
FPGA Implementation of a Three-Stage SMIPSv2 Processor

6.375 Laboratory 3
March 11, 2009

In the first lab assignment, you built and tested an RTL model of a two-stage pipelined SMIPSv2
processor, while in the second lab, you built a Bluespec model of a 3 stage pipeline. In the third lab
assignment, you will be using various commercial EDA tools to synthesize, place, and route your
Bluespec design. You will then emulate your design on an FPGA platform. In addition, you will
attempt to optimize your design to increase performance and/or decrease area. This lab has two
objectives: the first is to introduce you to the tools you will be using in your final projects, and
give you some intuition into how high-level hardware descriptions are transformed into functional
FPGA implementations. The second objective is to deepen your understanding of Bluespec to the
point where you can achieve full parallelism in your Bluespec designs. This will require you to
understand rule conflicts and to resolve them with Wire primitives. CircBSV.tar, which is posted
on the resources page of the course web-site, has some good examples.

Unlike the previous two labs, this lab will be done in groups of two. As such, the deliverables for
the lab will be slightly more time consuming than the previous labs. Some problems are open-
ended, requiring thoughtful implementation. Do not wait until the last minute to attempt them.
Good team work is essential in completing the labs in a timely manner. The final lab problem
is the most difficult, but it is independent of the other problems; we recommend partitioning the
implementation this problem and the other four.

The deliverables for this lab are (a) your optimized Bluespec source, driver software, and all of
the scripts necessary to completely generate your FPGA implementation checked into CVS, (b)
written answers to the critical questions given at the end of this document, and (c) an FPGA
demonstration. The lab assignment is due at the start of class on Friday, March 13. As usual, you
must submit the written answers by hand in class. Demonstrations will be scheduled during TA
office hours the following Monday.

Before starting this lab, it is recommended that you revisit the Bluespec model you wrote in the
first lab. Take some time to clean up your code, add comments, and enforce a consistent naming
scheme. You will find as you work through this lab assignment that having a more extensive module
hierarchy can be very advantageous; initially we will be preserving some module boundaries through
the tool-flow which means that you will be able to obtain performance and area results for only some
modules. By default, the Bluespec compiler flattens all module definitions into one large module.
Use of the synthesize annotation before a module implementation will direct BSC to generate
modular verilog. Please refer to the language guide (/mit/6.375/doc/bsc-reference-guide.pdf) for
more information on the use of this directive. Unfortunately, preserving the module hierarchy
throughout the tool-flow means that the CAD tools will not be able to optimize across module
boundaries. If you are concerned about this you can remove the (* synthesize *) directive from
your Bluespec code, reverting to the Bluepsec compiler’s default behavior of generating flattened
Verilog. Additionally, you can instruct the CAD tools to flatten the design before optimization.

Figure 1 illustrates the 6.375 tool-flow we will be using for the third lab. You should already be
familiar with the simulation and compilation paths from the first and second labs. The Verilog code
used by the FPGA CAD tools will be generated by the Bluespec compiler from your BSV code. We
will use Synopsys Synplify Pro to synthesize the design. Synthesis is the process of transforming
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an RTL model into a gate-level model. For this lab assignment, Synplify Pro will take your RTL
model of the SMIPSv2 processor as input, along with a description of the FPGA cell library, and
it will produce a Verilog net-list of FPGA cell gates. Unlike an ASIC synthesis flow, Synplify Pro
will also map high-level constructs, such as memories, onto specialized FPGA blocks.

We will use Altera Quartus II to place and route the design. Placement is the process by which each
cell is positioned on the FPGA, while routing involves wiring the cells together using the various
FPGA communication channels. Notice that you will be receiving feedback on the performance
and resource consumption of your design after both synthesis and place+route - the results from
synthesis are less realistic but are generated relatively rapidly, while the results from place+route
are more realistic but require much more time to generate. Place+route for your two-stage SMIPSv2
processor will take on the order of 15 minutes, but for your projects it could take up to an hour.

Finally, after place+route we will tie the routed design and compiled C code together to produce
a bit-file, again using Quartus II. This bit-file will be used to program the FPGA.

