
Using CVS to Manage Source RTL

6.375 Tutorial 2

February 1, 2008

In this tutorial you will gain experience using the Concurrent Versions System (CVS) to manage
your source RTL. You will be using CVS to submit your lab assignments, but more importantly CVS
will make it much easier for groups of students to work on the same project simultaneously. CVS
keeps track of the changes each user makes to the source RTL - this complete version history enables
users to monitor what changes other users are making (each change includes log information), tag
working versions of the design (so that users can always revert back to a working version), and
resolve conflicts (when two users change the same bit of RTL at the same time).

CVS stores all version information in a central repository. Users cannot access the repository
directly, but must instead use a special set of CVS commands. Users begin by adding the initial
version of their source RTL to the repository. Users can then checkout the most current version of
the source RTL into a private working directory. Local changes to the working directory are not
stored in the repository until the user does a commit. Each commit includes a log message so that
other users can easily read what has changed. If multiple users are changing the source RTL at
the same time, then the state of the repository might be different from when the user performed
the original checkout. At any time, a user can do an update which brings the checked out working
directory in sync with the global repository. Sometimes an update will identify a conflict. A conflict
indicates that two users have made changes to the same bit of of RTL. Users must resolve conflicts
by hand - essentially they must choose whose changes should be permanent. Figure 1 illustrates
the relationship between the central repository and each user’s personal working directory.

In this tutorial we will create a test directory and a test file, add them to the repository, make some
changes, commit these changes, and then emulate issues which arise when multiple users change
the same file at the same time. Finally, we will learn how to use the ViewCVS program to browse
the repository, read log messages, and track changes.

You can find more information in the CVS user guide (cvs-user-guide.pdf) located in the course
locker (/mit/6.375/doc).

CVS
Central

Repository

User A
Working
Directorycheckout, update

add, commit

User B
Working
Directory

checkout, update

add, commit

Figure 1: Basic CVS model. Users checkout versions from the central repos-
itory into private working directories.



6.375 Tutorial 2, Spring 2008 2

Getting started

Before using the 6.375 toolflow you must add the course locker and run the course setup script with
the following two commands. The course setup script will set the CVSROOT environment variable
to /mit/6.375/cvsroot. The CVS commands use this environment variable to determine the
location of the repository.

% add 6.375

% source /mit/6.375/setup.csh

Adding Directories and Files to CVS

In this section we will look at how to add directories and files to the repository. Figure 2 shows the
timeline of cvs commands involved in this section.

All of your work will be in either your student CVS directory or your group’s project CVS directory.
For this tutorial we will be working in your student CVS directory. The very first step is to checkout
this directory. All cvs commands are of the form cvs <command>. For example, assuming your
user-name is cbatten the following commands will checkout your student CVS directory.

% mkdir tut2

% cd tut2

% cvs checkout 2008s/students/cbatten

% cd 2008s/students/cbatten

The following commands first create a test directory and test file, and then add them to the cvs
repository.

% mkdir cvstest

% cvs add cvstest

% cd cvstest

% echo ‘‘Fred : 617-555-0123’’ > phone-list.txt

% cvs add phone-list.txt

CVS
Repository

User A
Working
Directory

files

cvs add

cvs commit

Create new dirs/files

cvs checkout

Figure 2: Timeline for checkout, add, and commit.



6.375 Tutorial 2, Spring 2008 3

It is very important to note that the cvs add command is not recursive. In other words you must
add each file individually. We can use the find and xargs programs to emulate a recursive add.
The following command will add the given <directory> and all files within that directory to the
CVS repository.

% find <directory> | xargs cvs add

Although the directory and file are added to the repository they are not actually in the repository
until we commit them. Adding directories and files simply lets CVS know that we want the
versioning system to track these files. We need to commit the directory and file before they are
permanently in the repository. You can use the following command to check the current status of
all files.

% pwd

tut2/2008s/students/cbatten/cvstest

% cvs status

The status information should reflect that phone-list.txt has been locally added. We now need
to commit our new files to the repository. We can do this with the following commands.

