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Abstract

Most hardware description frameworks, whether schematic
or textual, use cooperating finite state machines (CFSM) as
the underlying abstraction. In the CFSM framework, a de-
signer explicitly manages the concurrency by scheduling the
exact cycle-by-cycle interactions between multiple concur-
rent state machines. Design mistakes are common in co-
ordinating interactions between two state machines because
transitions in different state machines are not semantically
coupled. It is also difficult to modify one state machine with-
out considering its interaction with the rest of the system.

This paper presents a method for hardware synthesis from
an “operation centric” description, where the behavior of a
system is described as a collection of “atomic” operations in
the form of rules. Typically, a rule is defined by a predicate
condition and an effect on the state of the system. The atom-
icity requirement simplifies the task of hardware description
by permitting the designer to formulate each rule as if the
rest of the system is static.

An implementation can execute several rules concur-
rently in a clock cycle, provided some sequential execution
of those rules can reproduce the behavior of the concurrent
execution. In fact, detecting and scheduling valid concurrent
execution of rules is the central issue in hardware synthe-
sis from operation-centric descriptions. The result of this
paper shows that an operation-centric framework offers sig-
nificant reduction in design time, without loss in implemen-
tation quality.

1 Introduction

1.1 Operation-Centric Hardware Descriptions

Digital hardware designs inherently embody highly con-
current behaviors. Any non-trivial design invariably con-
sists of a collection of cooperating finite state machines
(CFSM). Hence, most hardware description frameworks,
whether schematic or textual, use CFSM as the underly-
ing abstraction. In a CFSM framework, a designer explic-
itly manages the concurrency by scheduling the exact cycle-
by-cycle interactions between multiple concurrent state ma-
chines. Design mistakes are common in coordinating inter-
actions between two state machines because transitions in
different state machines are not semantically coupled. It is
also difficult to modify one state machine without consider-
ing its interaction with the rest of the system.

This paper presents a method for hardware synthesis from
an “operation centric” description, where the behavior of a
system is described as a collection of “atomic” operations in

the form of rules. Typically, a rule is defined by a predicate
condition and an effect on the state of the system. In an exe-
cution, a rule “reads” the state of the system in one step, and
if enabled, the effect of the rule updates the state in the same
step. If several rules are enabled at the same time, any one
of the rules can be nondeterministically selected to update
the state in one step, and afterwards, a new step begins with
the updated state. The atomicity requirement simplifies the
task of hardware description by permitting the designer to
formulate each rule as if the rest of the system is static.

Describing the instruction reorder buffer (ROB)1 of a
modern out-of-order microprocessor poses a great chal-
lenge if concurrency needs to be managed explicitly. An
operation-centric description captures the behavior of an
ROB more perspicuously as a collection of rules for oper-
ations like dispatch, complete, commit, etc. [1]. For exam-
ple, the dispatch operation is specified to take place if there
exists an instruction that has all of its operands and is wait-
ing to execute, and furthermore, the execution unit needed
by the instruction is available. The effect of the dispatch op-
eration is to send the instruction to the execution unit. The
rule specification of the dispatch operation does not have to
include information about how to resolve potential conflicts
arising from the concurrent execution with other operations.

The sequential and atomic interpretation of a description
does not prevent a legal implementation from executing sev-
eral rules concurrently in a clock cycle, provided some se-
quential execution of those rules can reproduce the behavior
of the concurrent execution. In fact, detecting and schedul-
ing valid concurrent execution of rules is the central issue in
hardware synthesis from operation-centric descriptions.

1.2 Comparison to Other High-level Frameworks

Behavioral descriptions typically describe hardware, or hard-
ware/software systems, as multiple threads of computation
that communicate via a message-passing or shared-memory
paradigm [13, 4, 14, 17, 5]. As in CFSM frameworks, de-
signers of behavioral descriptions still need to manage the
interactions between concurrent computations explicitly. In
reconfigurable computing, both sequential and parallel pro-
gramming paradigms have been used to capture function-
alities for hardware implementation. Transmagrifier-C [6]
and HardwareC [16] are specification languages based on C
syntax plus additional constructs to convey hardware-related
information such as clocking. Sequential C and Fortran pro-
grams have been automatically parallelized to target an ar-
ray of configurable structures [3]. Data-parallel C languages

1Refer to [9] for background information.



have been used to program an array of FPGA’s in Splash 2 [8]
and CLAy [7]. More formal representations have also been
used to describe hardware for verification. Windley uses
the language from the HOL theorem proving system to de-
scribe a pipelined processor [19]. Matthews et al. have de-
veloped the Hawk language to create executable specifica-
tions of processors [15].

