
SHA-3: FPGA Implementation of ESSENCE and ECHO Hash
Algorithm Candidates Using Bluespec

Michel Kinsy, Richard Uhler
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA

Abstract

NIST has opened a public competition to develop a new cryptographic hash algorithm, and after the
first round various algorithms have emerged as possible candidates. In this work, we have implemented
on FPGA two of the candidates from the first round that are not known to be broken at this time, namely,
ESSENCE by Jason Worth Martin and ECHO by the Cryptographic Research Group at Orange Labs,
France Telecom. These algorithms convert a variable length message into a shorter message or hash that
can be used for digital signatures, message authentication, and other applications. This report presents
our design of these algorithms, coded in Bluespec and implemented on Altera’s Cyclone II FPGA.

1 Introduction

ESSENCE is a Merkle-Damgård based hash algorithm, where an arbitrary-length message is hashed into a
fixed-length output, specified by the user. To perform its hashing function ESSENCE breaks the message to
be hashed into a series of equal-sized blocks, called Merkle-Damgård Block (MD Block), of one megabyte
each.

Each block is run through an MD block computation unit, and hashed independent of other MD blocks,
using a Merkle-Damgård based iterative construction. The MD block computation unit can have one or
more compression function logics. The output data from one MD block is compressed with the outputs of
previous MD blocks in the message. An initialization vector is used in the case of the first MD block of the
message. The final hash is the compressed output of the padded last MD block, which contains the length
of the data being hashed, the hash parameters, and a constant value final block . Figure 1 illustrates the
overview of ESSENCE per author’s description.

The other hashing algorithm implemented is ECHO. It is an AES (Advanced Encryption Standard)
based algorithm that takes a message and a salt as inputs and produces a hash of any length from 128 to 512
bits. ECHO also uses the Merkle-Damgård construction in its compression approach. ECHO is designed
with simplicity and security in mind. The compression unit is the only major building block in ECHO,
which makes the system analysis very simple. ECHO also uses the same block cipher based approach
seen in AES, so the design can profit from the AES security soundness. Figure 2 illustrates the hashing
methodology outlined by its authors.

2 ESSENCE Design

ESSENCE consists of taking the message to be hashed and breaking it into MD blocks, where each MD
block is hashed using the compression function and joined with other blocks to form a running hash.

1



Figure 1: Overview of ESSENCE Hierarchy.

2 DOMAIN EXTENSION

The chained iteration of the compression function over t iterations is illus-
trated below. Details of the feedforward and exclusive-or will be given later (see
Sections 3.4 and 4). As previously mentioned, the initial value to the chaining
variable V0 is defined (see Section 2.1) while T denotes optional truncation (see
Sections 3.5 and 4.1).

M1 C1 salt

computation

compress

V0
-s

6

-
? ?s

?-i V1 · · ·

Mt Ct salt

computation

compress

-s
6

-
? ?s

?-i Vt
-T- h

2.1 Initialisation

At the start of hashing the counter C is set to C0 = 0. This counter is used
to count the number of message bits being hashed. The initial value of the
chaining variable is set so that each word of the chaining variable is the 128-bit
encoding of the intended hash output size. For those hash function outputs that
use compress512, namely hash outputs of size 128 ≤ Hsize ≤ 256, the chaining
variable consists of four 128-bit strings V0 = (v0

0 , v
1
0 , v

2
0 , v

3
0). For the two NIST

must-satisfy values in this range the initial values are, for 0 ≤ i ≤ 3,

vi
0 =

{
E0000000 00000000 00000000 00000000 for Hsize = 224
00010000 00000000 00000000 00000000 for Hsize = 256

For those hash function outputs that use compress1024, namely hash outputs
of size 257 ≤ Hsize ≤ 512, the chaining variable consists of eight 128-bit strings
V0 = (v0

0 , v
1
0 , v

2
0 , v

3
0 , v

4
0 , v

5
0 , v

6
0 , v

7
0) and for the two NIST must-satisfy values in

this range the initial values are, for 0 ≤ i ≤ 7,

vi
0 =

{
80010000 00000000 00000000 00000000 for Hsize = 384
00020000 00000000 00000000 00000000 for Hsize = 512

2.2 Message Padding

Padding of an input message M is always performed. The result is a padded
message M′ that has a length which is a multiple of Msize. Assuming that
the message to be hashed is of length L bits, then padding is performed by
appending the following quantities in the stated order:

1. A single “1” bit is added to the end of the message M.

2. Append x (possibly none) “0” bits where

x = Msize− ((L+ 144) mod Msize)− 1.