% pwd

tut2/2008s/students/cbatten/cvstest

% cd ..

% cvs commit cvstest

The cvs commit command takes a list of files and directories as an argument. Unlike the cvs add

command, the cvs commit command is recursive, so committing a directory will effectively commit
all files (and subdirectories) within the directory. If you do not specify any files or directories, then
CVS will commit the current directory.

After executing the cvs commit command, you will be able to enter a log message using the simple
Pico text editor. Use the cvs status command again to verify that the phone-list.txt file has
now been committed into the repository. The status information lists a revision number. Every
change is given a unique revision number. These numbers are assigned by the CVS system, and
users should usually avoid working with revision numbers directly.

Our final step is to delete our working directory. It is essential that we always keep in mind the
difference between what is in the repository versus what is in the repository. As long as all our new
files have been added, and all our changes have been committed then there is nothing wrong with
deleting our working directory and doing a clean checkout.

% pwd

tut2/2008s/students/cbatten

% cd ../../..

% rm -rf 2008s



6.375 Tutorial 2, Spring 2008 4

Making and Committing Changes

In this section we will checkout the cvstest directory, make a change, and then commit the change
back into the repository. Figure 3 shows the timeline of cvs commands involved in this section.
Our first step is to do a clean checkout of the cvstest directory. The cvs checkout command
is recursive, so by checking out the cvstest directory we also checkout all files and subdirectories
contained within cvstest.

% pwd

tut2

% cvs checkout 2008s/students/cbatten/cvstest

Now let’s say Fred’s phone number has changed.

% cd 2008s/students/cbatten/cvstest

% perl -i -pe ’s/Fred.*/Fred : 617-555-4567/’ phone-list.txt

You can use the cvs diff command to see how your current working directory differs from the
repository. For example, if you use the cvs diff command in the cvstest directory, it will show
that you have updated Fred’s phone number.

% pwd

2008s/students/cbatten/cvstest

% cvs diff

Index: phone-list.txt

retrieving revision 1.1

1c1

< Fred : 617-555-0123

---

> Fred : 617-555-4567

And finally we commit our changes with an appropriate log message.

% cvs commit

CVS
Repository

User A
Working
Directory

files

cvs commit

Make changes to files

cvs checkout

Figure 3: Timeline for checkout, modify, and commit.



6.375 Tutorial 2, Spring 2008 5

We are done making our changes and everything has been committed so we can now delete our
working directory.

% pwd

tut2/2008s/students/cbatten/cvstest

% cd ../../../..

% rm -rf 2008s

Updating the Working Directory

In this section we will see how CVS can help multiple users work on the same project at the same
time. Figure 4 shows the timeline of cvs commands involved in this section. To emulate two users
we will checkout our cvstest directory into two different working directories. We begin with User
A using the following commands to checkout the current cvstest directory.

% pwd

tut2

% mkdir userA

% cd userA

% cvs checkout 2008s/students/cbatten/cvstest

% cd ..

Let’s say User B now checks out the current cvstest directory, adds a new file which contains
email addresses, and adds information about a new person named Jane.

% pwd

tut2

% mkdir userB

% cd userB

% cvs checkout 2008s/students/cbatten/cvstest

% cd 2008s/students/cbatten/cvstest

% echo ‘‘Fred : fred@mit.edu’’ > email-list.txt

% echo ‘‘Jane : 617-555-0021’’ >> phone-list.txt

% echo ‘‘Jane : jane@mit.edu’’ >> email-list.txt

% cat phone-list.txt

Fred : 617-555-4567

Jane : 617-555-0021

% cat email-list.txt

Fred : fred@mit.edu

Jane : jane@mit.edu

% cvs add email-list.txt

% cvs commit

User B’s final cvs commit command commits both his changes to the phone-list.txt file as well
as his newly added phone-list.txt file. Notice that at this point in time, User A’s working
directory is out-of-date (it does not contain the new email-list.txt file nor does it contain the
updated phone-list.txt file). User A can use the cvs status command to realize that her
working directory is out-of-date with respect to the central repository.