Paper Organization: This section introduced the concept
and advantages of operation-centric hardware description.
The next section presents an example. Section 3 explains the
synthesis of operation-centrically described hardware, while
Section 4 explains the concurrent scheduling of conflict-
free rules. Section 5 presents a comparison of designs syn-
thesized from operation-centric descriptions vs. hand-coded
RTL descriptions. Section 6 summarizes the key contribu-
tions of this paper.

2 An Operation-Centric Example

2.1 Description of a Pipelined Processor

We describe a two-stage pipelined processor where a
pipeline buffer is inserted between the fetch stage and the
execute stage. We use a bounded FIFO of unspecified size
to model the pipeline buffer. The FIFO provides the isola-
tion to allow the operations in the two stages to be described
independently. Although the description reflects an asyn-
chronous and elastic pipeline, our synthesis can infer a legal
implementation that is fully-synchronous and has stages sep-
arated by simple registers.

Our operation-centric description framework borrows the
notation of Term Rewriting Systems (TRS) [2]. A two-stage
pipelined processor can be specified as a TRS whose terms
have the signature Proc(pc,rf,bf,imem,dmem). The five
fields of the processor term are pc the program counter, rf
the register file (an array of integer values)2, bf the pipeline
buffer (a FIFO of fetched instructions), imem the instruc-
tion memory (an array of instructions), and dmem the data
memory (an array of integer values).

Instruction fetching in the fetch stage can be described
by the rule:

Fetch Rule:
Proc(pc,rf,bf,imem,dmem)

! Proc(pc+1,rf,enq(bf,imem[pc]),imem,dmem)

The execution of the different instructions in the execute
stage can be described by separate rules. First consider the
Add instruction:

Add Exec Rule:
Proc(pc,rf,bf,imem,dmem)

where Add(rd,r1,r2)=first(bf)
! Proc(pc,rf[rd:=v],deq(bf),imem,dmem)

where v=rf[r1]+rf[r2]

The Fetch rule fetches instructions from consecutive instruc-
tion memory locations and enqueues them into bf. The Fetch
rule is not concerned with what happens if a branch is taken,

2In an expression, rf[r] gives the value stored in location r of rf, and
rf[r:=v] gives the new value of the array after location r has been updated by
the value v.

or if the pipeline encounters an exception. The Add Exec
rule, on the other hand, processes the next pending instruc-
tion in bf as long as it is an Add instruction. Next, consider
the two possible executions of a Bz (branch if zero) instruc-
tion:

Bz-Taken Exec Rule:
Proc(pc, rf, bf, imem, dmem)

if (rf[rc]=0) where (Bz(rc,ra)=first(bf))
! Proc(rf[ra], rf, clear(bf), imem, dmem)

Bz-Not-Taken Exec Rule:
Proc(pc, rf, bf, imem, dmem)

if (rf[rc] 6=0) where (Bz(rc,ra)=first(bf))
! Proc(pc, rf, deq(bf), imem, dmem)

The Fetch rule performs a weak form of branch speculation
by always incrementing pc. Consequently, in the execute
stage, if a branch is resolved to be taken, besides setting pc
to the branch target, all speculatively fetched instructions in
bf need to be discarded.

In this pipeline description, the Fetch rule and an exe-
cute rule can be ready to fire simultaneously. Even though
conceptually only one rule should be fired in each step, an
implementation of this processor description must carry out
the effect of both rules in the same clock cycle. Without con-
current execution, the implementation does not behave like
a pipeline. However, the implementation must also ensure
that a concurrent execution of multiple rules produces the
same result as a sequential execution. In particular, consider
the concurrent firing of the Fetch rule and the Bz-Taken Exec
rule. Both rules affect pc and bf. In such a case, the imple-
mentation has to guarantee that these rules fire in some se-
quential order. The choice of ordering determines how many
bubbles are inserted after a taken branch, but it does not af-
fect the processor’s ability to correctly execute a program.

