
Lab 1: A Simple Audio Pipeline

6.375 Laboratory 1
Revision 1.2

Assigned: February 3, 2010
Due: February 12 2010

1 Introduction

This lab is the beginning of a series of labs in which we will design the hardware for a Digital
Signal Processor (DSP) for audio signals and run it on an FPGA. Audio processing applications are
good candidates for hardware implementations since we are interested both in low power and high
throughput, especially if we are dealing with real-time applications or running on mobile platforms.

Figure 1 shows a high-level picture of the audio pipeline and the driving software infrastructure
we will use in a later lab when we run the audio pipeline on an FPGA for real. The software
component runs on the host processor, and is responsible for opening the audio file, streaming its
contents across the serial communication channel to the hardware, and also for retrieving the output
of the pipeline and storing the results. This lab will not use FPGAs, saving the challenges of using
FPGAs for later labs.

Convert to
PCM

Convert from
PCM

Audio
Hardware

Pipeline

FPGA (XUP v2)

Input

Host Machine (X86)

Output

Communication
Channel

Serial

Figure 1: High-level Audio Pipeline Diagram

Input
PCM

Output
PCM

Pitch
Modulation

IFFTFFTBand-Pass
Filter

Hardware Audio Pipeline

Figure 2: Audio Pipeline Made of Blocks

The box marked Hardware Audio Pipeline in figure 1 contains the digital signal processing
hardware which will be our focus in this and following labs. Hardware of this type usually consists
of a series of blocks, as depicted in figure 2. For example, it might begin with a band-pass filter to
remove unwanted frequencies. After that, there could be an FFT (Fast Fourier Transform) module
which converts the signal from the time domain to the frequency domain. Once in the frequency
domain the signal can be modified by any number of hardware functions such as pitch modulation.
The final blocks would include an IFFT (Inverse FFT) to convert it back to the time domain, and
possibly a windowing function.

We begin our audio processor with the hardware audio pipeline empty, essentially a loop-back
device. However, by the end of this lab, we will add a FIR (Finite Impulse Response) filter, serving

1

in place of the band pass filter, which can be used to attenuate specified frequency ranges. Over the
next few weeks, we will augment it further.

1.1 Lab Organization

The lab begins by describing how to use the Bluespec Workstation to compile and simulate your
design. Bluespec code for a trivial audio pipeline which passes through values unchanged is provided.

We then walk through an implementation of a simple 8 tap FIR filter written in Bluespec,
describing in detail what each part of the code is for. We will ask you some questions to guide your
exploration of some of the features of the Bluespec language.

Once you understand the FIR filter and have it running in simulation we provide an opportunity
to write your own Bluespec code by challenging you to implement the FIR filter using a special
multiplier, which may require a slightly different microarchitecture than the original FIR filter we
present.

2 Getting Started

All of the 6.375 laboratory assignments should be completed on an Athena/Linux workstation.
Please see the course website for more information on the computing resources available for 6.375
students. Once you have logged into an Athena/Linux workstation you will need to setup the 6.375
toolflow with the following commands.

% add 6.375
% source /mit/6.375/setup.csh

You will be using subversion to manage your 6.375 laboratory assignments. Every student has
their own repository which is not accessible to other students. You can checkout your personal
subversion directory using the following command.

% svn co $SVNROOT

To begin the lab you will need to make use of the lab harness located in /mit/6.375/lab-harnesses.
The lab harness provides code used in this lab. The following commands extract the lab harness
into your subversion directory and add the new project to subversion.

% cd $USER
% tar -xzvf /mit/6.375/lab-harnesses/lab1-harness.tar.gz
% svn add lab1
% svn ci -m "Initial checkin"

3 Compiling and Simulating with the Bluespec Workbench

The resulting lab1 project contains Bluespec code we will be using for this lab. The directory layout
is shown in figure 3.

common/AudioProcessorTypes.bsv defines the Bluespec interface we will be using for our audio
pipeline throughout this series of labs. It defines an audio sample as a 16 bit signed integer, a
union type which is either a sample or end of file marker, and the AudioProcessor interface,
which contains two methods. The putSampleInput method is called with the next input
sample data. The getSampleOutput method gets the sample data provided by your audio
pipeline which is some transformation of the input sample data.

common/TestDriver.bsv contains Bluespec code to drive the audio pipeline module in simulation.

empty/AudioPipeline.bsv defines an initial implementation of an empty audio pipeline which
simply passes the input samples as is to the output without any transformation.