6.375 Tutorial 2, Spring 2008 6

% pwd

tut2/userB/2008s/students/cbatten/cvstest

% cd ../../../../../userA/2008s/students/cbatten/cvstest

% cvs status

cvs status: Examining .

===================================================================

File: phone-list.txt Status: Needs Patch

Working revision: 1.2 Sun Feb 19 21:20:50 2008

Repository revision: 1.3 .../2008s/students/cbatten/cvstest/phone-list.txt,v

...

Notice that the status of the phone-list.txt file is Needs Patch, and that the version of the file
in the repository is later than the version in the working directory. User A can use the cvs update

command to bring her working directory in sync with the central repository.

% pwd

tut2/userA/2008s/students/cbatten/cvstest

% ls

CVS phone-list.txt

% cat phone-list.txt

Fred : 617-555-4567

% cvs update

% ls

CVS email-list.txt phone-list.txt

% cat phone-list.txt

Fred : 617-555-4567

Jane : 617-555-0021

% cat email-list.txt

Fred : fred@mit.edu

Jane : jane@mit.edu

If User A uses cvs status again, she will see that her files are now up-to-date with respect to the
central repository. As another example, User A can use the following commands to delete a file
and then restore that file to the most current version in the repository.

% pwd

tut2/userA/2008s/students/cbatten/cvstest

% rm -rf phone-list.txt

% cvs update

If User A really wants to delete the file from the repository, then she can first delete the file from
the working directory and then use the cvs remove command. These removals are not visible to
other users until User A does a cvs commit.

% pwd

tut2/userA/2008s/students/cbatten/cvstest

% rm -rf email-list.txt

% cvs remove email-list.txt

% cvs commit



6.375 Tutorial 2, Spring 2008 7

CVS does not provide explicit commands for renaming or moving files, so users must instead use a
combination of cvs remove and cvs add to preform these operations.

If User B now does a cvs update, his copy of email-list.txt will also be removed. Let’s finish
up by deleting the working directories.

% pwd

tut2/userA/2008s/students/cbatten/cvstest

% cd ../../../../..

% rm -rf userA

% rm -rf userB

CVS
Repository

User B
Working
Directory

Make changes
and add new files

User A
Working
Directory

cvs checkout

files

files

cvs checkout

cvs add

cvs commit

cvs update

updates

cvs remove

cvs commit

Remove file

Figure 4: Timeline for two users with no conflicts



6.375 Tutorial 2, Spring 2008 8

Resolving Conflicts

In the previous section we examined what happens when two users simultaneously modify files in
the same project. Notice however, that in the previous example, the two users never modified the
same line of a file at the same time. In this section we will examine how to handle these conflicts.
Figure 5 shows the timeline of cvs commands involved in this section.

Let’s begin with both User A and User B doing a standard checkout.

% pwd

tut2

% mkdir userA

% cd userA

% cvs checkout 2008s/students/cbatten/cvstest

% cd ..

% mkdir userB

% cd userB

% cvs checkout 2008s/students/cbatten/cvstest

% cd ..

Now let’s assume that User A changes Fred’s phone number as follows.

% pwd

tut2

% cd userA/2008s/students/cbatten/cvstest

% perl -i -pe ’s/Fred.*/Fred : 617-555-3333/’ phone-list.txt

% cvs commit

Now assume that User B changes Fred’s phone number to a different number.

% pwd

tut2/userA/2008s/students/cbatten/cvstest

% cd ../../../../../userB/2008s/students/cbatten/cvstest

% perl -i -pe ’s/Fred.*/Fred : 617-555-5555/’ phone-list.txt

% cvs commit

cvs commit: Examining .

cvs commit: Up-to-date check failed for ‘phone-list.txt’

cvs [commit aborted]: correct above errors first!

Notice that User B has received an error when trying to commit his changes. The CVS repository
has realized that User B’s change conflicts with User A’s original change. So User B must do a cvs

update first.

