
GAA-to-RTL Synthesis using the Bluespec Compiler

6.375 Tutorial 8

February 14, 2008

In this tutorial you will gain experience using the Bluespec Compiler (BSC) to automatically
synthesize a register transfer level (RTL) hardware description from a guarded atomic action (GAA)
hardware description. A GAA hardware description decomposes the design into many rules or
actions. Each rule has a predicate and only fires when that predicate is true. Rules read a subset of
the design’s state, perform some operation, and then write a subset of the design’s state. Each rule
is atomic with respect to all other rules, and as a consequence a hardware designer can consider
each rule in isolation assuming no other rules are firing in parallel. For this course we will be writing
our GAA using the Bluespec System Verilog (BSV) hardware description language. The Bluespec
Compiler takes BSV as input and generates an efficient RTL implementation which preserves the
GAA semantics. Figure 1 shows how the Bluespec Compiler fits into the 6.375 toolflow.

The most straightforward RTL implementation of a GAA design would simply execute one rule
each cycle. Although semantically correct, this implementation would be extremely slow. The
Bluespec Compiler attempts to schedule multiple rules to fire in the same clock cycle while still
maintaining correctness.

This tutorial begins by examining a greatest common divisor unit to illustrate the basics of the
compiler and the language. The tutorial then uses several toy examples to show various scheduling
issues. Finally, a multi-cycle (unpipelined) SMIPSv2 processor is used to demonstrate designing
larger systems with Bluespec.

The following documentation is located in the course locker (/mit/6.375/doc) and provides addi-
tional information about the Bluespec System Verilog language as well as the Bluespec Compiler.

• bsc-reference-guide.pdf - Bluespec System Verilog language reference

• bsc-user-guide.pdf - Bluespec Compiler user guide

• bsc-style-guide.pdf - Patterns and idioms for designing with Bluespec

• bsc-timing-closure.pdf - Approaches for increasing performance of Bluespec designs

• bsc-known-issues.pdf - Known bugs and issues with the Bluespec Compiler

• bsc-examples - Directory containing several Bluespec examples

Getting started

Before using the 6.375 toolflow you must add the course locker and run the course setup script with
the following two commands.

% add 6.375

% source /mit/6.375/setup.csh

For this tutorial we will be examining a greatest common divisor unit and a multi-cycle (un-
pipelined) SMIPSv2 processor as our example BSV designs. You should create a working directory
and checkout the examples from the course CVS repository using the following commands.

6.375 Tutorial 8, Spring 2008 2

Timing
Area

Design Compiler

Gate
Level
Netlist

Timing
Area

LayoutGate
Level
Netlist

Floor
Plan

Encounter (FP)

BSV
Source

Verilog
RTL

Bluespec Compiler

VCS

VirSim

RTL
Sim

Encounter (PAR)

Std
Cell
Lib

Design Vision

Test
Outputs

Execute Sim

Figure 1: Encounter Toolflow

% mkdir tut8

% cd tut8

% cvs checkout examples/gcd-v

% cvs checkout examples/gcd-bsv

% cvs checkout examples/smipsv2-4mcycle-bsv

Before starting the tutorial, browse through the two example Bluespec projects. The actual designs
will be discussed in more detail in the following sections. Notice that the directory structure is
identical to our previous projects. The src directory contains our BSV source and the build

directory contains various makefiles and scripts for running the tools. There is a new build directory
named bsc-compile for running the Bluespec Compiler.

Running the Bluespec Compiler

In this section, we will be using the Bluespec compiler to synthesize a simple GCD unit. Take a
closer look at the source code located in examples/gcd-bsv/src. The IGcd.bsv file contains an
interface for a GCD unit while the mkGcd.bsv and mkGcdWithAlu.bsv files contain two different
implementations of this interface. It is common to keep an interface and its implementations in
separate files. The source directory also contains an appropriate test harness. The mkGcdTH module

6.375 Tutorial 8, Spring 2008 3

in the mkGcdTH.bsv BSV file implements a simple state machine which pushes several tests into
the GCD unit and verifies the results. The mkGcdTH wrapper.v file is a Verilog wrapper to drive
the clock and reset signals in our design. All of our Bluespec projects will need a toplevel Verilog
wrapper.

Figure 2 is a cloud diagram and Figure 3 is the corresponding Bluespec code for the mkGcd module.
A cloud diagram shows the rules, methods, and state present in the design and uses arrows to
indicate the dataflow between these elements. Action-value method, action methods (such as the
start method), and rules (such as swap and subtract) are all represented with clouds since all
three constructs can change the state of a module. This is in contrast to value methods such as
the result method which cannot change the state of a module.

There are a couple key syntactic issues which are important to keep in mind when writing in BSV.
The first is that each BSV file should contain one and only one package, and that package should
have the exact same name as the file. For example, the mkGcd.bsv file contains one package named
mkGcd. At the beginning of each package we use import statements to tell the compiler which
packages (and thus which BSV files) will be used by the current package. For example, the mkGcd

package imports the IGcd package since it contains the GCD interface. All BSV type names must

begin with an uppercase letter and all module names must begin with a lowercase letter. For
example, the IGcd interface, Reg#(Int#(32)) interface, and the Int#(32) type all begin with an
uppercase letter, while the mkGcd module begins with a lowercase letter. Although not required, we
suggest that you use an uppercase I prefix for all interfaces. We will use the TH suffix to indicate
files and modules which make up a test harness.