7

Figure 2: Overview of ECHO Composition.

2



2.1 ESSENCE Top View

Figure 3 shows our top level micro-architectural decomposition of the ESSENCE hash algorithm. Although
this illustrating figure shows four MD blocks, our Bluespec implementation parameterizes the number of
MD blocks actually instantiated.

Below is the Bluespec description of the ESSENCE module interface. The CONTROLLER CMD type
is a structure which contains information about the message starting address, length of the message to hash
and the hash length.

Figure 3: ESSENCE Top Level Micro-architecture.

interface Essence;
method Action hash(CONTROLLER_CMD data);
method ActionValue#(Hash) hash_output();
interface Client#(DataReq,DataResp) mem_client;

endinterface

2.2 MD Block Design

Figure 4 shows the micro-architecture of the MD block, and below is its corresponding Bluespec description
interface. The MDBLOCK CMD type is similar to the CONTROLLER CMD type, but in addition has
information about the block number being compressed.

interface MDBlock;
method Action hash(MDBLOCK_CMD data);

3



Figure 4: MD Block Micro-architecture.

method ActionValue#(DATA) result();
interface Client#(DataReq,DataResp) mem_client;

endinterface

Part of Figure 4 shows the compressor wrapper, which encapsulates the compression function found
inside of the MD block. An MD block can have one or more compressor wrapper(s). Therefore, allowing
the user to instantiate a variable number of compressor wrappers per block and per design.

interface EssCompressWrapper ;
interface Client#(DataReq,DataResp) mem_client;
interface Put#(EssCompressCmd) work_request;
interface Put#(DATA) chain_input;
interface Get#(DATA) chain_output;
interface Get#(DATA) final_output;

endinterface

In our design, the MD block workload is divided among the different compressor wrappers, and each
compressor wrapper makes its own memory requests via the MD controller independently from other wrap-
pers.

interface MDController;
interface Client#(DataReq,DataResp) mem_client;
method Action init_hash (CONTROLLER_CMD hashData);

4



method ActionValue#(EssCompressCmd) getWork (CompresserID cid);
method Action mem_req (DataReq ir, CompresserID cid);
method ActionValue#(DataResp) mem_resp (CompresserID cid);

endinterface

2.3 Compressor Module

The core of the ESSENCE Hash function centers around its compression function. The message hash
ultimately is constructed by compressing message data blocks together with constants and intermediate
compression results.

The compress function takes an input block of 16 words and compresses that down to a block of 8 words.
The compression is achieved through a fixed number of successive permutations with linear and feedback
functions as illustrated in figure 5.

Figure 5: ESSENCE Compression Logic (From ESSENCE Specification)

F is a boolean formula which takes 7 booleans as input. In the compression logic F is applied to the
nonboolean inputs in a bitwise fashion. If the seven inputs to F are labeled a through g, then F = abcdefg +
abcdef + abcefg + ..., where multiplication is performed with the AND operation, addition is performed
with the XOR operation, and ... includes a large number of additional terms very similar to the first.

L is a linear function which operates on a single word by representing the word as a row vector of bits
and multiplying that vector by a known boolean matrix. The choice of matrix is such that the matrix multiply
can be achieved with a feedback shift register in Galois configuration.

To support message hash lengths between 128 and 512 bits, there are two versions of the compress
function. For hash lengths between 128 and 256 bits the compression word size is 32 bits, and for hash
lengths between 256 bits and 512 bits the compression word size is 64 bits. The only other difference
between the two compression functions is the specific matrix used in the linear function L.

2.3.1 Compression Design

For the initial design of the ESSENCE Compression function the focus is on correct operation rather than
high performance operation. To allow for flexibility later on when we are more concerned with performance,
all module interfaces are latency insensitive. This is done simply by using Bluespec’s Server interface for
each module. For the initial implementation we assume requests for all modules are served in order.

