Bluespec for a Pipelined SMIPSv2 Processor

6.375 Laboratory 2
February 23, 2009

The second laboratory assignment is to implement a pipelined SMIPSv2 in Bluespec System Verilog.
As with Lab One, your deliverables for this lab are (a) your working Bluespec code checked into
CVS and (b) written answers to the critical thinking questions. The lab is due at the start of
class on Friday, February 27**. Again you may submit your question answers on paper in class,
or electronically in CVS (plain text or PDF only). As always, you may discuss your design with
others in the class, but you must turn in your own work.

The goal of this lab is to familiarize yourself with the Bluespec language and compiler, with par-
ticular emphasis on scheduling Guarded Atomic Actions. For this lab we have decided to impose
the following restriction: do not use Wires, RWires, PulseWires, or any kind of primitive Wire to
complete these assignments. We feel that it is important for you to gain insight into what the
Bluespec scheduler is doing and why. These combinational primitives can muddy the picture and
make it difficult to reason about your design. After completing this lab you will have a much better
understanding of when Wires are and are not appropriate, and will be better equipped to use these
constructs in your project.

The SMIPSv2 processor you design in this lab will implement the same ISA as the previous lab, but
will be a different microarchitecure. The major difference between this design and the previous lab
is the presence of Instruction and Data caches. Even on a cache hit, data will not be returned until
the following cycle. This means that the processor must be split into a 4-stage pipeline, as shown
in Figure 1. This has several ramifications, including: (a) you must correctly detect dependencies
and stall the pipeline when they occur; (b) when a branch is mis-predicted you should not only kill
the instructions which were fetched, but also correctly ignore all responses from memory requests
these instructions have made; (c) FIFOs must be sized appropriately and have good scheduling
properties for your design to achieve high throughput.

Before proceeding you should do Tutorial 8: GAA-to-RTL Synthesis using the Bluespec Compiler.
This will familiarize you with the Bluespec compiler and simulating a simple SMIPSv2 microar-
chitecture generated from BSV source code. Additonally you should understand all the concepts
presented in lecture Bluespec - Modelling Processors. The processor in that example, although much
simpler than the one presented here, will serve as a good starting point for your design. As with
Lab One you should start with the harness at /mit/6.375/1ab-harnesses/lab2-harness.tgz.

Processor Overview

The design presented in Figure 1 is mostly straightforward: the pcGen stage generates the next
instruction address using the PC register, and sends it to the instReqQ FIFO. It also writes the
current PC + 4 to the pcQ for use in branch instructions. The response from the ICache is placed
into the instRespQ FIFO. Then the Execute stage takes the response out of the FIFO and performs
the operation. The result of the execution is placed into the writeback queue wbQ (the details of
which we will explain in Section). If the instruction was a load or a store the memory request is

6.375 Lab Assignment 2, Spring 2009

RFile

o\ = Searchable
SFIFO

@: Rule

Eepoch
A

pcQ

A\

wbQ

instReqQ

instRespQ

A

dataReqQ dataRespQ

... lTlT

mkICacheBlocking

mkDCacheBlocking

Figure 1: Pipeline Rules for SMIPSv2 Processor

placed into the dataReqQ queue. The Writeback stage is responsible for taking the final result from

the wbQ and the dataRespQ and actually updating the register file.

For your design you will probably want one rule for each stage, so a pcGen, execute, and writeback
rule. (Plus a rule for dealing with the epoch as we will explain in Section .) The interaction of
these rules will be key, so carefully craft their predicates and actions. When is it safe to execute
the next instruction? What actions should the writeback rule perform? Careful thought about the

intent of each rule will aid you during implementation.

Stalling the Pipeline

One significant part of this assignment is generating the stall signal for the execute stage. When is
it safe to read the register file and execute the next instruction? Essentially, this means detecting

Read-After-Write (RAW) hazards. So if our design is executing the following program:

A) addiu r6, r10, 1
B) xor r4, r5, r6

The processor will eventually reach the following state:

6.375 Lab Assignment 2, Spring 2009 3

dest:r6
data: (r10+1)

exec

wbQ

xor r4, r5, r6

instRespQ

Instruction B cannot be executed because it reads r6, which is being written by instruction A. This
means we need to stall until the writeback of A is complete. We will implement this using SFIFO,
a searchable FIFO. SFIFOQ is just like a normal Bluespec FIFO except it has the following interface:

interface SFIFO#(type any_T, search_T);
//Standard FIFO methods
method Action enq(any_T data);
method Action deq(Q);
method any_T first();
method Action clear();
//New SFIFO methods
method Bool find(search_T searchVal);
method Bool find2(search_T searchVal);
endinterface

Note that SFIFO has two extra methods, find() and £ind2(). These methods take a datatype
parameter (the same datatype the FIFO is storing), and return a boolean. Specifically, they return
True if the given parameter is present in the FIFO, and False otherwise. £ind() and £ind2 () have
no implicit condition — they always ready — they will simply return False if the FIFO is empty.