2.2 State-Transformer View

In a TRS, the state of the system is represented by a collec-
tion of values, and a rule rewrites values to values. Given a
collective state value s, a TRS rule computes a new value s’
such that

s’=if π(s) then δ(s) else s

where the π function captures the firing condition and the δ
function captures the effect of a rule. It is also possible to
view a rule as a state-transformer in a state-based system. In
this paper, we are going to concentrate on the synthesis of
state-based systems with three types of state elements: reg-
isters (R), arrays (A) and FIFOs (F). The state elements are
depicted in Figure 1. A register can store an integer value
up to a specified maximum word size. The value stored in
a register can be referenced using the side-effect-free get()
query and updated to v using the set(v ) action. The en-
try of an array can be referenced using the side-effect-free
a-get(idx) query and updated to v using the a-set(idx ,v ) ac-
tion. The oldest value in a FIFO can be referenced using
the side-effect-free first() query, and can be removed by the
deq() action. A new value v can be added to a FIFO using
the enq(v ) action. In addition, the contents of a FIFO can
be cleared using the clear() action. The status of a FIFO can
be queried using the side-effect-free notfull() and notempty()

2
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Figure 1: Synchronous state elements

queries. A rule is restricted to perform at most one action on
each state element per rewrite.

In the state-transformer view, the applicability of a rule is
determined by computing the π function on the current state.
However, the next-state logic consists of a set of actions that
alter the contents of the state elements to match δ(s). The
processor rules in Section 2.1 can be restated in terms of
actions:

πFetch = notfull(bf)
aFetch;pc = set(pc+1)
aFetch;bf = enq(imem[pc])

πAdd = (first(bf)=Add(rd,r1,r2))
^notempty(bf)

aAdd;rf = a-set(rd,rf[r1]+rf[r2])
aAdd;bf = deq()

πBzTaken = (first(bf)=Bz(rc,ra))^(rf[rc]=0)
^notempty(bf)

aBzTaken;pc = set(rf[ra])
aBzTaken;bf = clear()

πBzNotTaken = (first(bf)=Bz(rc,ra))^(rf[rc]6=0)
^notempty(bf)

aBzNotTaken;bf = deq()

Null actions, represented as ε, on a state element
are omitted from the action list above. The com-
plete list of actions implied by the Add Execute rule
is αAdd=hapc,arf ,abf ,aimem,admemi where apc, aimem and
admem are ε’s.

3 Hardware State Machine Synthesis

Implementing an operation-centric TRS description as a
finite-state machine (FSM) involves combining the actions
of all rules to form the FSM’s next-state logic. The actions of
a rule need to be qualified by the rule’s π signal. For perfor-
mance reasons, an implementation should carry out multiple
rules concurrently while still maintaining a behavior that is
consistent with a sequential execution of the atomic opera-
tions that the rules represent. We will describe such a con-
current scheduler in the next section.

AT S = hS, So, X i
S = h R1,...,RNR, A1,...,ANA, F1,...,FNF i

So = h vR1 ,...,vRNR, vA1 ,...,vANA vF1 ,...,vFNF i

X = f T1,...,TM g

T = h π, α i

π = exp
α = h aR1 ,...,aRNR , aA1 ,...,aANA, aF1 ,...,aFNF i

aR = ε [] set(exp)
aA = ε [] a-set(expidx, expdata)
aF = ε [] enq(exp) [] deq() [] en-deq(exp) [] clear()

exp = constant [] Primitive-Op(exp1, ..., expn)
[] R.get() [] A.a-get(idx)
[] F.first() [] F.notfull() [] F.notempty()

Figure 2: ATS summary

3.1 Abstract Transition Systems (ATS)

ATS is the formalization of a state-based intermediate rep-
resentation of operation-centric descriptions. An ATS is de-
fined a triple hS, So, X i where S is a list of state elements,
So is a list of initial values for the elements in S, and X is a
list of operation-centric transitions where each transition is
represented by a pair, hπ, αi. The components of an ATS
is summarized in Figure 2. Besides registers, arrays and FI-
FOs, ATS includes register-like state elements for input and
output. An input state element (I) is like a register but with-
out the set() action. A get() query on an input element returns
the value of an external input. An output state element (O)
supports both set() and get(), and its content is visible from
outside of the ATS.