% pwd

tut2/userB/2008s/students/cbatten/cvstest

% cvs update

cvs update: Updating .

RCS file: .../2008s/students/cbatten/cvstest/phone-list.txt,v

retrieving revision 1.3



6.375 Tutorial 2, Spring 2008 9

retrieving revision 1.4

Merging differences between 1.3 and 1.4 into phone-list.txt

rcsmerge: warning: conflicts during merge

cvs update: conflicts found in phone-list.txt

C phone-list.txt

The CVS messages during the update indicate that there is a conflict in phone-list.txt. A conflict
simply means that there is a file in the current working directory which has lines which differ from
what is in the repository. CVS tries to merge files so that only true conflicts are reported. In
other words, if two people change different parts of the same file, then usually CVS will be able to
merge the two versions without a conflict. In this case both User A and User B changed the exact
same line, so CVS does not know which modification should take priority. CVS requires that users
resolve conflicts by hand. After doing a cvs update, User B’s copy of phone-list.txt will look
like this.

% pwd

tut2/userB/2008s/students/cbatten/cvstest

% cat phone-list.txt

<<<<<<< phone-list.txt

Fred : 617-555-5555

=======

Fred : 617-555-3333

>>>>>>> 1.4

Jane : 617-555-0021

The content involved in the conflict is delimited by <<<<<<< and >>>>>>>. User B then needs to
resolve the conflict by editing phone-list.txt. Let’s assume that User B wants to override User
A’s earlier change. Edit phone-list.txt so that it looks like this.

% pwd

tut2/userB/2008s/students/cbatten/cvstest

% cat phone-list.txt

Fred : 617-555-5555

Jane : 617-555-0021

Now if User B does a cvs commit it will succeed and essentially User A’s changes will have been
overridden. User A can then do a cvs update to synchronize her working directory. A common
rule of thumb is to always do an update (to catch conflicts) before doing a commit. Let’s finish up
by deleting the working directories.

% pwd

tut2/userB/2008s/students/cbatten/cvstest

% cd ../../../../..

% rm -rf userA

% rm -rf userB



6.375 Tutorial 2, Spring 2008 10

CVS
Repository

User B
Working
Directory

User A
Working
Directory

Resolve conflict
by hand

cvs checkout

files

files

cvs checkout

cvs commit

Conflict!

updates

cvs commit

cvs update

cvs commit

Make changes

Make changes

Figure 5: Timeline for two users with conflicts

Using Tags

In the previous sections we have learned how to use CVS to manage various versions of our source
RTL. We have primarily focused on how to manipulate the most current version in the repository.
Sometimes when we reach a milestone, we want to mark a version so that we can retrieve it at a
later time even if we have already made (and committed) many other changes. We can do this
with CVS tags. A tag is simply a symbolic name we give to a specific version of several files.

The following commands checkout the cvstest directory, add two new files, and then tags every-
thing. It is important to always do a cvs update and a cvs commit before doing a cvs tag since
the tag operation works on the most current version in the repository. If you have made changes
in your local directory which are not yet committed then this could incorrectly tag the files. The
-c option to the cvs tag command will cause CVS to abort if there are any locally modified files
which are not committed yet.

% pwd

tut2

% cvs checkout 2008s/students/cbatten/cvstest

% cd 2008s/students/cbatten/cvstest

% echo ‘‘Fred : fred@mit.edu’’ > email-list.txt

% echo ‘‘Jane : jane@mit.edu’’ >> email-list.txt

% echo ‘‘Fred : 32-G736’’ > office-list.txt



6.375 Tutorial 2, Spring 2008 11

% echo ‘‘Jane : 32-G738’’ >> office-list.txt

% cvs add email-list.txt

% cvs add office-list.txt

% cvs update

% cvs commit

% cvs tag -c example-tag

The above commands tag all three files (phone-list.txt, email-list.txt, and office-list.txt)
with the symbolic tag example-tag. We can now retrieve this version of the files at any time by
using this tag. To see how this work’s let’s first commit some additional changes.