5



The compression function is broken down into two instances of permutation logic, each instance of
which instantiates a single L function and F function, resulting in the four Bluespec modules as illustrated
in figure 6.

Figure 6: Compression Architecture.

The top level module performs the permutation a fixed number of times, using a counter to keep track of
the iterations. The permutation passes its input to the feedback function and linear function then sums the
result for one word of the output and permutes the input to obtain the rest of the output. The linear function
uses the Galois shift register configuration to implement the matrix multiply, using a counter to keep track of
how many shifts have occurred. Finally, the feedback function is implemented as pure combinational logic.

6



2.3.2 Sharing 32 Bit and 64 Bit Compression

Except for the word sizes and number of rounds and XOR condition in the L function, the 32 bit and
64 bit compressions are exactly the same. In anticipation of changes we may desire to make to improve
performance and save area, rather than instantiating two different compression functions we have a single
compression function which can do either the 32 bit compression or 64 bit compression. This works by using
64 bit words for all the interfaces and an additional flag which says whether to do the 32 bit compression or
the 64 bit compression. When doing the 32 bit compression, half of each word will be ignored.

The logic for the top level compression, permutation, and feedback function modules can be shared as
is across the different sized compressions. For the linear function we instantiate two different modules and
choose the appropriate one to use depending on the compression size.

3 ECHO Design

The ECHO hash function takes a message and a salt as inputs and produces hash output of length between
128 and 512. The message is broken into small data blocks of 1536 or 1024 bits, and each block is hashed
using either compress512 or compress1024 compression functions depending on the specified hash output
length. The resulting data from one block is joined with other blocks by using it as the chaining variable for
the next message block.

3.1 ECHO Top View

Figure 7 shows our initial top level micro-architecture decomposition of the ECHO hash algorithm in which
we were trying to parameterize the number of compression blocks that can be instantiated. But in general,
there seems to be no advantage in having more than one compression function block. The algorithm itself
is very sequential, requiring the result from a previous message block compression before the next one can
begin. Therefore our final hardware implementation uses only one compression as shown on Figure 8.

Below is the Bluespec description of the ECHO module interface. The EchoCompressCmd type is a
structure which contains information about the message starting address, length of the message to hash, the
hash size, and the salt.

interface Echo ;
method Action hash(EchoCompressCmd data);
method ActionValue#(Hash) hash_output();
interface Client#(DataReq,DataResp) mem_client;

endinterface

One key component of the ECHO module is the data fetcher unit. This unit plays two critical roles, which
are memory data fetching and manipulation(to present the compression function the data in the appropriate
byte-structure format), and padding of the tail of the message.

interface EchoDataFetcher ;
interface Client#(InstReq,InstResp) mem_client;
interface Put#(EchoCompressCmd) compress_request;
interface Get#(MessageBlock) message_block_data;

endinterface

typedef struct {
Bit#(64) counter;

7



Figure 7: Initial Top Level View of ECHO.

Salt salt;
CompressData data;

} EchoDataCompressRequest deriving(Bits, Eq);

typedef Server#(EchoDataCompressRequest, Chain) EchoDataCompress;

3.2 ECHO AES Design

One of the prime design goals for ECHO was to reuse a lot of existing work, including AES. ECHO uses
whole blocks from the AES algorithm as is or only slightly changed. In this document whenever we refer
to AES, we mean ECHO’s specific AES block. References to the real AES algorithm as described in the
fips-197 spec and not associated with the ECHO hash algorithm will be made explicit.

AES operates on a 128 bit word and 128 bit key to produce a new 128 bit word. It is convenient to view
the 128 bit word as a 4x4 array of 8 bit bytes called the AES State. The AES operation, then, consists of a
sequence of transformations on the state: sub bytes, shift rows, mix cols, and add round key.

The sub bytes transformation does a byte by byte substitution exactly as described in the AES fips-197
spec.

The shift rows transformation simply shifts each of the 4 rows in the state by a different amount, also as
described in fips-197.

The mix cols operation does a column by column matrix multiplication using a simple matrix where a
special multiplication is performed as described in fips-197.

Add Round Key does a byte by byte XOR of the state with the 128 bit key input to AES. Add Round Key
differs from the fips-197 specification in that the keys are inputs to the AES algorithm instead of generated

8



Figure 8: Implemented Top Level View of ECHO.

