. If you need to do more detailed debugging, then start VirSim and use the
waveform viewer to trace more signals. See Tutorial 1 for more on using VirSim.

Tip 6: Run Tests Individually

Although the makefile contains convenient targets for running all of the assembly tests at once, when
you are initially debugging your processor you will want to get a simple test working before trying
all of the tests. The following commands will build the simulator, build the smipsv1 simple.S

test, and then run the test on the simulator. After running the test you can open the test.out file
to examine the text trace output. Each assembly test is a self-checking test. If the test passes, it
will write one to the tohost register and the test harness will stop and print *** PASSED ***. If
the test fails, it will write a value greater than one to the tohost register and the test harness will
stop and print *** FAILED ***. For SMIPSv2 tests, the value in the tohost register corresponds
to which test case in the assembly test failed. Consult the appropriate SMIPSv2 assembly test file
to learn more about the specific test case.

% make simv

% make smipsv1_simple.S.vmh

% ./simv +exe=smipsv1_simple.S.vmh >! test.out

Tip 7: Use the SMIPS Assembly and Objdump Files for Debugging

When debugging your processor, you should consult both the SMIPS assembly file as well as
the objdump file. The assembly test files are installed globally in the locker at /mit/6.375

/install/smips-tests. When you build the smipsv1 simple.S test it will also generate a
smipsv1 simple.S.dump file. The objdump file shows the exact instructions (and their addresses)
which make up the corresponding assembly test. By examining which PC’s your processor is exe-
cuting and correlating this to the objdump and assembly file you should be able to figure out what
your processor is doing.

6
.3

7
5

L
a
b

A
ssig

n
m

en
t

1
,
S
p
rin

g
2
0
0
9

7

Sign
Extend

Zero
Extend

Jump
TargGen

Branch
TargGen Branch

CondGen

Reg
File

Instruction Mem

Data
Mem

branch
pc+4

jump
jr

rd0

rd1

ir[15:0]

ir[25:0]

ir[25:21]

ir[20:16]

ir[10:6] (shamt)

ir[15:0]

ir[15:0]

Reg
File

neg?
eq?
zero?

va
l

rw

ir[
15

:1
1]

ir[
20

:1
6]

31

rf_wen

wa_sel

Decoder
Control
Signals

Execute StageFetch Stage

ALU

IR

PC+4

+4

wdata
addr rdata

te
st

rig
_f

ro
m

ho
st

16

w
b_

se
l

ki
llF

tohost

va
l nop

pc
_s

el

tohost_en

testrig_tohost

al
u_

fu
n

PC

F
igu

re
4:

T
w

o-S
tage

P
ip

elin
e

for
S
M

IP
S
v
2

P
ro

cessor.
S
h
ad

ed
state

elem
en

ts
n
eed

to
b
e

correctly
load

ed
on

reset.

6.375 Lab Assignment 1, Spring 2009 8

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
100011 base dest signed offset LW rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)

I-Type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 src dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
000000 src1 src2 dest 00000 100100 AND rd, rs, rt
000000 src1 src2 dest 00000 100101 OR rd, rs, rt
000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR rs
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 src1 src2 signed offset BEQ rs, rt, offset
000101 src1 src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset

System Coprocessor (COP0) Instructions
010000 00000 dest cop0src 00000 000000 MFC0 rt, rd
010000 00100 src cop0dest 00000 000000 MTC0 rt, rd

Figure 5: SMIPSv2 Instruction Set

6.375 Lab Assignment 1, Spring 2009 9

Critical Thinking Questions

The primary deliverable for this lab assignment is your working Verilog RTL for the two-stage
SMIPSv2 processor. In addition, you should prepare written answers to the following questions
and turn them in at the beginning of class on February 13. Although you should attempt Question
3, it could require quite a bit of design work. Do not worry if you are unable to finish Question 3.
As long as you make a reasonable effort you will not be penalized. It is challenging, but it servers
to illustrate the complexities which can arise when designing hardware which is more complicated
than the simple two-stage pipe.

Question 1: Design Partitioning

We discussed in lecture the importance of partitioning your design for semi-custom toolflows.
Clearly identify on the system diagram shown in Figure 4 which components you placed in your
datapath and which components you placed in your control logic. Also clearly highlight all of your
control signals including any additional signals which you may have added. If your system differs
significantly from the one shown in Figure 4 then draw your own system diagram. Please provide
a very brief reasoning for your why you decided to place the instruction register and register write
address mux in either the datapath or the control unit.

