
Importing IP into SOPC Builder

6.375 Tutorial 13
March 5, 2009

Although SOPC Builder offers many pre-existing cores from which powerful systems may be built,
designers often need to add custom IP into a system to probide some custom functionality. In this
tutorial, you will learn how to import a custom block into SOPC Builder and connect it to an
existing system.

Getting started

Before using the 6.375 toolflow you must add the course locker and run the course setup script with
the following two commands.

% add 6.375
% source /mit/6.375/setup.csh

For this tutorial, we will be using a simple SRAM as our example design. You should create a
working directory and checkout the SRAM example project from the course CVS repository using
the following commands.

% mkdir tut13
% cd tut13
% cvs checkout examples/sram
% cd examples/sram

Before starting, take a look at the subdirectories in the sram project directory. Figure ?? shows the
system diagram which is implemented by the example code. The important feature in the design
is the Avalon Bus Slave, which serves as a kind of glue logic to connect our SRAM to the rest of
the system. The slave logic will translate requests and responses from our SRAM into signals on
the bus.

Examine the directory structure of sram. The src directory contains the various Bluespec sources
needed for the SRAM, and the test directory contains a small test harness. The source code will
be built in the build directory.

We will first compile the example Bluespec code down to Verilog, and then we will import the
generated Verilog into SOPC builder. It is also possible to import synthesized gate-level descriptions
into SPOC builder. To build the verilog, execute:

% pwd
tut13/examples/sram
% cd build
% make avalonmasterslavetester

This command will build both the SRAM verilog (build/vdir/mkSmallAvalonRegisterFile.v)
and the testbench. You can verify that the code built properly by running the testbench:



6.375 Tutorial 13, Spring 2009 2

% ./avalonmasterslavetester
PASS

We will now import mkSmallAvalonRegisterFile into SOPC builder.

Importing Verilog into SOPC Builder

SOPC builder requires a Quartus II Project in order to run. Using the steps in Tutorial 10, create
a new Quartus project. Open SOPC builder using the Tools → SOPC Builder menu option. This
will bring up the SOPC Builder user interface, which will ask you to name the new project. Give
a name and click Continue.

Before we start using SOPC Builder, we must first point it at the Altera IP repository. Open the
Tools → Options menu. Add /mit/6.375/tools/altera/altera to the IP Search Path and click
Finish. As you add IP to SOPC Builder, you will need to extend the search path.

Open the Component Editor using the File → New Component button. Make note of the intro-
ductory screen and then click Next, bringing up the HDL import tab. Click on Add and select
mkSmallAvalonRegisterFile.v. The wizard will think for a little bit and then given a few warn-
ings and errors. These are normal and will be addressed on the subsequent tabs. Your screen
should look like this:

Figure 1: HDL Screen

Click Next, bringing up the Signals tab. In this tab we will declare special groups of wires in our
design. mkSmallAvalonRegisterFile has a clock input and an avalon slave interface. Use the
Interface column to add a new Clock Input interface and a new Avalon Memory Mapped Slave.
Take a look at the other options in the Interface column menu. The most important option, whose
usage is not obvious, is new Conduit, which exports a wire to the top level of the SOPC design.



6.375 Tutorial 13, Spring 2009 3

This enables you to tie the wire to external pins or other non-SOPC produced hardware. Assign
the mkSmallAvalonRegisterFile signals to the appropriate Signal Types. When you are done,
your Component Editor should look like this:

Figure 2: Signal Screen

Click Next, bringing up the Interfaces tab. First, click the Remove Interfaces With No Signals
button to clean up any interfaces that SOPC builder has erroneously inferred. Associate the
avalon slave with the clock sink. SOPC uses this information to ensure that communicating
interfaces are properly clocked. Set Max pending read transactions to 1. In principal, we could
set this value to be 2, since we have some buffering capacity in the AvalonSlave module, but
we will be conservative. Click Next again and then click Finish. Congradulations, you have just
imported a module. You should be able to see the mkSmallAvalonRegisterFile module in the
System Contents Menu, and you can now use it in any SOPC designs. To complete the lab, click
the Generate button. This should ensure that the path to your ip is set properly