Disclaimer: This is the first time we are using FPGAs in 6.375, and we are using many new tool-
chains and build paths. As a result, you may encounter “interesting” behaviors when attempting
to complete the lab. If you encounter such behaviors, notify the TA immediately.

Another consequence of the novelty of the labs is that some aspects of the tools may be hard to
understand. Should you have difficulty in figuring out what to do with a particular tool, contact
the TA. The focus of the lab is digital design, not obscure compiler flags – do not get needlessly
bogged down.

Each piece of the tool flow has its own build directory and we have scripted a basic tool chain for
you. Please consult the following tutorials for more information on using the various parts of the
tool flow.

• Tutorial 9: RTL-to-Gate Synthesis using Synopsys Synplify Pro
• Tutorial 10: Synthesis and Place and Route using Quartus II
• Tutorial 11: System Building with SOPC Builder
• Tutorial 12: Programming with the NIOS II IDE
• Tutorial 13: Importing IP with SOPC Builder Required

Getting Started

To begin the lab you will need to make use of the lab harness located in /mit/6.375/lab-harnesses.
The lab harness provides makefiles, scripts, and test harnesses required to complete the lab.
In order to get started, unpack the test harness, copy the src directory from your lab2 project
and check everything into your CVS directory as lab3T. Assuming your lab2 code is located on
2008s/kfleming/lab2, the following commands extract the lab harness into your CVS directory,
copy the relevant files from lab2 and adds the new project to CVS.

% cd 2008s/students/kfleming
% tar -xzvf /mit/6.375/lab-harnesses/lab3-harness.tgz
% cp lab2/src/*.* lab3/src/
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Figure 1: 6.375 Toolflow for Lab 3

<copy over any local tests if they exist>
<make sure you can still compile and run all the assembly tests>
% find lab3 | xargs cvs add
% cvs commit -m "Initial checkin"
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The resulting lab3 project directory resembles the structure you used in lab2. The primary
change to the original directory structure is the introduction of the syn and par, which contain
files necessary to build the physical implementation of your design. Although we have scripted the
tool-flow, both Quartus and Synplify Pro have GUIs which you can use to examine these files. The
build directory contains the following subdirectories which you will use when building your FPGA
design.

• bdir - Bluespec generated intermediate files
• vdir - Bluespec generated Verilog
• simdir - Bluespec generated Bluesim simulation files
• cdir - Bluespec generated C codes (not used)
• syn - Synplify Pro Synthesis
• par - Quartus II Place and Route

We have provided you with a basic tool-chain, which should be capable of building your design,
running it on the FPGA, and collecting run results. You will have to make modifications to
these script files as you push your design through the physical tool-flow. The following
command will build a bit-file, complete with code, which can be used to program the FPGA.

% pwd
2008s/students/kfleming/lab3/build
% make bitfile

Building an FPGA bitfile is a very computationally intensive task. For your simple three-stage
SMIPS processor, synthesis and place+route can take anywhere from 10 minutes to 20 minutes.
Budget your time accordingly.

FPGA System

Figure 2 shows a diagram of the Lab 3 system. In addition to the SMIPS processor, the system
has a second, NIOS co-processor. In the system, the NIOS processor drives the SMIPS processor,
collects performance information about the SMIPS processor, and acts as a rudimentary debugger
for the SMIPS processor. As no cache-coherence mechanism is in operation, we recommend halting
the SMIPS processor before taking any action from the NIOS that could affect the state of the
SMIPS.

You will implement Lab 3 on the terasiC DE2-70 board, shown in Figure 3, which features a
medium-sized Cyclone II FPGA and rich set of peripherals. Of the peripherals, we will use only
the UART for printf and will ignore the rest of the peripherals for the lab, although for your
projects, you may use any peripherals you see fit.

The 38-301 lab machines have been configured to interface directly with the DE2 boards for both
programming and running the lab test-benches. On these machines, the following command should
run the test programs on the FPGA and collect results over the serial line. Running each test-bench
takes about 20 seconds.

% pwd
2008s/students/kfleming/lab3/build
% make run-asm-tests-fpga && run-bmarks-smips-fpga
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Figure 2: 6.375 System for Lab 3

During each test, two programs are run within the FPGA. The first is the SMIPS benchmark
program, which you should not have to edit or compile yourself. The second program in the system
is the SMIPS driver program, which is run on the NIOS-II processor. We have provided you with
a simple driver program, located in par/software, which starts the SMIPS and waits until the
SMIPS writes to the toHost register.