Question 2: Physical Design Predictions

In your opinion, what will be the most critical paths in the design? Select what you think will be
the two most critical paths and either draw them on the datapath diagram or provide a textual
description of the paths. What component do you think will take up the most area in the design?
You will be able to test your hypotheses in Lab 2.

Question 3: Adding a Simple Branch Predictor

This question requires you to make some modifications to your design and to evaluate the impact
those changes have on the performance of your processor. The current two-stage SMIPSv2 design
incurs a one-cycle penalty for every taken branch. Your first task is to evaluate the impact this has
on the overall performance of your processor. For this question, we will be measuring performance
in terms of the number of instructions which are executed per cycle (IPC). Obviously, the IPC of
your design cannot exceed one. It can, however, be significantly less than one due to the single cycle
taken branch delay penalty. Use the following commands to measure the IPC of your processor.

% cd lab1/build/vcs-sim-rtl

% make run-bmarks-smips

This should run the installed global benchmarks on your processor and display the IPC for each.
You can find IPC as well as other statistics in the corresponding benchmark.out file. Report these
IPC numbers in your answer to this question.

Your second task is to add a simple branch predictor to your original SMIPS processor. For
more information on branch predictors please consult Computer Organization and Design: The
Hardware/Software Interface, by Patterson and Hennessey or the 6.823 course lecture slides. The
TAs would also be happy to chat with you about branch predictors.

6.375 Lab Assignment 1, Spring 2009 10

Make your changes in such a way that you can build your processor both with and without the
branch predictor. For example, you might have two versions of your datapath, control logic, and
top-level smipsProcessor module - one with and one without the predictor. You can then use two
different build directories: use build to build your processor without the branch predictor and use
build-bpred to build your processor with the branch predictor.

We are now going to sketch a simple predictor. We recommend that you start by implementing this
simple predictor. If you have time and are interested, you are welcome to improve the predictor.

You will be implementing a simple direct-mapped branch-target-buffer (BTB). We will not be
predicting JR or JALR instructions. These instructions should be handled exactly as they are
in the baseline design: squash the fetch stage when taken. Figure 6 shows the modified system
diagram. The predictor should contain a small (four entry) table. Each entry in the table is a
<pc+4,target> pair. You will also need some form of valid bits so that you can correctly handle
uninitialized table entries. You might want to make use of the vcRAM rst 1w1r pf module in
VCLIB for your valid bits. The operation of the predictor is described below.

In the fetch stage, the predictor uses the low order bits of PC+4 to index into the table. We use
PC+4 instead of the PC because it makes the pipelining simpler. The predictor should read out
the corresponding <pc+4,target> pair from the table, and if the PC’s match then this is a hit.
We then choose the proper pc sel signal so that the predicted target gets clocked into the PC on
the next cycle. If the PC’s do not match, then this is a miss and we use PC+4 as the next PC.
Our simple predictor uses the following invariant: if a PC is in the table then it is always predicted
taken, but if a pc is not in the table then we always predict not-taken. Entries are never removed
from the table they are only overwritten. Since we are not predicting JR and JALR, we know that
the target address is always correct even if our taken/non-taken prediction is incorrect. We do not
need to verify the target address, only the taken/not-taken prediction.

We pipeline the predictor hit/miss signal to the execute stage. Because of the invariant mentioned
above, this hit/miss bit also tells us if the branch was predicted taken or not-taken. In the execute
stage, the predictor should compare the predicted taken/non-taken bit to the calculated taken/not-
taken bit. This is how the predictor can determine if there as a misprediction. There are four
possible scenarios shown in the following table.

Predicted Actual Mispredict? Action to take

taken taken no no action required
not-taken taken yes kill instr in fetch, update table, pc := branch or jump targ

taken non-taken yes kill instr in fetch, do not update table, pc := correct pc+4
not-taken not-taken no no action required

If the branch was predicted not-taken, and it was actually taken (i.e. we enter a loop), then we
update the table by adding the appropriate PC+4 and branch or jump target. This corresponds
to writing the correct targ and correct pc+4 signals shown in Figure 6. If the branch was
predicted taken and it was actually not-taken (i.e. we fall out of a loop), then we do not update
the table. We could invalidate the appropriate entry in the table, but to make things simpler we
just leave the table unchanged.