Why does SFIFO include two methods find() and £ind2()? This so you can can search it twice
for instructions that have two operands. For instance, in the above example the execute rule can
check if r5 is in the writebackQ using find (), and r6 using £ind2(). However if the instruction
had been xori instead of xor, it just would have used £ind() because xori just has one register
argument.

What type should you store in the writeback queue and how should you search it? First let us
condider what the result of the execute stage should be. Well, if the instruction was an ALU op,
then the result should be the destination register and the data to put into it. If it was a Load, then
we need the destination register to put the response from memory into. If it was a store then we
need to record this fact so we can receive the acknowledgement from memory. Finally let’s treat
the From Host register specially.

6.375 Lab Assignment 2, Spring 2009 4

typedef union tagged

{
struct {Bit#(32) data, Rindx dest} WB_ALU;
Bit#(32) WB_Host;
Rindx WB_Load;
void WB_Store;
}

WBResult deriving (Eq, Bits);

Now you must define what it means to search the fifo by writing a function. This function should
take an Rindx (the thing we're looking for) and a WBResult (the thing we’re searching). The
function should return true if the search value is “found” in the FIFO.

function Bool findf (Rindx searchval, WBResult val);
//You write this
endfunction

When you instantiate the SFIFO, you should pass in the appropriate types and find function. What
does it mean to pass in a function to a hardware module in Bluespec? Essentially it means that
when the compiler instantiates the module it will do so with the combinational logic you provide.
Think of the SFIFO as a black box — a black box with a hole in it. The function you provide fills
that hole.

Thus the types of the writeback queue is as follows:

//Searchable for stall signal
SFIFO#(WBResult, Rindx) wbQ <- mkSFIFO(findf);

All in all, the best way to encapsulate the stall signal is probably by writing a function called
stallfunc(). stallfunc() takes an instruction and an SFIFO and returns False if can be executed,
and True if it must stall.

So your design will probably look something like this:

6.375 Lab Assignment 2, Spring 2009 5

function Bool stallfunc(Instr inst, SFIFO#(WBResult, Rindx) f);
... //You write this ...
endfunction
module mkProc (IProc);
... //State elements ...
rule execute (instRespQ.first() matches tagged LoadResp .1d
&&& unpack(ld.data) matches .inst
&&& 'stallfunc(inst, wbQ));

case (inst) matches //Execute the instruction
tagged LW .it:

endrule
NOTE: This rule predicate is not quite complete, as we will learn in the next section.

Dealing with Branches

You may have noticed that branches are resolved in the Execute stage. Why is this a problem?
Because if the branch has been taken (or, with a branch predictor, if the branch has been mispre-
dicted) then the pcGen stage has made a memory request for an instruction which we must ignore.
(In a design with a non-blocking cache it may even have made more than one.) There are many
ways to handle this, but the simplest way is to use an epoch.

An epoch is a conceptual grouping of all instructions in-between branch mispredictions. We can
track this by having the pcGen rule send the epoch as the tag for all load requests:

rule pcGen ...
instReqQ.enq(Load{ addr:pc, tag:epoch });
endrule

Note that this is okay because our memory system is in-order, so the tag is essentially unused. If
the memory system was allowed to respond out-of-order then we would have to actually create an
appropriate tag to differentiate responses. In this case we could devote some bits of the tag field
to the epoch, and some to the tag itself. For instance, the eight-bit field could be used to store a
three-bit epoch, and a five-bit tag — but we do not need to worry about this for this lab.

When a mispredict occurs we clear all queues which are holding instructions issued after the branch
instruction, and increment the epoch. Then we have a separate rule that discards responses from
the wrong epoch.

6.375 Lab Assignment 2, Spring 2009 6

rule discard (instRespQ.first() matches tagged LoadResp .1ld
&&& 1d.tag != epoch);
traceTiny("stage","D");
instRespQ.deqQ);
endrule

Now when we execute we must check that we can execute the instruction, and that it is from the
correct epoch:

rule execute (instRespQ.first() matches tagged LoadResp .1ld
&&& 1d.tag == epoch
&&& unpack(ld.data) matches .inst
&&& 'stall(inst, wbQ));

Bool branchTaken = False;
Addr newPC;

if (branchTaken)

begin
//Clear appropriate FIFOs here
epoch <= epoch + 1;
pc <= newPC;

Working with BSVCLib

In Figure 1 we represent all FIFOs in the design with the same picture. In reality, in order to
achieve good throughput you will need to (a) appropriately size all FIFOs and (b) ensure that they
have the correct scheduling properties to ensure maximum concurrency between rules.