3.2 Reference Implementation of an ATS

One straightforward implementation of an ATS is a FSM that
executes one transition per clock cycle. The elements of S
are the state of the FSM. The transitions in X are combined
to form the next-state logic of the FSM in three steps.

Step 1: All value expressions in the ATS are mapped to
combinational signals on the current state of the state el-
ements. In particular, this step creates a set of signals,
πT1 ,...,πTM , that are the π signals of transitions T1,...,TM of an
M-transition ATS. The logic mapping in this step assumes
all required combinational resources are available. RTL op-
timizations can be employed to simplify the combinational
logic and to share duplicated logic.

Step 2: In the second step, a scheduler is created to gener-
ate the set of arbitrated enable signals, φT1 ,...,φTM , based on
πT1 ,...,πTM . (The block diagram of a scheduler is shown in
Figure 3.) Any valid scheduler must, at least, ensure that for
any s,

1. φTi ) πTi(s)
2. πT1 (s)_..._πTM (s) ) φT1_..._φTM

The reference implementation scheduler asserts only one φ
signal in each clock cycle, reflecting the selection of one ap-
plicable transition. A priority encoder is a valid scheduler
for the reference implementation.

3



Step 3: In the final step, one conceptually creates M inde-
pendent versions of the next-state logic, each corresponding
to one of the M transitions in the ATS. Next, the M sets of
next-state logic are merged, state-element by state-element,
using the φ signals for arbitration. For example, a register
may have N transitions that could affect it over time. (N �M
because some transitions may not affect the register.) The
register takes on a new value if any of the N relevant tran-
sitions is enabled in a clock cycle. Thus, the register’s latch
enable is the logical-OR of the φ signals of the N relevant
transitions. The new value of the register is selected from the
N candidate next-state values via a multiplexer controlled by
the φ signals. Figure 4 illustrates the merge circuit for a reg-
ister that can be affected by the set actions from two transi-
tions. The scheme assumes at most one transition’s action
needs to be applied to a particular element in a clock cycle.
Furthermore, all the actions of a selected transition should be
enabled in the same clock cycle to achieve the appearance of
an atomic transition.

The merge circuit for the three state element types are
given next as RTL equations. For each R, the set of transi-
tions that update R is fTxi j aR

Txi
=set(expxi)gwhere aR

Txi
is the

action by Txi on R. R’s data (D) and latch enable (LE) inputs
are

D = φTx1
�expx1 + ... + φTxn

�expxn

LE = φTx1
_..._φTxn

For each A, the set of transitions that write A is
fTxi j aA

Txi
=a-set(idxxi , dataxi)g. A’s write address (WA),

data (WD) and enable (WE) inputs are

WA = φTx1
�idxx1 + ... + φTxn

�idxxn

WD = φTx1
�datax1 + ... + φTxn

�dataxn

WE = φTx1
_..._φTxn

The set of transitions that enqueues a new value into F is
fTxi j (aF

Txi
=enq(expxi))_(aF

Txi
=en-deq(expxi))g.

ED = φTx1
�expx1 + ... + φTxn

�expxn

EE = φTx1
_..._φTxn

The set of transitions that dequeues from F is
fTxi j (aF

Txi
=deq())_(aF

Txi
=en-deq(expxi))g.

DE = φTx1
_..._φTxn

Similarly, the set of transitions that clears the contents of F
is fTxi j aF

Txi
=clear()g.

CE = φTx1
_..._φTxn

3.3 Correctness of the Reference Implementation

The reference implementation is said to implement an ATS
correctly if

1. The implementation’s sequence of state transitions
corresponds to some execution of the ATS.

2. The implementation maintains liveness.

A correct implementation is not necessarily equivalent to the
source ATS. Unless the scheduler employs true randomiza-

Scheduler

2
π

2

π
M

φ
M

1 1
φπ

φ

Figure 3: A monolithic scheduler for an M-transition ATS.