There are several subtle issues to be aware of when implementing the predictor. The most important
is to carefully think about the situation when there are back-to-back branches. For example, what

6
.3

7
5

L
a
b

A
ssig

n
m

en
t

1
,
S
p
rin

g
2
0
0
9

11

Sign
Extend

Zero
Extend

Jump
TargGen

Branch
TargGen Branch

CondGen

Reg
File

Instruction Mem

Data
Mem

rd0

rd1

ir[15:0]

ir[25:0]

ir[25:21]

ir[20:16]

ir[10:6] (shamt)

ir[15:0]

ir[15:0]

Reg
File

va
l

rw

ir[
15

:1
1]

ir[
20

:1
6]

31

rf_wen

wa_sel

Decoder
Control
Signals

Execute StageFetch Stage

+4

neg?
eq?
zero?

Predicted
Taken/Not−Taken

Bpred
Logic

Bpred
Table

wen

curr pc+4
correct pc+4
correct targ

ALU

IR

PC+4

wdata
addr rdata

te
st

rig
_f

ro
m

ho
st

16

w
b_

se
l

ki
llF

tohost

va
l nop

tohost_en

testrig_tohost

al
u_

fu
n

branch
pc+4

jump
jr

predicted targ
correct pc+4

mispredict?
pc

_s
el

PC

predicted targ

F
igu

re
6:

T
w

o-S
tage

P
ip

elin
e

for
S
M

IP
S
v
2

P
ro

cessor
w

ith
B

ran
ch

P
red

ictor.

6.375 Lab Assignment 1, Spring 2009 12

happens if the execute stage identifies a misprediction, but at the same time there is a branch in
the fetch stage which is being predicted taken? It is exactly these type of difficult concurrency
issues which Bluespec helps manage.

If you are feeling particularly ambitious there are several ways to improve on this simple design
including: adding support for JR and JALR prediction, using a set-associative table instead of a
direct mapped table, increasing the size of the table, or adding some hysteresis to the table (i.e. it
takes more than one taken branch before we predict taken).

For this question, you should submit a description of your branch predictor and the IPC results for
your design both with and without the predictor.

Question 4: Analyzing a Simple SMIPS Benchmark

For this question you will first write a small SMIPS assembly routine, and then evaluate ISA
changes which would affect the performance of that routine. The SMIPSv2 ISA does not include a
multiply instruction, yet we can emulate multiplication using shifts and adds. The following pseudo
code illustrates a straightforward algorithm for software multiplication.

function multiply (op1, op2) {

r1 := op1

r2 := op2

r3 := 0

for (i = 0; i < 32; i++) {

if ((r1 & 0x1) == 1)

r3 := r3 + r2

r1 := r1 >> 1

r2 := r2 << 1

}

return r3

}

Your first task is to write a software multiplication routine in SMIPS assembly. We have provided
you with a C test program and SMIPS assembly template. You can find a C version of the multiply
routine in bmarks/multiply/multiply.c. Modify bmarks/multiply/multiply asm.S by adding
your SMIPS code where indicated. You can then build and test your multiply benchmark using
the following commands.

% cd lab1/build/vcs-sim-rtl

% make simv

% make multiply.test.vmh

% ./simv +exe=multiply.test.vmh +max-cycles=40000

Once your multiply routine is working you can evaluate the performance (measured in IPC) with
the following commands.

% make multiply.perf.vmh

% ./simv +exe=multiply.test.vmh +max-cycles=40000 +verify=0

6.375 Lab Assignment 1, Spring 2009 13

The resulting output will show some statistics including the IPC. In your answer to this question,
report the IPC of this benchmark with and with out your branch predictor from Question 4. The
multiply routine has two branches: the outer for loop branch and the inner if statement branch. For
which branch will your predictor generate good predictions? For which branch will the predictor
generate poor predictions?

An SMIPS assembly programmer approaches you and suggests that you add the following condi-
tional add instruction to the SMIPS ISA. The syntax and semantics for this new instruction are
shown below.

addu.c r3, r2, r1 if ((r1 & 0x1) == 1) r3 := r3 + r2

Would this new instruction help? Why? What changes would you need to make to your SMIPSv2
datapath in order to support this new instruction? Do you think these changes would impact the
cycle time or area of your design?

Optional Bonus Question

The MIPS32 ISA uses PC+4 for the branch and jump target address. Using PC+4 instead of PC
seems arbitrary but it enables a clever designer to eliminate the PC+4 pipeline register. Can you
figure out how to remove the PC+4 register while still enabling correct execution? Be careful about
back-to-back branches!