To this end we are providing you with a library of predefined FIFOs with various properties. In
BSVCLib, located at /mit/6.375/install/bsvclib, we’ve provided a library of useful Bluespec
modules, including SFIFO and a Bypass FIFO that you should use in your design. To use SFIFO
import the SFIF0O package. To use the Bypass FIFO, import BFIFO.

The properties of various FIFOs are given in Figure 2. When choosing a FIFO remember to consider
both its size, and its schedule. What case do you expect to be the most common? How does the
memory latency affect things? Is extra area and an extra cycle of latency worth an improvement
in throughput. Be sure to run the benchmark suite and examine which rules fire to check how your
change impacts throughput.

Sometimes there may be places where you wish no FIFO existed at all, i.e. you want a wire. The
problem with such a combinational structure is that you must be able to guarantee that your rules
will always fire when values are on the wire — no communication should be dropped under any
circumstance. Rather than making you reason in such a way for this lab, we provide you with
a safer abstraction: mkBFIF01(), a Bypass FIFO. This FIFO behaves like a wire (enq() before
deq()) as long as both occur. Otherwise the value is buffered in the FIFO, so the deq() can occur

6.375 Lab Assignment 2, Spring 2009 7

‘ FIFO Variant ‘ Package ‘ Size ‘ Sched Comment ‘
mkFIFO() FIFO 2 deq < enq Default. Use this to get your design working. deq and enq
may happen simultaneously when contains 1 element
mkFIF01() FIFO 1 deq ME enq deq if full, enq if empty. Mutually exclusive.
mkSizedFIFO0(n) FIFO n deq < enq deq and enq may happen simultaneously when neither

full nor empty

mkLFIFO0() FIFO 1 deq < enq deq and enq may happen simultaneously when full

mkBFIF0() BFIFO 1 enq < deq If enq and deq happen when empty, value is bypassed
mkSizedBFIFO(n) BFIFO n enq < deq A larger buffer for when no deq happens

mkSFIFO() SFIFO 1 deq < find < enq | Uses SFIFO interface. Properties are like mkFIFO

mkSizedSFIFO(n) SFIFO n deq < find < enq | Uses SFIFO interface. Properties are like mkSizedFIFO

Figure 2: Properties of various FIFO modules. For all FIFOs: first < (enq, deq) < clear.

later. You should ensure that your design is functionally correct with normal FIFOs before you
attempt to introduce Bypass FIFOs.

You may notice that in the lab handout, we use constructs such as mkCBusWideRegW to wrap certain
registers, like the to/from host interface. This wrapping mechanism allows us to build a concise
bus interface for the Lab 2 test harness, but you should ignore them for now. However, we will use
the CBus mechanism later, in Lab 3, to develope some useful debugging tools.

Lab Hints and Tips

This section contains several hints and tips which should help you in completing the lab assignment.

Tip 1: Correctness First, Performance Second

Design for correctness first, then worry about performance. Initially you should implement the
design using the standard mkFIFO and mkSFIFO queues. Don’t worry about the stalling logic yet,
just get the structure correct. Pay special attention to the writeback queues wbDataQ and wbDestQ.
When should the execute rule write into which queue? What assumptions will the writeback rule
make about their contents.

After all the queues are in place implement the epoch, making the fetch send the appropriate tag to
the memory system. Then change the execute rule to use the writeback queues instead of updating
the register file itself. For now make execute use a conservative stall signal which always stalls at
least once. Implement the writeback rule, taking into consideration the different situations: Load
Responses, Store Acks, etc.,

At this point your design should be able to pass make run-asm-tests. Even such a naive design
should show an improvement in IPC on the benchmarks over smips-4mcycle.

Then, once your system is complete, begin to improve performance iteratively. First implement
the real stall signal using SFIF0. Then examine the schedule and see which rules are blocking each
other. What can you do about that? Is this a place where a different FIFO could affect things?
After making a change (particularly a change which involves adding (mkBFIFO1) make sure to

6.375 Lab Assignment 2, Spring 2009 8

rerun make run—-asm-tests to ensure correctness.