Although no modification is necessary to the provided program, you may want to make alterations
to this program as you test out the new features of your implementation. Altera provide an
Eclipse based IDE for editing NIOS programs, which can be invoked by typing nios2-ide into the
command line. We have provided you with a basic software implementation:

% pwd
2008s/students/kfleming/lab3/par/software
% ls

smipsV2 smipsV2_syslib

smipsV2 contains the main source code, while smipsV2 syslib will build any necessary system
libraries. You must import these two projects into the IDE, which can be done from the File
menu. You may be asked to provide a ptf file. This file is generated by SOPC Builder and contains
some metadata about the NIOS system:

% pwd
2008s/students/kfleming/lab3/par/
% ls *.ptf
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Figure 3: DE2-70 Board

smipsV2System.ptf

Building the smipsV2 project will generate the hex files necessary to program the FPGA, once par
is completed.See Tutorial 12 for more information on how to program the NIOS.

Debugging with CBus

Unlike the VCS or BlueSim simulators, where $display and waveform viewers may probe every
wire at any time, it is not very easy to determine what is going on within a physical circuit. Often
to debug physical systems, designers will run certain signals out to pins on the board. However,
for complex systems, this approach may be too slow, low-level, and error-prone to be workable.

We therefore introduce the CBus as an alternative debugging mechanism. CBus is a simple bus
mapping utility that can construct a bus interface across an entire design. We have implemented
a collection of CBus modules, each of which has a some notion of address. For example, to add
a read only register to the CBus, invoke mkCBusWideRegR(addr,reg). This call will map reg
into the CBus starting at address addr. The current address mapping can be found in the file
FPGATypes.bsv. You may extend this mapping as you wish, but be aware that registers larger
than AvalonDataWidth, 32 in this case, will be mapped across successive addresses. CBus performs
no address conflict check, so it is up to you to ensure that your register mapping is valid. The
source for our CBus modules and some C drivers for the modules can be found in the BSVCLib.

The CBus module collect builds a list of all CBus modules in the system and exposes this list using
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exposeCBusIFC, typically in a top level module. At the top level, read and write queries may be
fed into the CBus, which then maps the requests on to the modules it has collected. As a result of
this collection behavior, modules which have CBus must be declared with the following syntax:

module [ModWithCBus#(AvalonAddressWidth,AvalonDataWidth)] mkProc( IProc );

Modules containing CBus are not separately synthesizable – should you require a synthesis boundary
you must expose the CBus.

We attach our CBus interface to a soft-core co-processor, which provides us with debug facilities
like printf. We could also implement more complex interactive debugging mechanisms using the
same interface.

A number of debugging facilities and performance counters have been implemented for you using
CBus and given you some simple C drivers for the software co-processor. Feel free to implement any
debugging interfaces you require, but take care that your CBus address mappings do not conflict.

Lab Hints and Tips

This section contains several hints and tips which should help you in completing the lab assignment.

Tip 1: Start Early!

While compilation of the SMIPS processor for FPGA does not take a long time relative to other
FPGA designs, it does lengthen the design feedback path substantially. If you start the lab late,
you may not have enough time to debug the lab due to long compilation times.

Tip 2: Always Test Your Processor After Making Modifications

When pushing your processor through the physical tool-flow, it is common to make some changes
to your RTL and then evaluate their impact on area, power, and performance. Always retest
your processor after making changes and before starting the physical tool-flow. You can use the
run-asm-tests make target to quickly verify that your processor is still functionally correct. Keep
in mind, that a fast or small processor which is functionally incorrect is worse than a slow or large
processor which works!

Tip 3: Reporting Clock Period

As discussed in the tutorials, you need to specify a clock period constraint during both synthesis
and place+route. The tools will try and meet this constraint the best they can. If your constraint is
too aggressive, the tools will take a very long time to finish. They may not even be able to correctly
place+route your design. If your constraint is too conservative, the resulting implementation will
be suboptimal. While the lab design can handle multiple clock domains, for this lab we will require
that your design be capable of running at 50 MHz.