9



through a key expansion, and there is a separate 1 byte key for each byte of the AES state rather than a 1
byte key for every column in the AES state. This difference is not made clear in the ECHO spec, but is
apparent from the reference implementation.

3.3 Decision to Implement AES

There are already verilog implementations of AES available which we could have used in our project by
wrapping them in Bluespec. Instead we chose to implement the portion of AES that ECHO requires from
scratch in Bluespec.

It’s been suggested having an implementation fully in Bluespec will be much more convenient than a
Bluespec wrapped verilog implementation. The ability to easily use Bluesim through the entire design is
one example.

While ECHO claims it uses AES as is, in reality there are slight variations. These include a modified
AddRoundKey transformation and no Key Expansion phase. To use an existing AES implementation we
would have to extract those specific pieces we need, modify how they are used slightly, and integrated
it with a custom AddRoundKey transformation, which seems excessive given the simplicity of the AES
ECHO needs.

Implementing AES in Bluespec, with full control over the interfaces and design, gives more opportunity
to practice design and understand how different design decisions affect performance and area of the imple-
mentation. That there already exists AES implementations in verilog gives the added benefit of a baseline
to compare against to know if our implementation is excessively limited in any ways.

3.3.1 Design

Like other parts of our design, the initial design targets correctness, not performance. All interfaces are of
Bluespec’s Server type so they are latency insensitive. Initially we assume all requests are served in order.

Figure 9: ECHO AES Architecture.

The implementation of the top level AES module trivially passes the AES State through the sequence of
transformations as shown in figure 9. Because all the modules use a Server interface we can use mkConnec-
tion for plugging most of the modules together.

The sub bytes transformation was initially implemented by sequentially applying the substitution on
each byte of the AES State. The byte substitute is implemented with a big Bluespec case statement. At
this point we had little idea of how much area or delay is incurred with a big switch statement for the
substitution. It turned out the case statement was converted into a RAM lookup, which fit fine on the fpga,
so we eventually changed to performing the substitution for each of the 16 bytes in parallel as described in
more detail in the performance analysis of AES.

The shift rows transformation is simply implemented using a bunch of Bluespec assignments.

10



The mix columns transformation mixes each of the four columns in parallel, taking a stage to perform
all the needed multiplication and an additional stage for the sums.

The AddRoundKey is implemented as 16 parallel XORs.

4 Testing

At some point in the project it became clear that making progress in our implementation of the hash algo-
rithms ECHO and ESSENCE depended significantly on having an easy way to verify our implementations
were outputting correct results. We used a couple different strategies for testing, one for the compression
modules which didn’t access memory, and one for the top level hash modules, which accessed memory.

4.1 Testing Compression Modules

The compression modules for ECHO and ESSENCE were both broken down into a number of smaller
modules which all made use of Bluespec’s Server interface. Each module took some small bits of data as a
request and after some number of cycles output some different small bits of data as a response.

To get started as simply as possible we used Bluespec’s StmtFSMs to drive inputs into the modules and
verify the outputs of them. Each module had its own StmtFSM test driver. Inputs were all hard coded and
often picked at random. Expected outputs were also hard coded and based on either our understanding of
what the output should be from the specs, or generated by running pieces of the c reference code on the
inputs and copying over the outputs. If the outputs from our Bluespec modules matched the hardcoded
expected outputs, we printed out using display statements that the test passed, otherwise we printed that the
test failed.

When tests failed, the usual strategy for debugging was to apply display statements in key parts of the
code to figure out what was going on. It was usually clear then what the problem was.

When the compression modules passed all tests in simulation we modified the test driver to output the
test results over the CBus so we could run the tests on the FPGA. This worked fine, except it took a surprising
amount of time (around 2 hours) to synthesize all the tests. It was suggested using StmtFSMs were likely
contributing to that. Because we primarily ran tests in simulation, we didn’t worry about StmtFSMs taking
a long time to synthesize.

4.2 Testing with Memory

The modules the next level up in the design hierarchy from the Compress modules added a new challenge
to testing, which was they had access to memory. It was no longer sufficient to just hard code inputs in
StmtFSMs and check outputs, because we needed to provide data through memory.