We will run the Bluespec Compiler manually and then learn later how to automate the process
with makefiles. Begin by creating a temporary build directory and copying the BSV source files.
We must copy the BSV source files since the Bluespec Compiler currently assumes that the source
files are located in the same directory from which the compiler is executed.

% pwd

tut8

% cd examples/gcd-bsv/build

% mkdir temp

% cd temp

% cp ../../src/*.bsv .

We can now use the following two commands to compile each BSV file into Verilog. You can
learn more about the possible command line options in the Bluespec System Verilog User Guide

(bsc-user-guide.pdf) or simply use bsv -help.

% pwd

tut8/examples/gcd-bsv/build/temp

% bsc IGcd.bsv

% bsc -verilog Gcd.bsv

% bsc -verilog -g mkGcdTH mkGcdTH.bsv

The -verilog command line option tells the compiler to use the Verilog code generation backend.
Although there is a C code generation backend, we will not be using it in this course. The -g

command line option is used to specify the toplevel module in the design. In addition to the

6.375 Tutorial 8, Spring 2008 4

start
method

result
method

start

swap

subtract

A

B

mkGcd

Figure 2: Cloud diagram for the mkGcd BSV module

package mkGcd;

import IGcd::*;

(* synthesize *)

module mkGcd(IGcd);

Reg#(Int#(32)) a <- mkRegU;

Reg#(Int#(32)) b <- mkReg(0);

rule swap ((a < b) && (b != 0));

a <= b; b <= a;

endrule

rule subtract ((a >= b) && (b != 0));

a <= a - b;

endrule

method Action start(Int#(32) a_in, Int#(32) b_in) if (b == 0);

a <= a_in; b <= b_in;

endmethod

method Int#(32) result() if (b == 0);

return a;

endmethod

endmodule

endpackage

Figure 3: Bluespec System Verilog source for a greatest common divisor unit

6.375 Tutorial 8, Spring 2008 5

Verilog RTL, the compiler will also generate intermediate bi and bo files. You should not need to
directly use any of these intermediate files.

The Bluespec Compiler includes its own dependency tracking infrastructure to determine which
BSV files are required to build a given toplevel module and which of these BSV files are out of date
and thus need to be recompiled. The -u command line option enables the Bluespec dependency
tracking infrastructure. For example, the following commands rebuild the design in one step.

% rm -rf *.bi *.bo *.v

% bsc -u -keep-fires -verilog -g mkGcdTH mkGcdTH.bsv

We have also added the -keep-fires command line option so that the compiler will generate
extra signals to help in debugging. We will learn more about these signals later in this section.
Try running the Bluespec Compiler again with the -u option. The compiler will indicate that the
packages (i.e. the source BSV files) are up-to-date and that there is no need for recompilation.

Examining the Generated Verilog RTL

Take a look at the generated verilog for the GCD unit located in mkGcd.v (see Figure 4). Notice
that the compiler generates Verilog-1995; it will not generate any Verilog-2001 constructs. The
mkGcd Verilog module includes ports which correspond to the Bluespec interface methods. The
start method has been implemented with two input ports for the a in & b in arguments and
an EN start & RDY start pair for the method control flow. The Bluespec Compiler specifies the
micro-protocol implemented by these enable and ready signals. The module signals to the caller
that it is ready by setting the ready signal to one. The caller can then actually call the method
by setting the enable signal to one. The caller is responsible for checking the ready signal before
setting the enable signal. Bluespec action-value and action methods have both an enable and a
ready signal. This is in contrast to Bluespec value methods which only have a ready signal. For
example, the result method is a value method and thus is implemented with just a ready signal.
When the RDY result signal is one then the value is valid. The compiler adds a CLK port (for the
clock signal) and RST N port (for the active-low reset signal) to all generated modules.

Because we set the -keep-fires command line option, the compiler will generate a CAN FIRE

& WILL FIRE signal pair for each action-value method, action method, and rule. Without the
-keep-fires option, the compiler would optimize many of these signals away. The CAN FIRE signal
will be one whenever the corresponding method or rule is able to fire that cycle. In other words,
the CAN FIRE signal reflects the status of the predict (including implicit and explicit conditions) for
the corresponding method or rule. The WILL FIRE signal will be one whenever the corresponding
method or rule actually does fire that cycle. The CAN FIRE signals and WILL FIRE signals are
the inputs and outputs for the Bluespec generated scheduler. Notice that the scheduler is just
combinational logic inside the mkGcd module. If a rule is able to fire but does not because of a
conflict then the CAN FIRE signal will be one but the WILL FIRE signal will be zero. You should be
able to recognize the predicates for the subtract and the swap rules. By examining the WILL FIRE

signals we can see that the compiler has generated a schedule such that both rules always fire when
enabled.

By default, the compiler flattens the entire design into a single Verilog module. Although the
generated net names include some of the original BSV hierarchy information, this flattened de-
sign can be very difficult to debug. We can use the (* synthesize *) attribute before a BSV

6.375 Tutorial 8, Spring 2008 6

module mkGcd(CLK, RST_N, start_a_in, start_b_in, EN_start, RDY_start, result, RDY_result);

input CLK, RST_N;

input [31 : 0] start_a_in; // Start method input operand

input [31 : 0] start_b_in; // Start method input operand

input EN_start; // Start method enable signal

output RDY_start; // Start method ready signal

output [31 : 0] result; // Result method return value

output RDY_result; // Result method ready signal

// Register A // Register B

reg [31:0] a; reg [31:0] b;

reg [31:0] a$D_IN; wire [31:0] b$D_IN;

wire a$EN; wire b$EN;

wire a_SLT_b___d3 = (a ^ 32’h80000000) < (b ^ 32’h80000000) ;