LE

D
QR

latch enable
2
1

1
φ φ

2

φ

δ
2

1
δ

φ

Figure 4: Circuits for combining two transitions’ actions on
the same state element.

tion, the reference implementation is deterministic. In other
words, the implementation can only embody one of the be-
haviors allowed by the ATS. Thus, the implementation can
enter a livelock if the ATS depends on non-determinism to
make progress. The reference implementation can use a
round-robin priority encoder to ensure weak-fairness, that
is, if a transition remains applicable for a sufficient number
of consecutive cycles then it is guaranteed to be selected at
least once.

Although the semantics of an ATS require an execution
in sequential and atomic update steps, a hardware imple-
mentation can exploit the underlying parallelism and execute
multiple transitions concurrently in one clock cycle. For a
pipelined processor, it is necessary to execute transitions for
different pipeline stages concurrently to achieve pipelined
execution.

4 Concurrent Scheduling of Conict-Free Transitions

In a multiple-transitions-per-cycle implementation, the state
transition in each clock cycle must correspond to a sequen-
tial execution of the ATS transitions in some order. If two
transitions Ta and Tb become applicable in the same clock
cycle when S is in state s, πTa (δTb(s)) or πTb(δTa (s)) must
be true for an implementation to correctly select both tran-
sitions for execution. Otherwise, executing both transitions
would be inconsistent with any sequential execution in two
atomic update steps.

There are two approaches to execute the actions of Ta and
Tb in the same clock cycle. The first approach cascades the
combinational logic from the two transitions. However, arbi-
trary cascading does not always improve circuit performance
since it may lead to a longer cycle time. In our approach, Ta
and Tb are executed in the same clock cycle only if the cor-
rect final state can be reconstructed from an independent and
parallel evaluation of their combinational logic on the same
starting state.

4



This section develops a scheduling algorithm based on
the conflict-free relationship (<>CF). <>CF is a symmet-
rical relationship that imposes a stronger requirement than
necessary for executing two transitions concurrently. How-
ever, the symmetry of <>CF permits a straightforward im-
plementation that concurrently executes multiple transitions
if they are pairwise<>CF . An analysis based on the Sequen-
tial Composibility (<SC) relationship can further increase
hardware concurrency [10]. The intuition behind <SC, an
asymmetrical relationship, is that concurrent execution does
not need to produce the same result as all possible sequential
executions, just one.

4.1 Conict-Free Transitions

The conflict-free relationship and the parallel composition
function PC are defined in Definition 1 and Definition 2.

Definition 1 (Conflict-Free Relationship)

Two transitions Ta and Tb are said to be conflict-free
(Ta <>CF Tb) if

8 s. πTa(s)^ πTb (s)) πTb(δTa(s)) ^ πTa(δTb (s)) ^
(δTb(δTa(s)) == δTa(δTb (s))

== δPC(s))

where δPC is the functional equivalent of PC(αTa , αTb ).
2

The function PC computes a new α by composing two
α’s that do not contain conflicting actions on the same state
element.

Definition 2 (Parallel Composition)

PC(αa,αb)= hpcR(aR1 ,bR1),..., pcA(aA1 ,bA1),...,
pcF (aF1 ,bF1),...i

where αa=haR1 ,...aA1 ,...aF1,...i,
and αb=hbR1 ,...bA1,...bF1,...i

pcR(a, b)=case a, b of a, ε ) a
ε, b ) b
... ) undefined

pcA(a, b)=case a, b of a, ε ) a
ε, b ) b
... ) undefined

pcF (a, b)=case a, b of a, ε ) a
ε, b ) b
enq(exp), deq() ) en-deq(exp)
deq(), enq(exp) ) en-deq(exp)
... ) undefined

2

Suppose Ta and Tb become applicable in the same state s.
Ta <>CF Tb implies that the two transitions can be applied in
either order in two successive steps to produce the same final
state s’. Ta <>CF Tb further implies that an implementation
could produce s’ by applying the parallel composition of αTa
and αTb to the same initial state s. Theorem 1 extends this
result to multiple pairwise <>CF transitions.