We had access to Bluespec source code for running a simple MIPS processor on our FPGAs. The
infrastructure for that processor included support for specifying memory via a mem.hex file, specifically for
use in providing the instructions of the program the processor should run. We reused that same infrastructure
as is for this project, using the mem.hex file to supply data instead of instructions.

Initially we started out with a rather ad hoc testing strategy. We would manually load the mem.hex file
with some data and hard code in Bluespec the hash length, message length, and message address for a hash
request to be performed. The expected output was again generated using the c reference code, which was
setup to take a hash length and file as its data to hash. This strategy was easy to use and matched well our
desire to get something up and running as fast as possible, but it also had some problems. If we wanted
to try a different hash length or message length, we had to recompile the Bluespec code. Matching up the
message length with the actual length of the file in the right units was error prone, leading to more silly
recompilations.

11



Things worked really well when we managed to correctly give both the c code and the Bluespec code the
same inputs, but the times when we made little errors in the test parameters were very frustrating because
we would spend all this time trying to understand why our implementation wasn’t working when really it
was working fine and it was our tests which were broken.

We made a couple changes to our ad hoc strategy which were extremely helpful in debugging more
productively. First, we supplied all of the hash request parameters through the mem.hex file instead of just
the message data. This way we wouldn’t have to recompile the Bluespec code to change the message length
or hash length. Second, we wrote a script which takes the same command line arguments as the c reference
code and automatically generates the correct mem.hex file from those arguments.

With our changes in place it was simple to compile the Bluespec once, then provide different hash
request parameters in the same format to both the script we wrote and the c reference code and verify using
diff whether the outputs matched. Once that was up and running the bulk of our debugging time was focused
where it should be, on the details of our implementation of the hash algorithms, such as padding.

As we encountered files, message lengths, or hash lengths that didn’t hash properly we added them to a
suite of tests which could all easily be run with a single command.

4.3 A Data Generator

Eventually we got around to testing our hash implementations on larger files and quickly ran into trouble.
The infrastructure for the simple processor which we were using for memory access didn’t support very
much data. Rather then put a lot of effort into researching and setting up a new infrastructure to support
multi-megabyte files, we wrote a simple data generator.

The data generator acts like memory from the perspective of the hash implementations. Given a memory
address it returns a word of data some number of cycles later. The data returned is generated deterministi-
cally from the memory address through an arbitrary function.

We also implemented the data generator function in c and plugged it into the c reference code so we
could verify our implementation was consistent with the reference.

5 FPGA Implementation and Performance Analysis

In this section, we present the resource utilization of the two hashing algorithms as well as some of the
different implementation refinements done to improve their performance.

5.1 ESSENCE FPGA Implementation Details

From the timing report, the requested frequency of the final ESSENCE implementation synthesized is 80.3
MHz and the estimated frequency is 68.2 MHz. The design’s critical path is from the MD controller unit
[Figure 4] to the compressor wrapper units back to the controller. The requested period is 12.46 nanoseconds
and estimated period is 14.66 nanoseconds due to the worst slack of 2.2 nanoseconds.

Figure 10 shows the final FPGA floorplan of our ESSENCE design. Table 1 presents the summary of
the data collected during analysis and synthesis of the design.

Table 2 shows the resource utilization per module for the design. Resource usage is shown in an inclusive
matter, for example, the ESSENCE hardware unit uses 39377 sequential elements from which 20367 of these
elements are allocated to the MD Block unit. (See Figures 3, 4 and 6 for the modules composition).

FIFOs in the design also consume a fair amount of the resources allocated to the design. And because
of time constraints, no significant hardware design refinement is made to reduce these FIFOs or to improve
the cycle time. The linear function, in the EPermute module, uses a shift register but an alternative is to use
a single matrix multiplication which takes less cycles.