Tip 2: Check the Scheduler Output

As you begin to refine your design, pay close attention to the output of the Bluespec compiler
(logged in the file build/out.log). Sometimes rule conflicts can point to a bug in the design.
For example, early in my implementation I had a conflict between execute and writeback rules, as
it turned out, this was because I had a bug where I forgot to change one leg of the execute case
statement, so it was still updating the register file directly. After viewing the schedule I realized
that something must be wrong.

This step will become even more important as you begin to change your FIFOs to improve through-
put. Long FIFOs will tend to “decouple” rules so that they become more independent. Shorter
FIFOs will do the opposite, as the rules will interact through the state elements directly. Make
sure you understand all of this before you begin using the Bypass FIFO!

Tip 3: Observe rule CAN_FIRE and WILL_FIRE signals

As you refine, a good strategy is to run a single benchmark and observe the waveform. For each rule
the compiler outputs a CAN_FIRE signal and a WILL_FIRE signal. While the scheduler output
can give you a sense of static priorities, use these signals to observe the dynamic interactions of
these rules.

A related tip is to observe the signals for FIFO methods. Each FIFO will have wires corresponding
to enq, deq, and first, as well as RDY_enq, EN_deq, and so on. Observing when enqueues and
dequeues are occurring can be extremely helpful, particularly if your design is deadlocking for some
reason.

Tip 4: Think very carefully about sizing FIFOs

Although the scheduling properties of the FIFOs are important, so too is their length. For instance,
consider the pcQ FIFO. At the beginning of time it starts out empty, then the pcGen rule enqueues
into it, and makes a memory request. Well, even if the memory request comes back the following
cycle because of a cache hit, the response still has to go into the instRespQ. Therefore it seems
that making the pcQ smaller than size 2 does not have any benefit.

Although it is possible to find a good configuration using an experimental approach, reasoning
about the system using high-level knowledge can point you towards the optimum configuration.
Always check the effect of your changes on the generated schedule.

Critical Thinking Questions

As with Lab One, the primary deliverable for this lab assignment is your working Bluespec source
code for the popelined SMIPSv2 processor. In addition, you should prepare written answers to the
following questions and turn them in at the beginning of class on the due date. Qestion 2 involves
adding a branch predictor, as you did in Lab One. Again, this may require significant design work.
Again, do not worry if you are unable to finish the branch predictor question. As long as you make
a reasonable effort you will not be penalized.

6.375 Lab Assignment 2, Spring 2009 9

Question 1: Design Choices

Discuss and motivate any design choices you made. Is there any way in which your implementation
differs from the diagram in Figure 1?7 What FIFOs did you end up using, and why is this a good
configuration? What is the relationship between your Execute and Writeback rules? Are they
Conflict-Free, Sequentially Composable, or Conflicting? Why has the scheduler deduced this?

Question 2: Adding a Branch Predictor

As with lab one, create a version of your design which adds a branch predictor and a branch history
table. Similarly with Lab One, you should attempt this question after all other questions and tasks
are finished. The purpose of this task is to think about designing modules in Bluespec from scratch,
and then using them in a design.

This will encompass:

e Creating a new interface for the branch predictor.
e Creating a module which provides that interface.

e Changing your design to use this new module properly.

What was the effect does this new module have on your design’s schedule? On the overall through-
put of your processor?

Question 3: Synthesizing Bluespec by Hand

Ben Bitdiddle is writing a 32-bit barrel shifter in Bluespec. The module can take any 32-bit number
and shift it right or left by any amount. To minimize area Ben decides to implement the design
using a circular shifter and a counter.

Unfortunately, Ben accidentally forgets to write predicates for his rules:

6.375 Lab Assignment 2, Spring 2009 10

typedef enum { Left, Rightl} Direction;
module mkBarrelShifter (Shifter);
Reg#(Bit#(32)) r <- mkReg(0);
Reg#(Bit#(5)) cnt <- mkReg(0);
Reg#(Direction) dir <- mkRegUQ);
rule shiftLeft (True);
r <=1 << 1;
cnt <= cnt - 1;
endrule
rule shiftRight (True);
r <=r > 1;
cnt <= cnt - 1;
endrule
method Action shift(Direction d, Bit#(32) data, Bit#(5) amt) if (cnt == 0);
dir <= d;
r <= data;
cnt <= amt;
endmethod
method Bit#(32) result() if (cnt == 0);
return r;
endmethod
endmodule

What schedule will the compiler deduce for Ben’s design? (If you must make a choice at some point
make it arbitrarily.) What hardware will the compiler generate? Diagram the resulting datapath,
clearly labelling which part corresponds to the scheduling logic.

What predicates should Ben have provided? How do they change the schedule? Redraw the correct
datapath which will result, again highlighting the scheduling logic.