// Start action method

wire RDY_start = (b == 32’d0) ;

wire CAN_FIRE_start = EN_start ;

wire WILL_FIRE_start = EN_start ;

// Result value method

wire RDY_result = (b == 32’d0);

wire [31:0] result = a ;

// Rule RL_subtract

wire CAN_FIRE_RL_subtract = !a_SLT_b___d3 && b != 32’d0 ;

wire WILL_FIRE_RL_subtract = CAN_FIRE_RL_subtract ;

// Rule RL_swap

wire CAN_FIRE_RL_swap = a_SLT_b___d3 && b != 32’d0 ;

wire WILL_FIRE_RL_swap = CAN_FIRE_RL_swap ;

// Register A mux and enable logic

always @(EN_start or start_a_in or WILL_FIRE_RL_swap or b or WILL_FIRE_RL_subtract)

begin

case (1’b1) // synopsys parallel_case

EN_start : a$D_IN = start_a_in;

WILL_FIRE_RL_swap : a$D_IN = b;

WILL_FIRE_RL_subtract : a$D_IN = a - b;

default: a$D_IN = 32’hAAAAAAAA /* unspecified value */ ;

endcase

end

assign a$EN = EN_start || WILL_FIRE_RL_swap || WILL_FIRE_RL_subtract ;

// Register B mux and enable logic

assign b$D_IN = EN_start ? start_b_in : a ;

assign b$EN = EN_start || WILL_FIRE_RL_swap ;

// Register State

always @(posedge CLK) begin

if (!RST_N) b <= 32’d0;

else if (b$EN) b <= b$D_IN;

if (a$EN) a <= a$D_IN;

end

endmodule

Figure 4: Generated Verilog RTL for the mkGcd Bluespec Module

6.375 Tutorial 8, Spring 2008 7

sub

A
mux
sel

B
mux
sel

A
reg
en

B
reg
en

A

B

zero?
operands_bits_A

operands_bits_B

result_bits_data
lt?

B = 0 A < B

Figure 5: Datapath for hand written RTL model of greatest common divisor unit

module definition to tell the compiler that we want it to create a separate Verilog module (in a
separate Verilog file) for that specific BSV module. In this example we used a (* synthesize *)

attribute for the mkGcd module and as a consequence we generated two separate Verilog modules:
the mkGcd module in mkGcd.v and the mkGcdTH module in mkGcdTH.v. If we were to comment
out the (* synthesize *) attribute, then the compiler would generate a single flattened Verilog
module. We will attempt to preserve the module hierarchy as much as possible with regular use
of the (* synthesize *) attribute. Unfortunately, the Bluespec Compiler cannot create separate
Verilog modules if the corresponding BSV modules have parameters or if the module interface has
parameters. Even so, we should try to use the (* synthesize *) attribute whenever possible.

Now let’s examine the generated combinational and sequential logic and compare it to the hand
written Verilog RTL located in examples/gcd-v/src. Figure 5 shows the hand written datapath.
Can you find the A & B registers and the A & B muxes in the generated Verilog? Notice that for the
A mux, the compiler has generated a case statement where the case expression is a constant and the
case items are expressions. Although this is an awkward way to represent a mux, it is legal Verilog
(see Section 9.5 of the Verilog 2001 Language Description (verilog-language-spec-2001.pdf)).
Now look for the less-than comparison and the zero equality check in the generated Verilog. The
compiler has factored out the combinational logic for the less-than comparison, but the zero
equality check hardware is duplicated four times in the expressions for RDY start, RDY result,
WILL FIRE RL subtract, and WILL FIRE RL swap. Hopefully the RTL-to-Gates synthesis tool will
optimize this into a single zero equality check.

Although the Bluespec Compiler will do its best to refactor common combinational logic, sometimes
we need to be more explicit about what resources we would like to share among the rules. We
can do this by creating a helper combinational module as shown in the mkGcdWithAlu module.
The mkGcdAlu helper module includes only value methods and no state. We have added two
new attributes to the mkGcdAlu module. The (* always ready *) attribute tells the compiler to
optimize away the ready signal since all of the module’s methods should always be ready. The
compiler will statically check if all of the methods are indeed always ready, and it will produce an
error if this is not so.

6.375 Tutorial 8, Spring 2008 8

The following commands will rerun the compiler with the new version of the GCD unit.

% rm -rf *.bi *.bo *.v

% perl -i -pe ’s/mkGcd\(\)/mkGcdWithAlu\(\)/’ mkGcdTH.bsv

% bsc -u -keep-fires -verilog -g mkGcdTH mkGcdTH.bsv

If you examine the generated Verilog for the mkGcdWithAlumodule you will notice that zero equality
check logic is no longer duplicated. Instead the various methods and rules share the combinational
mkGcdAlu module to perform the less-than comparison, the zero equality check, and the subtraction.
This idiom of refactoring shared combinational logic into a helper module is useful way to reduce
the area of a design.

Simulating the Generated Verilog RTL

We can use Synopsys VCS to simulate the generated Verilog RTL. See Tutorial 1: Simulating

Verilog RTL Using Synopsys VCS for more information about using VCS. The following command
will compile the Verilog into an simulator executable and then run the simulator.

% vcs -PP mkGcdTH.v mkGcdWithAlu.v mkGcdAlu.v ../../src/mkGcdTH_wrapper.v

% ./simv

The test harness will print out some information about whether or not each test passed or failed. We
can use the Synopsys VirSim waveform viewer to visualize the GCD unit in action. The following
command will start the waveform viewer with the appropriate VPD file.