Theorem 1 (Composition of <>CF Transitions)

Given a collection of n transitions applicable in state s, if
all n transitions are pairwise conflict-free, then the following
holds for any ordering Tx1 ,...,Txn :

πTx2
(δTx1

(s)) ^ ... ^
πTxn

(δTxn�1
( ... δTx3

(δTx2
(δTx1

(s))) ... )) ^
(δTxn

(δTxn�1
( ... δTx3

(δTx2
(δTx1

(s))) ... ))== δPC(s))

where δPC is the functional equivalent of the parallel compo-
sitions of αTx1

,...,αTxn
, in any order. A proof for Theorem 1

can be found in [10].
2

4.2 Static Deduction of <>CF

The scheduling algorithm given in this section can work with
a conservative test for <>CF , that is, if the test fails to iden-
tify a pair of transitions as <>CF , the algorithm might gen-
erate a less optimal, but still correct implementation.

A static determination of<>CF can be made by compar-
ing the domains and ranges of the transitions. The domain
of a transition is the set of state elements in S “read” by the
expressions in either π or α. The domain of a transition can
be further sub-classified as π-domain and α-domain depend-
ing on whether the state element is read by the π-expression
or an expression in α. The range of a transition is the set of
state elements in S that are acted on by α. For this analysis,
the head and the tail of a FIFO are considered to be separate
elements. Using D(T) and R(T), a sufficient condition that
ensures two transitions are <>CF is given by the following
theorem.

Theorem 2 (Sufficient Condition for<>CF)

Given Ta and Tb,

( (D(πTa)[D(αTa )) 6 \ R(αTb ) ) ^
( (D(πTb)[D(αTb )) 6 \ R(αTa ) ) ^
( R(αTa) 6 \ R(αTb ) )

) (Ta <>CF Tb)
2

If the domain and range of two transitions do not overlap,
then the two transitions do not have any data dependences.
Since their ranges do not overlap, a valid parallel composi-
tion of αTa and αTb must exist.

Definition 3 (Mutually Exclusive Relationship)

If two transitions never become applicable on the same state,
then they are said to be mutually exclusive, i.e.,

Ta <>ME Tb if 8 s. :(πTa(s)^πTb(s))
2

Two transitions that are <>ME satisfy the definition of
<>CF trivially. An exact test for <>ME requires deter-
mining the satisfiability of the expression (πTa(s)^πTb(s)).
Fortunately, the π expression is usually a conjunction of re-
lational constraints on the current values of state elements.
A conservative test that scans two π expressions for contra-
dicting constraints on any one state element works well in
practice.

5
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Figure 5: Scheduling Conflict-free Rules: (a) Conflict-free
graph (b) Corresponding conflict graph and its connected
components

4.3 Scheduling of <>CF Transitions

Using Theorem 1, instead of selecting a single transition per
clock cycle, a scheduler can select a number of applicable
transitions that are pairwise conflict-free. In other words, in
each clock cycle, the φ signals should satisfy the condition:

φTa ^ φTb ) Ta <>CF Tb

where φT is the arbitrated transition enable signal for transi-
tion T. Given a set of applicable transitions in a clock cycle,
many different subsets of pairwise conflict-free transitions
could exist. Selecting the optimum subset requires evaluat-
ing the relative importance of the transitions. Alternatively,
an objective metric simply optimizes the number of transi-
tions executed in each clock cycle.

Partitioned Scheduler: In a partitioned scheduler, transi-
tions in X are first partitioned into as many disjoint schedul-
ing groups, P1,...,Pk, as possible such that

(Ta 2 Pa) ^ (Tb 2 Pb) ) Ta <>CF Tb

Transitions in different scheduling groups are conflict-free,
and hence each scheduling group can be scheduled inde-
pendently of other groups. For a given scheduling group
containing Tx1 ,...,Txn , φTx1

,...,φTxn
can be generated from

πTx1
(s),...,πTxn

(s) using a priority encoder. In the best case,
a transition T is conflict-free with every other transition in
X . Hence, T is in a scheduling group by itself, and φT=πT
without arbitration.