12



Figure 10: Cyclone II FPGA Floorplan for ESSENCE

13



Table 1: Synthesis Environment and Summary for ESSENCE

Analysis and Synthesis Summary
Quartus II Version 8.1 Build 163 10/28/2008 SJ Full Version
Revision Name smipsV2System
Top-level Entity Name smipsV2System
Family Cyclone II
Total memory bits 849,920
Embedded Multiplier 9-bit elements 0
Total PLLs 0

Resource Usage
Total combinational functions 61476

Logic element usage by number of LUT inputs
4 input functions 33671
3 input functions 24354
≤ 2 input functions 3451

Logic elements by mode
normal mode 60916
arithmetic mode 560

Total registers
Dedicated logic registers 42401
I/O registers 0

I/O pins 8
Total memory bits 849920
Maximum fan-out node clk 0
Maximum fan-out 42604
Total fan-out 339429
Average fan-out 3.26

Table 2: Hardware Elements Usage by the Major Components in ESSENCE

Module Sequential Elements (Registers) Combinational Elements
smipsV2System 42401 61476
mkCoreFPGA 41701 59962
ESSENCE 39377 56875
MD Block 20367 28320
Compressor Wrapper 18713 26372
Compressor 13711 20982
EPermute 5172 8168
Linear Function 775 926
Feedback Function 1032 2957

14



Table 3 shows number of cycles it takes the compression unit in ESSENCE and its submodules to
compress a message block to 512 bits or 256 bits hash.

Table 3: Number of Cycles per Module per Hash Length

Module Cyles per 512 Request Cycles per 256 Request
Compressor (EssenceCompress) 2640 1216
EPermute 66 36
Feedback Function 1 1
Linear Function 64 34

Figure 11 shows that the number of cycles taken to hash a message is proportional to the message length.
Shorter hash lengths also take more cycles to compute.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14
x 10

8

Message Length (Megabytes)

H
as

h 
La

te
nc

y 
(C

yc
le

s)

Essence Hash Latency

 

 

256 Bit Hash

512 Bit hash

Figure 11: Number of Cycles per Message Length and hash Length.

15



5.2 ECHO FPGA Implementation Details

From the timing report, the estimated frequency of the final ECHO implementation synthesized is 70.6 MHz
with estimated cycle time or period of 14.16 nanoseconds.

Figure 12 shows the final FPGA floorplan of our ECHO design. Table 1 presents the summary of the
data collected during analysis and synthesis of the design.

Figure 12: Cyclone II FPGA Floorplan for ECHO

Table 4: Hardware Elements Usage by the Major Components in ECHO

Module LC Combinationals LC Registers Memory Bits
smipsV2System 40601 20802 915456
CoreFPGA 39091 20102 119808
ECHO 36055 17726 65536
EchoDataCompress 17699 12370 65536
BigFinal 1860 1576 0
BigMixCols 3778 2055 0
BigShiftRows 1604 2163 0
BigSubWords 6105 4452 65536
EchoDataFetcher 16450 3804 0

Table 3 shows number of cycles it takes the compression unit in ECHO and its submodules to compress

16



a message block to 512 bits or 256 bits hash.

Table 5: Cylce Counts for Major ECHO modules.

Module Cyles per 512 Request Cycles per 256 Request
EchoDataCompress 341 273
BigMixCols 1 1
BigShiftRows 1 1
BigSubWords 32 32
BigFinal 1 1
BlockFetch 1280 1920

The critical path goes through the padding operation at the end of the hash. This involves figuring out
how many bits are in the last block and choosing the appropriate padding scheme to use for the block.

Figure 13 shows that the number of cycles taken to hash a message is proportional to the message length.
Unlike the ESSENCE case, longer hash lengths do lead to more computation cycles.

5.3 On Area and Performance

When we initially synthesized ECHO for the fpga the compression alone was on the order of 70,000 LC
combinatorials, which is more than our fpga held. Our implementation strategy was to start as simple as
possible, making all modules latency insensitive. This led us to using FIFOs all over the place, most of
which were unnecessary or larger than necessary. By removing unneeded FIFOs and making other FIFOs
sized with 1 element instead of the default 2 the area of the echo compression reduced drastically.

Even when ECHO was small enough to fit on the fpga, however, we ran into problems with local routing
congestion. We traced this down to the BigSubWords module, which was sequentially passing each of 16
128 bit words in the compress state through a single AES module. To reduce the congestion we introduced
an additional AES module so that each AES module was shared by only 8 words instead of 16. This brought
the local routing congestion down just enough so that with fitting optimizations turned on the design fit on
the fpga.

The performance of our ECHO implementation initially was lousy. The AES module, for example, took
60 cycles to complete a single request. We didn’t have much time to play around with the design to improve
performance, but with what little time we did have, we increased the performance drastically.