% vcs -RPP +vpdfile+vcdplus.vpd

Add the following signals to the waveform viewer.

• mkGcdTH wrapper.gcdTH.gcd.RST N

• mkGcdTH wrapper.gcdTH.gcd.CLK

• mkGcdTH wrapper.gcdTH.gcd.RDY start

• mkGcdTH wrapper.gcdTH.gcd.EN start

• mkGcdTH wrapper.gcdTH.gcd.start a in

• mkGcdTH wrapper.gcdTH.gcd.start b in

• mkGcdTH wrapper.gcdTH.gcd.WILL FIRE RL subtract

• mkGcdTH wrapper.gcdTH.gcd.WILL FIRE RL swap

• mkGcdTH wrapper.gcdTH.gcd.a

• mkGcdTH wrapper.gcdTH.gcd.b

• mkGcdTH wrapper.gcdTH.gcd.RDY result

• mkGcdTH wrapper.gcdTH.gcd.result

Figure 6 shows the waveforms in more detail. You can see that on reset the start method is
ready and enabled. The input operands 27 and 15 are clocked into the A and B registers. The
WILL FIRE signals show the subtract and start rules firing and the A and B registers being

6.375 Tutorial 8, Spring 2008 9

updated appropriately. When B is zero, the result method and the start method become ready
and new input operands are clocked into the A and B registers.

The primary methodology for debugging our Bluespec designs will be to analyze the generated
Verilog and to carefully examine the RDY, EN, CAN FIRE, and WILL FIRE signals. We can use these
signals to determine if rules are firing when desired and if methods are enabled when needed.

Time (1 s)

40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0

NA

NA

NA

RST_N

CLK

RDY_start

EN_start

start_a_in[31:0]

start_b_in[31:0]

WILL_FIRE_RL_subtract

WILL_FIRE_RL_swap

a[31:0]

b[31:0]

RDY_result

result[31:0]

2727 28633115302863311530 2121 2863311530

1515 28633115302863311530 4949 2863311530

2727 1212 1515 33 1212 99 66 33 00 33 2121 4949

00 1515 1212 33 00 4949 2121

2727 1212 1515 33 1212 99 66 33 00 33 2121 4949

Figure 6: Waveforms for the GCD Unit

Automating the Process with Makefiles

We can automate the BSV build process using makefiles. Take a look at the build directories
located in examples/gcd-bsv/build. The bsc-compile build directory is used to run the Bluespec
Compiler, while the vcs-sim-rtl build directory is used to run Synopsys VCS. The following
commands will build the GCD unit and test it.

% pwd

tut8/examples/gcd-bsv/build

% cd bsc-compile

% make compile

% cd ../vcs-sim-rtl

% make sim-rtl

% make run-tests

There is a toplevel makefile which can run both the Bluespec Compiler and Synopsys VCS. The
following commands will clean all of the build directories, automatically run the Bluespec Compiler
and VCS if needed, and then test the GCD unit. The toplevel clean target will delete generated
content in all the subdirectories so use it carefully.

% pwd

tut8/examples/gcd-bsv/build

% make clean

Are you sure you want to do a FULL clean? [Y/N] Y

% make run-tests

6.375 Tutorial 8, Spring 2008 10

Using Toy Examples to Illustrate Rule Scheduling

In this section we will use several toy examples to illustrate how the Bluespec Compiler schedules
multiple rules to fire in the same clock cycle while still preserving the correctness of the program.
Before presenting the toy examples, we need to review the general strategy for rule scheduling.
Assume we have a design with two rules named r1 and r2. Due to GAA semantics all implemen-
tations of the design must appear to execute the two rules in some logical sequential order : either
rule r1 first and then rule r2 (denoted as r1 < r2), or rule r2 first and then rule r1 (denoted as r2
< r1). If an implementation actually did execute all rules sequentially (i.e. one rule each cycle) it
would be extremely slow). We want to exploit the concurrency inherent in the hardware to execute
multiple rules in parallel. Two rules can be executed in parallel if their effect on the design’s state
when executed in parallel is the same as a specific logical sequential ordering. If no such logical
ordering exists then we say the rules conflict and thus they cannot be executed concurrently while
still preserving correctness.

The Bluespec Compiler determines if two rules can be executed in parallel by examining how the
rules’ read sets and write sets intersect with each other. A rule’s read set is the set of state from
which the rule reads, and a rule’s write set is the set of state to which a rule writes. Table 1
illustrates the sixteen possible ways the read and write sets for two rules can intersect.

Notice that whether or not the read sets for the two rules intersect (i.e. the two rules read the same
state) has no bearing on the possibility of executing those rules concurrently. The table introduces
some additional terminology to describe the various ways the two rules can interact. Two rules are
conflict free (CF) if each rule’s write set does not intersect with the other rule’s read and write

r1 Rd r1 Wr r1 Wr r1 Rd Possible
∩ ∩ ∩ ∩ Logical Sequential

Type r2 Rd r2 Rr r2 Wr r2 Wr Orderings Example

CF X r1 < r2 or r2 < r1 r1 : x <= 5 r2 : y <= 6

SC1 X Y r1 < r2 r1 : x <= y r2 : y <= 6

SC2 X Y r1 < r2 or r2 < r1 r1 : x <= 5 r2 : x <= 6

SC1 X Y Y r1 < r2 r1 : x <= x+1 r2 : x <= 6

SC1 X Y r2 < r1 r1 : x <= 5 r2 : y <= x

C X Y Y none r1 : x <= y r2 : y <= x

SC1 X Y Y r2 < r1 r1 : x <= 5 r2 : x <= x+1

C X Y Y Y none r1 : x <= x+1 r2 : x <= x+2

Table 1: Possible interactions between the read sets (Rd) and write sets (Wr) of two rules named
r1 and r2. A Y indicates that the corresponding sets do intersect, nothing indicates that the
corresponding sets do not intersect, and a X indicates that it doesn’t matter if the corresponding
sets intersect or not. CF = Conflict Free, SC1 = Sequentially Composable with One Possible
Ordering, SC2 = Sequentially Composable with Two Possible Orderings, C = Conflict.