2

lab1/
common/

AudioProcessorTypes.bsv
FilterCoefficients.bsv
Multiplier.bsv
TestDriver.bsv

data/
foo.pcm
foo_filtered.pcm

empty/
AudioPipeline.bsv
empty.bspec

Figure 3: Lab1 code directory structure.

We can simulate the hardware described by the Bluespec code to get an idea of how it works
without having to deal with the complications of real hardware which are many, even for such a
simple design as we are working with.

• Navigate to the empty/ directory and start up Bluespec Workstation.

lab1% cd empty
lab1/empty% bluespec empty.bspec&

• The Bluespec Workstation GUI will appear. Select Build->Compile This compiles the Blue-
spec source code.

• Select Build->Link. This creates the executable out which can be used to simulate the
hardware described by the top level module mkTestdriver. The executable file can then be
run like any program. The test driver code provided reads input audio file from a PCM (Pulse
Coded Modulation) file called in.pcm, passes it to your audio pipeline, and writes the output
from your pipeline to out.pcm. We have included a sample PCM audio file in the data/ folder
called foo.pcm, along with the expected output PCM file for the filtered audio using the filters
we write later in the lab.

• To simulate the audio pipeline on foo.pcm, copy ../data/foo.pcm to in.pcm, then from the
Build menu in the Workstation, select Simulate.

If everything worked correctly, you should have seen a long list of the samples processed in
hex, and the audio file out.pcm has been created with the output of your transformations.

• Verify whether your processor output the expected data. You can do this by comparing the
output out.pcm with the original file foo.pcm provided, because the empty pipeline should
not be changing anything.

lab1/empty% cmp out.pcm ../data/foo.pcm

If the cmp command completes silently, the two PCM files match.

We can also direct the Bluespec Workstation to generate Verilog code, which can then be used by a
whole slew of tools to build the hardware as an ASIC or programed into an FPGA. Under the Project
menu select Options. In the window that popped up go to the Compile tab and select the compile to
Verilog option. If you compile the project now, it will create the file empty/.bsc/mkTestDriver.v.

3

4 Writing FIR Filters in Bluespec

4.1 Background

A little background information on FIR filters is useful to justify the subsequent utility of this ex-
ercise. The following webpage gives a reasonable introduction to FIR digital filters:

http://www.netrino.com/Embedded-Systems/How-To/Digital-Filters-FIR-IIR

The basic idea is that by modifying the FIR filter’s constant coefficients, you can change the fre-
quencies which the filter will attenuate. By increasing the number of taps, i.e.,registers, you can
improve the quality that a FIR filter can imitate any desired frequency response. You will create
a band-pass filter, with eight taps using a predefined set of coefficients, and will use this filter in
subsequent labs to create more complex audio processing applications.

4.2 First FIR Filter

C0 C1 C2 C3 C4

R0 R1 R2 R3

*

+

* * * *

Figure 4: Simple Fir Filter

We will construct three alternate FIR pipelines. The first pipeline has a microarchitecture similar
to that shown in Figure 4, the only difference being the number of registers. Create a new directory
in the top level directory called firstfir/. We will implement our first FIR filter in this directory
in the file AudioPipeline.bsv. Add the following lines to that file (you may wish to use empty
AudioPipeline implementation as a starting base for the code).

import FIFO::*;
import FixedPoint::*;

import AudioProcessorTypes::*;
import FilterCoefficients::*;

These lines import definitions from other Bluespec files. FIFO and FixedPoint are provided as
part of the Bluespec library. AudioProcessorTypes and FilterCoefficients are defined in the common/
directory.

module mkAudioPipeline
// interface:

(AudioProcessor);

This begins a definition of a new module called mkAudioPipeline. The module implements the
AudioProcessor interface defined in AudioProcessorTypes.bsv. We have included a comment,
which starts with two forward slashes and runs to the end of the line, to make it clear to those
reading the code what the interface is. The text in the comment is ignored by the compiler.

4

http://www.netrino.com/Embedded-Systems/How-To/Digital-Filters-FIR-IIR

FIFO#(AudioProcessorUnit) infifo <- mkFIFO();
FIFO#(AudioProcessorUnit) outfifo <- mkFIFO();

These two lines instantiate two mkFIFO modules, which implement the FIFO interface. The type
of object we put on the fifos is AudioProcessorUnit. We will place incoming samples in the infifo
and outgoing samples on the outfifo.

Reg#(Sample) r0 <- mkReg(0);
Reg#(Sample) r1 <- mkReg(0);
Reg#(Sample) r2 <- mkReg(0);
Reg#(Sample) r3 <- mkReg(0);
Reg#(Sample) r4 <- mkReg(0);
Reg#(Sample) r5 <- mkReg(0);
Reg#(Sample) r6 <- mkReg(0);
Reg#(Sample) r7 <- mkReg(0);

These lines instantiate the eight registers in our design. The mkReg module takes a single argu-
ment, which is the initial value for the register to contain.