Even if your design does not meet the clock period constraint it is still a valid piece of hardware
which will operate correctly at some clock frequency (it is just slower than desired). If your design
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Figure 4: Determining your hardware’s effective clock period

does not meet timing the tools will report a negative slack. Similarly, a design which makes the
timing constraint but does so with a positive slack can run faster than the constrained clock
period. For this lab we are more concerned about the effective clock period of your design as
opposed to the clock constraint you set before synthesis. The effective clock period is simply the
clock period constraint minus the worst slack (Tclk−Tslack). The synthesis and place+route timing
reports are all sorted by slack so that the path with the worst slack is listed first. To determine
the effective clock period for your design simply choose the smaller of the rising and falling edge
slacks. Figure 4 illustrates two examples: one with positive slack and one with negative slack. In
this example, our clock period constraint is 10 ns. In Figure 4(b), the post-place+route reports
indicate a positive slack value of 1.5 ns and thus the effective clock period is 8.5 ns. In Figure 4(c),
the post-place+route reports indicate a negative slack value of 4.75 ns and thus the effective clock
period is 14.75 ns. Notice that the effective clock period in Figure 4(c) is not equal to the worst
case combinational critical path (i.e. 13.5 ns). This is because we must also factor in setup time
and clock skew.

Tip 4: Design Good Test-benches

Even with easy-to-use CBus interface and some detailed knowledge of what is going on inside of the
processor, it is still challenging to obtain information from the FPGA. Save yourself the headache
– use the FPGA to identify problems in your system, but try to debug in simulation. If new
functionality is added, as in the critical thinking questions below, introduce a new test-bench to
exercise it. Unit-testing modified modules is another good strategy to ensure that your changes are
correct.

In complex systems, it is very easy for a small bug to cascade across the system quickly, obscuring
its true origin. Although it is tempting to hack at a suspected bug immediately, a better approach
is to introduce a test-vector that establishes the cause of the bug.

Tip 5: Use CVS to your advantage

It may make sense to archive functional versions of your processor in case something goes wrong.
CVS tags are useful in this respect, allowing you to label certain code revisions for future reference.
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Critical Thinking Questions

Question 1: Evaluate Your Baseline Processor

Push your baseline processor (no branch predictor, RWires) through the physical tool-flow and
report the information listed below. You may have to synthesize some modules separately to
obtain resource usage numbers. It is acceptable to remove CBus modules to obtain these results.

When reporting resource usage, be sure to list RAM and multiplier usage in addition to logic and
register usage.

• Post-synthesis resource consumption of the register file, and data-path (excluding register
file) rpt mkCoreFPGA.areasrr

• Post-synthesis resource consumption of processor from rpt mkCoreFPGA.areasrr

• Post-synthesis critical path and corresponding effective clock period in nanoseconds from
smipsV2.srr

• Post-place+route resource usage of processor (only the SMIPS, not the entire system)
smipsV2System.map.rpt

• Post-place+route critical path and corresponding effective clock period in nanoseconds
from smipsV2System.sta.rpt

Your post-place+route numbers will probably be significantly worse than your post-synthesis num-
bers. Explain why the place+route tool is; reporting more area and a longer clock period than
the synthesis tool. In Question 2 of the first lab you made some predictions concerning the critical
paths and the area of your design. Were these predictions correct? If they differ how has your
intuition changed after pushing your processor through the physical tool-flow?

Run the processor benchmarks on the FPGA. Does you processor run immediately? Did you meet
the 50 MHz clock rate? How much extra debugging was necessary?

Question 2: Breakpoints

Breakpoints are often used for debugging software, but software breakpoints can also be used as
an aide in debugging hardware on the FPGA. For example, if we want to test the effects of a
new instruction in isolation, we may use breakpoints to step through its execution, monitoring
machine state and checking for correctness. We can also use software breakpoints in a more tradi-
tional manner to collect precise performance information from the machine: to gather performance
information about a particular function we could set breakpoints at its entry and exit.

In this exercise, you will use CBus to implement a breakpoint mechanism for your SMIPS processor.
If the breakpoint is enabled, then the processor should halt when the breakpoint instruction is to
be executed. All preceding instructions should complete execution as normal, but the breakpointed
instruction should have no visible effect on the system until after the breakpoint is cleared. When
implementing your breakpoint, pay attention to the way that you handle branch instructions.