6.375 Tutorial 8, Spring 2008 11

sets. If r1 and r2 are conflict free then executing them in parallel has the exact affect on the
state as if we had executed r1 before r2 or r2 before r1. In other words, either logical sequential
ordering is an acceptable explanation of the parallel execution. Two rules conflict (C) if there is no
logical sequential ordering which explains the parallel execution of those rules. If both rules read
and write the same state then it is not possible to execute them in parallel. For example, if rule
r1 is (x <= y) and rule r2 is (y <= x) then we cannot fire these rules in parallel. If we did
we would essentially be performing a swap with out temporary state, but since our GAA semantic
model is completely serialized this is not possible. We could of course perform a swap by putting
both expressions in the same rule.

Two rules which are not conflict free and also do not conflict are called sequentially composable

(SC). Although the read and write sets of sequentially composable rules intersect, there is still
a possible logical sequential ordering which will adequately explain their parallel execution. For
example, if rule r1 is (x <= y) and rule r2 is (y <= 6) then execution them in parallel has the
same effect on the design’s state as if we executed r1 before r2. This is because in hardware we
do all the reads before we do any writes, so executing them in parallel causes both rules to get the
original value of y. Notice that r2 < r1 is not an acceptable logical sequential ordering, since this
ordering would require rule r1 to see the new value of y. This is just not possible in hardware; we
cannot forward the new value of y to rule r1 within the same clock cycle.

Just because two rules write the same state does not imply that those rules conflict. Two rules can
be mutually exclusive meaning that the predicates for the two rules cannot be true at the same
time. Mutually exclusive rules cannot be enabled at the same time and thus regardless of whether
or not they write the same state they do not conflict. There is also a more subtle example of two
non-conflicting rules which write the same state. A special form of sequential composability occurs
if just the write sets of the two rules intersect (noted in the table as SC2). In this case although
the final state is different depending on the logical sequential ordering we choose, either logical
sequential ordering is an acceptable explanation of the parallel execution of these rules.

It is important to note that using read/write sets to determine which rules can be executed in
parallel is a conservative approach. For example, if rule r1 is (x <= y) and rule r2 is (y <=
x) then we conservatively assume that this is a conflict. But what if the x and y registers both
hold the same value? Then rule r1 and rule r2 can indeed execute in parallel, and either logical
sequential ordering is an acceptable explanation for their parallel execution. It is very difficult
(possibly impossible) for the compiler to statically determine this type of scheduling. If we wanted
to exploit this parallelism the scheduler hardware would become significantly more complicated.
Thus the Bluespec Compiler restricts itself to the more conservative analysis depicted in Table 1.

Figure 7 shows an example module template and five different definitions for rule r1 and rule
r2. Create a temporary build directory and then use your favorite text editor to create six BSV
files with the examples in Figure 7 named ex1.bsv, ex2.bsv, etc. Note that since the Bluespec
Compiler requires that the finale name and package be the same, you will need to substitute the
appropriate example number for N in the template.

6.375 Tutorial 8, Spring 2008 12

Module Template

package exN;

module exN(Empty);

Reg#(Bit#(8)) z <- mkReg(0);

Reg#(Bit#(8)) x <- mkReg(0);

Reg#(Bit#(8)) y <- mkReg(0);

rule incZ;

if (z < 15)

z <= z + 1;

else

$finish;

endrule

// Insert rules r1 and r2 here

endmodule

endpackage

Example 1

rule r1 (z > 5);

x <= x + 1;

endrule

rule r2 (z > 10);

y <= y + 2;

endrule

Example 2

rule r1 (z > 5);

x <= x + 1;

endrule

rule r2 (z > 10);

x <= x + 2;

endrule

Example 3

rule r1 ((z > 5) && (z <= 10));

x <= x + 1;

endrule

rule r2 (z > 10);

x <= x + 2;

endrule

Example 4

rule r1 (z > 5);

x <= x + 1;

endrule

rule r2 (z > 10);

y <= x + 2;

endrule

Example 5

rule r1 (z > 5);

x <= y + 1;

endrule

rule r2 (z > 10);

x <= y + 2;

endrule

Figure 7: Various examples illustrating different rule interactions

6.375 Tutorial 8, Spring 2008 13

Use the Bluespec Compiler as follows for each example (where N is the example number).

% pwd

temp

% ls

ex1.bsv ex2.bsv ex3.bsv ex4.bsv ex5.bsv

% cp /mit/6.375/tools/bluespec/current/lib/Verilog/main.v .

% bsc -show-schedule -show-rule-rel RL_r1 RL_r2 -show-rule-rel RL_r2 RL_r1 \

-verilog -g exN exN.bsv

The -show-schedule command line option tells the compiler to output information about the rule
and method scheduling in the design. For each rule, the compiler identifies the predicate and a list
of blocking rules. If rule r1 blocks rule r2 then these rules conflict; furthermore, if these rules are
both enabled during the same cycle then rule r1 will take priority over rule r2. The format for rule
schedule information is shown below.