% pwd

tut2/2008s/students/cbatten/cvstest

% echo ‘‘Sara : 617-555-0234’’ >> phone-list.txt

% echo ‘‘Sara : sara@mit.edu’’ >> email-list.txt

% echo ‘‘Sara : 32-G736’’ >> office-list.txt

% cvs update

% cvs commit

Now let’s delete the working directory and try checking out two different versions of the files.

% pwd

tut2/2008s/students/cbatten/cvstest

% cd ../../../..

% rm -rf 2008s

% mkdir tagged-version

% cd tagged-version

% cvs checkout -r example-tag 2008s/students/cbatten/cvstest

% cd ..

% mkdir current-version

% cd current-version

% cvs checkout 2008s/students/cbatten/cvstest

% cd ..

% cat tagged-version/2008s/students/cbatten/cvstest/phone-list.txt

Fred : 617-555-3333

Jane : 617-555-0021

% cat current-version/2008s/students/cbatten/cvstest/phone-list.txt

Fred : 617-555-3333

Jane : 617-555-0021

Sara : 617-555-0234

The checked out version in the tagged-version directory corresponds to the example-tag symbolic
tag, while the version in the current-version directory corresponds to the most recent version in
CVS. Tagging is particularly useful when you reach a working milestone. You can tag your project
and then at any time you can go back and retrieve the working version as of that milestone. Let’s
finish up by deleting the working directories.

% pwd

tut2

% cd ..

% rm -rf tut2



6.375 Tutorial 2, Spring 2008 12

Using ViewCVS to Browse the Repository

The previous sections illustrated how to add, checkout, update, and commit files using CVS. It is
often useful to browse the repository to see what changes other users have made. For example,
assume one evening your RTL is working wonderfully. A group member makes some changes the
next day and checks them in. Now the RTL starts failing some of your tests. You can browse the
CVS repository to see what changes your partner made, and thus try and identify what is causing
the failures. Although it is possible to browse the repository using cvs commands directly, it is
much more convenient to use a graphical front-end to the repository. In 6.375, we will be using
ViewCVS to browse the repository. The following command will launch ViewCVS and display the
configuration dialog box (see Figure 6).

% start-viewcvs &

Click on the Open Browser button. After a few seconds a Mozilla browser should appear, and
it should automatically point to http://localhost:6375/viewcvs. Browse the repository to
the cvstest directory we have been working on in this tutorial. You should see the three files
(phone-list.txt, email-list.txt, and office-list.txt). If you click on the drop-down Show

files using tag: menu at the bottom of the page you can choose which tag to browse. If you click on
one of the files you can see a complete version history of that file. The history lists the time, user,
and log message for every version. Furthermore, you can actually view each version or compare the
differences between versions.

If more than one user on a specific machine is using ViewCVS at the same time, then the con-
figuration dialog box may hang saying “Starting server ...”. In this case you simply need to start
ViewCVS on a different (currently unused) port using the -p command line option. Try several
ports around 6375 until the configuration dialog box indicates you were able to setup a localhost
server.

% start-viewcvs -p 6376 &

Figure 6: ViewCVS Configuration Dialog Box



6.375 Tutorial 2, Spring 2008 13

Review

In this tutorial you have learned how to use CVS to manage your source RTL. You have learned
how to add new files to the repository, checkout files from the repository, and commit local changes
into the repository. You have also learned how to use ViewCVS to browse the CVS repository. The
following table lists the cvs commands that you will use most frequently in this course.

cvs checkout Checks out files from the repository into the working directory

cvs add Adds new files to repository (must commit after adding)

cvs commit Commits files in working directory into the repository

cvs update Brings working directory in synch with respect to repository

cvs remove Removes file from CVS (must use rm first)

cvs status Shows status of files in working dir compared to current version in repo

cvs diff Shows how files in working dir differ from current version in repo

cvs tag Adds a symbolic tag for current version (always use with -c)