X can be partitioned into scheduling groups by find-
ing the connected components of an undirected graph
whose nodes are transitions T1,...,TM and whose edges are
f(Ti, Tj) j :(Ti <>CF Tj)g. Each connected component is a
scheduling group. For example, the undirected graph (a) in
Figure 5 depicts the <>CF relationships in an ATS with six
transitions. Graph (b) in Figure 5 gives the corresponding
conflict graph where two nodes are connected if they are not
<>CF , i.e. two unconnected nodes Ti and Tj imply Ti <>CF
Tj. The conflict graph has three connected components, cor-
responding to the three<>CF scheduling groups. The φ sig-
nals corresponding to T1, T4 and T6 can be generated using
a priority encoding of their corresponding π’s. Scheduling
group 2 also requires a scheduler to ensure φ2 and φ5 are not
asserted in the same clock cycle. However, φT3 =πT3 without
any arbitration.

πT1 πT4 πT6 φT1 φT4 φT6
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 0 0
1 1 1 1 0 1

Figure 6: Enumerated encoder table.

Enumerated Scheduler: Scheduling group 1 in Figure 5
contains three transitions fT1, T4, T6g such that T1 <>CF T6
but neither T1 nor T6 is <>CF with T4. Although the three
transitions cannot be scheduled independently of each other,
T1 and T6 can be selected together as long as T4 is not se-
lected in the same clock cycle. This selection is valid be-
cause T1 and T6 are <>CF between themselves and every
transition selected by the other groups. In general, the sched-
uler for each group can independently select multiple transi-
tions that are pairwise <>CF within the scheduling group.

For a scheduling group with transitions Tx1 ,...,Txn ,
φTx1

,...,φTxn
can be computed by a 2n�n lookup table indexed

by πTx1
(s),...,πTxn

(s). The data value d1,...,dn at the table en-
try with index b1,...,bn can be determined by finding a clique
in an undirected graph whose nodes N and edges E are de-
fined as follows:

N = fTxi j bi is assertedg
E = f(Txi , Txj ) j (Txi2N ) ^ (Txj2N ) ^

(Txi <>CF Txj )g

For each Txi that is in the clique, assert di. For example,
scheduling group 1 from Figure 5 can be scheduled by an
enumerated encoder (Figure 6) that allows T1 and T6 to ex-
ecute concurrently. The construction of an enumerated en-
coder is not necessarily unique. For example, in this exam-
ple, row “011” in Figure 6 could also contain the data value
“001”.

4.4 Performance Gain

When X can be partitioned into scheduling groups, the par-
titioned scheduler is smaller and faster than the monolithic
encoder used in the reference implementation. The parti-
tioned scheduler also reduces wiring cost and delay since
π’s and φ’s of unrelated transitions are not brought together
for arbitration.

The property of the parallel composition function ensures
that transitions are <>CF only if their actions on state ele-
ments do not conflict. Hence, the state update logic from the
reference implementation can be used with a <>CF sched-
uler without any modification, and consequently, combina-
tional delay of the next-state logic is not increased by this
optimization. All in all, the <>CF-scheduled implementa-
tion achieves better performance than the reference imple-
mentation by allowing more transitions to execute in a clock
cycle without increasing the cycle time.
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5 Synthesis Results

The synthesis procedures in the previous section have been
implemented in the Term Rewriting Architectural Compiler
(TRAC). TRAC accepts TRSPEC descriptions and outputs
synthesizable structural descriptions in the Verilog Hard-
ware Description Language [18]. The TRSPEC language
is an adaptation of TRS for operation-centric hardware de-
scription [11]. This section discusses the synthesis of a five-
stage pipelined implementation of the MIPS R2000 ISA (as
described in [12]). The TRSPEC description implements
all of the MIPS R2000 integer ISA except: multiple/divide;
partial-word or non-aligned load/stores; coprocessor inter-
faces; privileged and exception modes. The delay semantics
of the memory load and branch/jump instructions have also
been removed. The TRSPEC description can be compiled by
TRAC into a synthesizable Verilog RTL description in less
than 15 seconds on a 266 MHz Pentium II processor. The
TRAC-generated Verilog description can then be compiled
by Synopsys Design Compiler to target both Synopsys CBA
and LSI Logic 10K Series technology libraries.