Rule: r2 Rule name
Predicate: ! (z.read <= 10) Rule predicate (including implicit conditions)
Blocking rules: (none) Which rules conflict with & have priority than this rule

The -show-rule-rel command line option tells the compiler to output information about a specific
pairwise rule relationship. Notice that the RL prefix is required when specifying rule names. For
each pair of rules, the compiler identifies if the predicates are disjoint (or in other words if the
two rules are mutually exclusive), if the rules are conflict free, and if the rules are sequentially
composable. The format for the pairwise rule information is shown below.

Scheduling info for rules ‘‘RL_r1’’ and ‘‘RL_r2’’;

predicates are not disjoint Indicates if rules are mutually exclusive
no <> conflict If no ¡¿ conflict, then rules are conflict free?
no < conflict If no ¡ conflict, then rules are not sequentially composable?
no resource conflict See BSC user guide
no cycle conflict See BSC user guide
no <+ conflict See BSC user guide

After compiling the Verilog we can use a generic Verilog wrapper file provided with the Bluespec
installation to create an executable simulator with VCS.

% cp /mit/6.375/tools/bluespec/current/lib/Verilog/main.v .

% vcs exN.v /main.v +define+TOP=exN

% ./simv +bscvcd

% vcs -RPP +vcdfile+dump.vcd

The scheduling information provided by the compiler is a little confusing, so it is important to
interpret it correctly. Take a close look at the scheduling information displayed by the compiler for
each example.

Example 1: Conflict Free
The compiler notes that the rules are not mutually exclusive and that they are conflict free.
We can see this because their are no blocking rules and there is no <> conflict. Simulate the
example and verify that rules are able to fire in parallel when their predicates are satisfied

6.375 Tutorial 8, Spring 2008 14

Example 2: Conflict
From Table 1 we know that these rules should conflict. The scheduling information reports
that rule r2 blocks rule r1. The pairwise rule information shows that the rules are not conflict
free. It also shows that there is a < conflict for r1 relative to r2 and a < conflict for r2 relative
to r1. This essentially means that two logical orderings are required: r1 < r2 and r2 < r1.
Since both of these logical orderings cannot be satisfied at the same time, these rules conflict.
The compiler also displays a warning because it had to make an arbitrary decision concerning
which rule should take priority. Usually these warnings indicate a design error since we should
not be relying on the compiler to arbitrarily pick the correct priority for the rules. Later in
this section we will see how to use a scheduling attribute to explicitly tell the compiler the
desired rule priorities. Simulate the example and verify that when CAN FIRE is true for both
rules, WILL FIRE is only true for rule r2.

Example 3: Mutually Exclusive
Compare the compiler output from example three to that from example two. These are iden-
tical examples except for the rule predicates. In example three we have made the predicates
mutually exclusive and as a consequence there is no longer a conflict between these two rules.
Simulate the example and verify that only one rule’s CAN FIRE signal is true per cycle.

Example 4: Sequentially Composable (SC1)
From Table 1 we know that these rules are sequentially composable (SC1) and that the
appropriate logical sequential ordering is r1 < r2. We can see that in the pairwise rule
output from the compiler. It shows that the rules are not conflict free, but that a < conflict
for r1 relative to r2 exists. Notice that there is no < conflict for r2 relative to r1 exists.
Essentially the compiler is telling us that these rules are sequentially composable with a logical
ordering of r1 < r2. We can also see this in the “Logical execution order” section of the
scheduling output. Simulate this example and verify that both rules fire in the same cycle
when they are both enabled.

Example 5: Sequentially Composable (SC2)
From Table 1 we know that these rules are sequentially composable (SC2) and that either
logical sequential ordering is appropriate. Although the compiler scheduling output is a little
confusing, the compiler does produce a useful warning which states that rule r2 will appear
to fire before r1 when both fire in the same clock cycle. Use VCS to simulate this example
and verify that these two rules do indeed fire in the same cycle when they are both enabled.

We can use various scheduling attributes to help influence the scheduling of the rules in the design.
These attributes are especially important when we want to avoid having the compiler make an
arbitrary decision.

(* descending urgency = ‘‘r1,r2’’ *)

This attribute should be placed before any rule is defined in a module. It specifies that if rule
r1 and rule r2 conflict, then the compiler should give priority to rule r1.

(* fire when enabled *)

This attribute should be placed immediately before a rule definition. It asserts that the rule
must fire when it its predicate (both the implicit and explicit conditions) is true. The compiler
will statically check to see if this rule has a conflict which would prevent it from firing, and
if so the compiler will report an error.

6.375 Tutorial 8, Spring 2008 15

(* no implicit conditions *)

This attribute should be placed immediately before a rule definition. It asserts that any
implicit conditions for this rule must always be true. In other words the explicit conditions
should completely define the predicate for the rule. The compiler will statically verify that
this condition is satisfied and report an error of necessary.

(* always enabled = ‘‘method1,method2’’ *)

This attribute should be placed before a module definition. The compiler will not generate
an enable signal for the listed methods, and thus the methods must be executed on every
cycle. The compiler will statically verify that the method is indeed called every cycle. If no
methods are listed, then this attribute applies to all the methods in the module.

(* always ready = ‘‘method1,method2’’ *)

This attribute should be placed before a module definition. The compiler will not generate a
ready signal for the listed methods, and thus each method’s predicate must always be true.
The compiler will statically verify this and report an error if necessary. If no methods are
listed, then this attribute applies to all the methods in the module.