Once you have implemented and tested your breakpoint mechanism, describe its architecture. How
do you ensure the proper semantics of the breakpoint? Now that we can gather performance
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information precisely, how well does your simulation IPC match up to your FPGA IPC? Explain
any difference.

Question 3: Evaluate a Simple Branch-Predictor

If you have not done so already, implement the simple branch predictor described in Lab 2 hand-
out, and verify its correctness by running the assembly tests and benchmarks. Although predictors
generally increase the IPC, they may negatively impact the area or speed of your processor. In this
question we want to evaluate whether or not the branch predictor is a beneficial addition to the
processor. Report the change in post-place+route area and timing after adding the branch predic-
tor. Factoring in the advantages of the predictor (increased IPC) and the possible disadvantages
(increased area and clock period), do you think adding the predictor is a good idea? Given that
you baseline processor has poor rule concurrency (you probably won’t have gotten pcgen and exec
to fire in the same cycle), the increase in IPC is most likely negligible. What does this say about
the benefits of action-level speculation in the absence of action-level concurrency?

Question 4: Refining using RWires

Identify the source of conflict between the rules implementing the three pipeline stages of your
processor. Through a combination of rule decomposition (you may want to think about having a
separate exec rule for branch and jump instructions) and RWires, you should be able to increase
your IPC to something close to 1 for the long benchmarks.

RWires may be set each cycle by a writer and read later in that cycle. RWire uses a Maybe tag to
denote whether it has been written in a given cycle. Writes are not store; if a value is not read in
the cycle that it is written, it is lost. RWires have the following interface:

interface RWire#(type valType);
method Action wset(valType val);
method Maybe#(valType) wget();

endinterface

Recall that the schedule for the RWire is as follows:

wset < wget

You should also consider using mkRegFileWCF. This RegFile schedules upd and sub as conflict
free. While this will eliminate scheduling conflicts, you will have handle the case where upd and
sub touch the same address.

Using these constructs, create a version of your design which has the following scheduling property:

writeback < execute < pcGen

To do this you will need to mechanically transform your design as described in class. After identi-
fying the state elements responsible for the rule conflicts, eliminate the conflicts using RWire.
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Toggle your branch-predictor and report the FPGA IPC numbers with and without branch pre-
diction. With the addition of action-level concurrency (more rules firing in parallel), how does the
branch predictor (action-level speculation) affect performance? What throughput does this version
of your design achieve? Synthesize this version of the design as you did for Question 1. How have
the results changed and what was the cause of the biggest change? In your opinion is the difference
worth it? How does this method compare to experimentally sizing your FIFOs as in Question 1 of
Lab 2?

Question 5: Interfacing with Devices

Up until this point, we have assumed that memory is the only external device with which the
SMIPS processor interacts. However, to be useful, systems also need to interface with I/O devices.
Typically, in embedded systems, these I/O devices are memory-mapped, that is, they have registers
which the processor can address, read, and write just like memory locations. Unlike memory
locations, operations on memory mapped devices may have side-effects, for example, a write to
a certain address might toggle an LED on or off. Since these operations have different semantics
than memory operations, they must be handled differently. In particular these operations cannot
be cached – if the cache absorbs the toggling of the LED address, the LED will not blink.

Modify your SMIPS core to handle memory mapped I/O. There are several different ways of
implementing this feature, but we recommend simply treating some segments of the address space
as memory-mapped. By implementing memory mapped I/O you should be able to have your SMIPS
processor write “Hello World!” to the on-board serial port (examine the serial benchmark for
some software to handle this). We will require a successful demonstration of an operating “Hello
World!” program to pass this lab. The on-board serial port is shared between the SMIPS processor
and the debugging co-processor – be sure to carefully orchestrate the control of this resource.

Document your architecture and explain your reasons for choosing it. Which modules needed
modification? We have not provided you with a well-defined test environment for this question.
Describe your testing strategy. What modifications did you make to the original test-harness?

Once you have “Hello World” running, re-evaluate the original SMIPS benchmarks. Has the IPC
changed? Did the critical path or resource consumption change?