5.1 Input and Output

The example from Section 2.1 described a simple proces-
sor whose instruction memory and data memory are storage
arrays internal to the system. The description can be synthe-
sized, as is, to a processor with an internal instruction ROM
and an internal data RAM. However, as a realistic design
for synthesis, the MIPS processor accesses external memory
through input and output ports. TRSPEC allows I/O seman-
tics to be assigned to terms as part of the type definition for
a term.

5.2 Synchronous Pipeline Synthesis

As in the processor from Section 2.1, the MIPS processor is
described as an asynchronous and elastic pipeline. The de-
scription of the processor does not depend on the exact depth
of the pipeline FIFOs. This allows TRAC to instantiate one-
deep FIFOs, i.e. a single register, as pipeline buffers. Flow
control logic is added to ensure a FIFO is not overflowed
or underflowed by enqueue and dequeue actions. In a naive
construction, the one-deep FIFO is full if its register holds
valid data; the FIFO is empty if its register holds a bubble.
With only local flow control between neighboring stages, the
overall pipeline would contain a bubble in every other stage
in a steady-state execution. For example, if pipeline buffer
K and K+1 are occupied and buffer K+2 is empty in some
clock cycle, the operation in stage K + 1 would be enabled
to advance at the clock edge, but the operation in stage K is
held back because buffer K+1 appears full during the clock
cycle. The operation in stage K is not enabled until the next
clock cycle when buffer K+1 has been emptied.

TRAC creates a flow control logic that includes a combi-
national multi-stage feedback path that propagates from the
last pipeline stage to the first pipeline stage. The cascaded
feedback scheme shown in Figure 7 allows stage K to ad-
vance both when pipeline buffer K+1 is actually empty and
when buffer K + 1 is going to be dequeued at the coming
clock edge. This scheme allows the entire pipeline to ad-

empty? empty? empty?enq enqenq

Logic Logic Logic

1-deep FIFO

deq deq deq

_full?_full?_full?

Stage K+1Stage K Stage K+2

Figure 7: Synchronous pipeline with combinational multi-
stage feedback flow control.

CBA tc6a LSI 10K
area speed area speed

version (cell) (MHz) (cell) (MHz)
TRSPEC 9059 96.6 34674 41.9

Hand-coded RTL 7168 96.0 26543 42.1

Figure 8: Summary of MIPS core synthesis results

vance synchronously on each clock cycle. A stall in an inter-
mediate pipeline stage causes all up-stream stages to stall at
once. If a pipeline stage never stalls, i.e., always dequeues,
its feedback can be removed by combinational logic opti-
mization.

5.3 Analysis and Discussion

The table in Figure 8 summarizes the pre-layout area and
speed estimates reported by Synopsys. The row labeled
“TRSPEC” characterizes the implementation synthesized
from the TRSPEC description. The row labeled “Hand-
coded RTL” characterizes the implementation synthesized
from a hand-coded Verilog description of the same microar-
chitecture. The data indicates that the TRSPEC description
results in an implementation that is similar in size and speed
to the result of the hand-coded Verilog description. This sim-
ilarity should not be surprising because, after all, both de-
scriptions are describing the same microarchitecture, albeit
using very different design abstractions and methodologies.
The same conclusion has also been reached on comparisons
of other designs and when we targeted the designs for im-
plementation on FPGAs [10].

The TRSPEC and the hand-coded Verilog description are
similar in length (790 vs. 930 lines of source code), but
the TRSPEC description is developed in less than one day
(eight hours), whereas the hand-coded Verilog description
required nearly five days to complete. The TRSPEC de-
scription can be translated in a literal fashion from an ISA
manual. Whereas, the hand-coded Verilog description has a
much weaker correlation to the ISA specification. The hand-
coded RTL description also requires circuit implementation
information, which the RTL designer has to improvise. This
does not only create more work for the RTL designer but
also creates more opportunities for error. In a TRSPEC de-
sign flow, the designer can rely on TRAC to correctly supply
the implementation-related information.
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6 Conclusion

The operation-centric view of hardware has existed in many
forms of informal hardware specification, usually to convey
high-level architectural concepts. This research improves
the usefulness of an operation-centric hardware description
by developing a formal description framework and by en-
abling automatic synthesis to an efficient circuit implemen-
tation. The result of this paper shows that an operation-
centric framework offers significant reduction in design time
and effort without loss in implementation quality.
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