As a final example of rule and method scheduling, let’s examine the compiler output for the GCD
unit. The schedule.rpt make target in the gcd-bsv/build/bsv-compile build directory will
generate a report containing the schedule information for all other rules and methods in the design.
The following commands generate the scheduling report. It is important to make sure that the
design will completely compile without errors before trying to generate a scheduling report since
this make target needs to rebuild the design from scratch.

% pwd

tut8/examples/gcd-bsv/build/bsc-compile

% make compile

% make schedule.rpt

Examine the schedule.rpt file and find the scheduling information for the subtract and swap

rules. You should be able to determine that these rules are mutually exclusive. You should also be
able to clearly see the predicate for each of these rules.

An SMIPSv2 Multi-Cycle Processor using BSV

In this section we will take a look at a SMIPSv2 processor written in Bluespec System Verilog.
Start by browsing through the BSV source code in examples/smipsv2-4mcycle-bsv. Figure 8
how the rules in the core interact. The core interface includes tohost/fromhost methods as well as
a request/response main memory interface. The core implementation contains a multi-cycle (un-
pipelined) SMIPSv2 processor, a blocking instruction cache, a blocking data cache, and a memory
arbiter.

The processor includes three rules: a pcgen rule which issues instruction requests to the instruction
cache, a exec rule which does all the work involved in instruction execution, and a writeback rule
which writes load data returning from the data cache into the register file. The processor is
unpipelined which means that only one instruction is executed at a time. A state register indicates
which rule is currently active. ALU instructions only fire the pcgen rule and the exec rule which

6.375 Tutorial 8, Spring 2008 16

choose0 choose1

exec writebackpcgen

access

refillReq

access

refillReq

mkInst
Cache
Blocking

mkData
Cache

Blocking

returnResp

RegFile
fromhost

tohost

PC

refillResp

Rams

refillResp

Rams

mkProc

mkMemArb

Figure 8: Cloud diagram for SMIPSv2 multi-cycle (unpipelined) processor with blocking caches

6.375 Tutorial 8, Spring 2008 17

writes the ALU result into the register file. Load/Store instructions fire all three rules. There is no
register file write conflict since the exec rule and the writeback rule are mutually exclusive. The
exec rule also takes care of updating the PC.

The processor includes two ports to memory: an instruction port and a data port. These ports
are written using the subinterfaces and the Bluespec library Client/Server interface. For more
information consult the Bluespec Language Reference (bsc-reference-guide.pdf). The memory
interface supports tagged loads and stores. The tag can help the processor manage memory systems
which return responses out-of-order. For the this tutorial, all requests are returned in-order so the
tag is not absolutely required. Although the processor uses the tag for load requests to indicate
the destination register, we could just as easily use a separate queue internal to the processor to
manage the register writeback specifiers.

The only difference between the instruction cache and the data cache, is that the instruction cache
does not support stores. Both caches have single 32-bit word cache lines and are blocking. A
blocking cache means that the cache completely finishes processing one memory request before
starting the next memory request. Each cache includes a state machine which invalidates all cache
lines on reset. The access rule processes an incoming memory request and checks the tag RAM to
see if it the desired data is currently in the cache. If the request is a hit, then the access rule gets
the appropriate data from the data RAM and enqueues a memory response in the response queue.
If the request is a miss, then the access rule first checks to see if the victim cache line is valid and
if so it enqueues a store memory request into the queue to the memory arbiter. The next cycle the
refillReq rule will enqueue a refill request into the queue to the memory arbiter. If the victim
cache line is invalid, then the access rule can immediately enqueue a refill request into the queue to
the memory arbiter. When the refill request eventually returns from main memory, the refillResp
rule writes the cache line in the data RAM. The next cycle the access rule will now hit in the
cache and return the data to the processor. It is essential that the cache lines are marked invalid
when the processor is reset. To achieve this, the cache includes a small state machine which steps
through and invalidates each cache line. As a consequence, the processor cannot start execution
for several hundred cycles after reset.

The memory arbiter uses a round-robin arbiter to decide which cache can access the off-chip main
memory port. The explicit condition for the choose rules includes some state which indicates which
request should have access to the main memory port. After making a request, the state is changed
so that the other request will have priority on the next cycle. The memory arbiter uses the tag in
its main memory requests to indicate which cache made the request. The arbiter can then use this
tag when the response returns to know where to send the response.

The core implementation uses a simple pattern for the design of the various module interfaces.
Low-level modules such as the register file use standard methods, but higher-level modules such
as the processor, the caches, and the memory arbiter exclusively use Get/Put subinterfaces. This
approach allows us to use the mkConnectable function to structurally connect high-level modules.

Many of the FIFOs in the design are actually bypass FIFOs (BFIFOs). These FIFOs include a
combinational path from the enq method to the deq method so that these methods can fire in
parallel. The corresponding logical sequential ordering is enq < deq which means that we can pass
data from the enq method to the deq method within the same cycle. Bypass FIFOs eliminate extra
dead cycles between the various high-level module interfaces.

6.375 Tutorial 8, Spring 2008 18

The following commands will build the processor, run the assembly tests, and then evaluate the
performance of the processor.

% pwd

tut8/examples/smipsv2-4mcycle-bsv/build

% make run-asm-tests

% make run-bmarks-perf

As with previous projects, you can use Synopsys VirSim to view waveforms corresponding to a
specific program execution. For example, the following commands generate a VPD file for the
smipsv2 addiu.S test program and then launch the waveform viewer.