The problem in AES was that we had made everything latency insensitive, assuming it took any number
of cycles more than 1. This was good for getting a working implementation up and running, but hurt when
it came to putting together a bunch of small operations each taking more than 1 cycle. By changing that
assumption and replacing our Server modules with Bluespec functions, we were able to do all of AES in a
single cycle down from 60 cycles.

One interesting phenomenon we observed in a few places was that sometimes by replicating logic the
overall area goes down. For example, instead of using a single MixCols module time multiplexed to mix 4
different columns we used 4 MixCols modules, one for each column. This reduced the number of cycles for
that operation by a factor of 4, and it didn’t increase the area at all. It may be by specializing each column
to its own MixCols module we could do away with complex arbitration logic. Perhaps also by turning the
MixCols module into a function and removing a synthesis boundaries the tools were able to do a better job
optimizing the logic.

The performance of the best performing implementation we managed before running out of time to do
more optimization is listed in tables 4, 5. Most of the time for compression is spent in the BigSubWords

17



0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9
x 10

7

Message Length (Megabytes)

H
as

h 
La

te
nc

y 
(C

yc
le

s)

Echo Hash Latency

 

 

256 Bit Hash

512 Bit hash

Figure 13: Number of Cycles per Message Length and hash Length.

18



module. This module passes each of 16 words through two full rounds of AES. We tried replicating the AES
logic 16 times so the BigSubWords operation would only take a few cycles, but it didn’t fit on the board. The
problem, perhaps surprisingly, wasn’t the combinational logic or registers from AES, but rather the memory
usage. AES performs sixteen 256 element table lookups, which the synthesis tools put into RAMs on the
fpga. The fpga only has 250 of these RAMs, and 16 AES instantiations would require 16*16=256 RAMs,
so it didn’t fit.

Another observation is even if we could fit 16 AES instantiations on the board it wouldn’t improve the
time it takes to hash messages from file data. Our memory setup is pretty appalling, and wasn’t really the
primary focus of our project. As a result we can compress data at a faster rate than we can fetch it. Table 5
shows it takes us 341 cycles to compress 1024 bits of data for 512 bit hash lengths, but 1280 cycles to fetch
that 1024 bits. It’s even worse for 256 bit hash, which takes less time to compress but actually compresses
more data each time.

6 Conclusion

In summary , both ECHO and ESSENCE are implemented in hardware directly from the algorithm descrip-
tion and reference documentation. In our FPGA implementation, we use Altera Cyclone II board as the
targeted FPGA environment, and Bluespec as the hardware design language. The final ECHO design has
an estimated frequency of 70.6 MHz and consumes 39091 combinational elements. ESSENCE uses 61476
total combinational function elements and run at 68.2 MHz.

Due to time constraints, we performed very little performance improvement on ESSENCE. For example,
a single matrix multiplication, instead of shift register, could be used for the linear function to significantly
reduce the number cycles.

Memory data retrieval also was not fully investigated. We did not for example examine the data caching
behavior in the case of multiple MD blocks. Also the usage of on chip data generator doesn’t allow for
complete exploration of the data fetching overhead for each hashing algorithm .

The reference to ESSENCE is [3] and the reference to ECHO is [1]. Other relevant documents are
[2, 4].

References

[1] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and Y. Seurin. SHA-3
Proposal: ECHO. Technical Report http://crypto.rd.francetelecom.com/echo/, Orange Labs, France
Telecom, 2009.

[2] Ivan Damgård. A design principle for hash functions. In CRYPTO ’89: Proceedings of the 9th Annual
International Cryptology Conference on Advances in Cryptology, pages 416–427, London, UK, 1990.
Springer-Verlag.

[3] Jason Worth Martin. ESSENCE: A Candidate Hashing Algorithm for the NIST Competition. Technical
Report http://www.math.jmu.edu/ martin/essence/Supporting Documentation/essence NIST.pdf, James
Madison University, 2009.

[4] Ralph C. Merkle. One way hash functions and des. In CRYPTO ’89: Proceedings of the 9th Annual
International Cryptology Conference on Advances in Cryptology, pages 428–446, London, UK, 1990.
Springer-Verlag.

19