% pwd

tut8/examples/smipsv2-4mcycle-bsv/build

% cd vcs-sim-rtl

% ./simv +exe=smipsv2_addiu.S.vmh

% vcs -RPP +vpdfile+vcdplus.vpd

In addition to using the waveform viewer, we have also provided some infrastructure for producing
text traces of the processor. If you examine the BSV source for the core you will see various uses
of the traceTiny() and the traceFull() functions. These trace functions output a trace tag and
some trace data. This is the information you will see being displayed at the console when you run
the simulator. The bsv-trace.pl Perl script can turn this trace output into a clean text trace
format with one cycle per line. The script takes a configuration script as input which describes
how to transform the trace output. For example, the following commands will produce the trace
output which is partially shown in Figure 9.

% pwd

tut8/examples/smipsv2-4mcycle-bsv/build/vcs-sim-rtl

% ./simv +exe=smipsv2_lw.S.vmh > trace.out

% bsv-trace.pl proc-trace.cfg trace.out

The trace output shows the current PC and which rule is executing in the processor (P = pcgen, X
= exec, W = writeback). The trace output has columns for the instruction cache, the data cache,
the memory arbiter, and the main memory respectively. The current design has a single cycle main
memory.

Notice that ALU instruction only fire the pcgen and the exec rules, while the load instruction fires
all three rules. The load instruction hits in the data cache (indicated with a h), and the overall
latency is five cycles. You should be able to see that the instruction fetch is hitting in the cache
(indicated with a h) for several instructions until the processor tries to fetch the instruction at
address 0x0000124c. This request misses in the instruction cache (indicated with a M) and causes a
refill request to go through the memory arbiter and out to main memory. When the response from
main memory returns to the instruction cache, the cache processes the refill (indicated with a R)
and now the original instruction fetch hits in the cache.

6.375 Tutorial 8, Spring 2008 19

We encourage you to make use of the text tracing infrastructure in your own designs, since it can
help create more informative traces than the raw waveforms.

We can use the same infrastructure as in previous labs to synthesize and place+route the design.
The following commands will run the appropriate tools. We can also just use the enc-par make
target and the toplevel makefile will run the synthesis and floorplanning steps as necessary.

% pwd

tut8/examples/smipsv2-4mcycle-bsv/build

% make dc-synth

% make enc-fp

% make enc-par

CYC: 2128 pc=0000122c P [l00|] [|] [| |] [|]

CYC: 2129 pc= [|l00 h] [|] [| |] [|]

CYC: 2130 pc= X [|] [|] [| |] [|] sll r0, r0, 0

CYC: 2131 pc=00001230 P [l00|] [|] [| |] [|]

CYC: 2132 pc= [|l00 h] [|] [| |] [|]

CYC: 2133 pc= X [|] [l04|] [| |] [|] lw r4, 0x0004(r2)

CYC: 2134 pc= [|] [|l04 h] [| |] [|]

CYC: 2135 pc= W [|] [|] [| |] [|]

CYC: 2136 pc=00001234 P [l00|] [|] [| |] [|]

CYC: 2137 pc= [|l00 h] [|] [| |] [|]

CYC: 2138 pc= X [|] [|] [| |] [|] lui r29, 0xff00

CYC: 2139 pc=00001238 P [l00|] [|] [| |] [|]

CYC: 2140 pc= [|l00 h] [|] [| |] [|]

CYC: 2141 pc= X [|] [|] [| |] [|] ori r29, r29, 0xff00

CYC: 2142 pc=0000123c P [l00|] [|] [| |] [|]

CYC: 2143 pc= [|l00 h] [|] [| |] [|]

CYC: 2144 pc= X [|] [|] [| |] [|] bne r4, r29, 0x0013

CYC: 2145 pc=00001240 P [l00|] [|] [| |] [|]

CYC: 2146 pc= [|l00 h] [|] [| |] [|]

CYC: 2147 pc= X [|] [|] [| |] [|] addiu r5, r5, 0x0001

CYC: 2148 pc=00001244 P [l00|] [|] [| |] [|]

CYC: 2149 pc= [|l00 h] [|] [| |] [|]

CYC: 2150 pc= X [|] [|] [| |] [|] addiu r6, r0, 0x0002

CYC: 2151 pc=00001248 P [l00|] [|] [| |] [|]

CYC: 2152 pc= [|l00 h] [|] [| |] [|]

CYC: 2153 pc= X [|] [|] [| |] [|] bne r5, r6, 0xfff5

CYC: 2154 pc=0000124c P [l00|] [|] [| |] [|]

CYC: 2155 pc= [| M] [|] [l00| |] [l00|]

CYC: 2156 pc= [|] [|] [| |l00] [|l00]

CYC: 2157 pc= [| R] [|] [| |] [|]

CYC: 2158 pc= [|l00 h] [|] [| |] [|]

CYC: 2159 pc= X [|] [|] [| |] [|] lui r4, 0x0000

CYC: 2160 pc=00001250 P [l00|] [|] [| |] [|]

CYC: 2161 pc= [| M] [|] [l00| |] [l00|]

CYC: 2162 pc= [|] [|] [| |l00] [|l00]

CYC: 2163 pc= [| R] [|] [| |] [|]

CYC: 2164 pc= [|l00 h] [|] [| |] [|]

CYC: 2165 pc= X [|] [|] [| |] [|] addiu r4, r4, 0x12b0

Figure 9: Trace output from SMIPSv2 processor running the smispv2 lw.S test