We have now instantiated all the state elements in our design. Next we will write a rule to
describe how those state elements are updated.

rule process (True);

if (infifo.first() matches tagged Sample .sample)
begin

r0 <= sample;
r1 <= r0;
r2 <= r1;
r3 <= r2;
r4 <= r3;
r5 <= r4;
r6 <= r5;
r7 <= r6;

FixedPoint#(16,16) accumulate =
c[0] * fromInt(sample)

+ c[1] * fromInt(r0)
+ c[2] * fromInt(r1)
+ c[3] * fromInt(r2)
+ c[4] * fromInt(r3)
+ c[5] * fromInt(r4)
+ c[6] * fromInt(r5)
+ c[7] * fromInt(r6)
+ c[8] * fromInt(r7);

outfifo.enq(tagged Sample fxptGetInt(accumulate));
end
else
begin

$display("FIR got end of file");
outfifo.enq(tagged EndOfFile);

end

infifo.deq;
endrule

5

This rule processes a sample. It will run whenever we have an incoming sample. If the sample is a
normal sample, the rule writes the registers with their appropriate new values, calculates the output
sample from the existing register values, places the sample on the outgoing FIFO, and removes the
input sample from the input FIFO. All of these operations occur together, atomically, in a single
cycle.

If the sample is the end of file marker, the rule prints a notice that end of file was reached, and
forwards that to the output.

Now we have implemented all the rules of our design. All that remains is to implement the
AudioProcessor interface, which requires two methods.

method Action putSampleInput(AudioProcessorUnit in);
infifo.enq(in);

endmethod

The first method takes a sample input, and places it on the infifo queue. It is an Action
method because it modifies internal state of the module infifo.

method ActionValue#(AudioProcessorUnit) getSampleOutput();
outfifo.deq();
return outfifo.first();

endmethod
endmodule

Finally we implement the getSampleOutput method. This removes the first outgoing sam-
ple from the outfifo and returns it. The method is marked ActionValue with type parame-
ter AudioProcessorUnit to indicate it both modifies internal state and return an object of type
AudioProcessorUnit.

The endmodule keyword completes the definition of our module. Before you can compile and
simulate the module you need to create a Bluespec Workstation project like the one we provided
you with for the empty pipeline. Open the Bluespec Workstation from the firstfir directory.

lab1/firstfir% bluespec&

Go to Project -> New.... Name the project firstfir. This will open up the project options
dialog. The Top file is ../common/TestDriver.bsv, Top module is mkTestDriver. We like to
put all intermediate files into a directory .bsc just to keep them out of the way. Specify .bsc for
.bo/.bi/.ba, Bluesim, Verilog, and Info files locations. Our common source needs to be added
to the search path. Click the Add button and specify ../common.

The rest of the defaults are appropriate for us. Save and close the project options window. You
should now be able to compile and simulate the module. The output PCM of this filter and the
remaining filters we implement in this lab should match that in data/foo_filtered.pcm. Remember
to copy data/foo.pcm to in.pcm in the firstfir directory before simulating. After simulating verify
the output is correct.

lab1/firstfir% cmp out.pcm ../data/foo_filtered.pcm

4.3 Bluespec and Static Elaboration

If you typed in the above Bluespec lines by hand, you may have noticed it was annoying to have to
copy 8 lines to instantiate all 8 registers, then again in the processing of registers. If you did not
type in the above lines by hand, you anticipated the annoyance, which assuredly was there.

Fortunately, Bluespec provides constructs for powerful static elaboration which we can use to
make writing the code easier. Static elaboration refers to the process by which the Bluespec com-
piler evaluates expressions at compile time, using the results to generate the hardware rather than
generating hardware to evaluate the expressions dynamically.

Vectors in Bluespec are a nice way to describe sequences of things, whether they be values,
registers, or even rules. We can replace our 8 separate registers with a single vector of registers
instantiated with something like

6

Vector#(8, Reg#(Sample)) r <- replicateM(mkReg(0));

Now we can refer to the individual registers with bracket notation. For example r[0], r[1], and
so on to r[7].

We can use a for loop to copy many lines of code which have the same form. For example, to
advance we could do something like

for (Integer i = 0; i < 7; i = i+1) begin
r[i+1] <= r[i];

end

The Bluespec compiler, during its static elaboration phase, will replace this for loop with its fully
unrolled version.

r[1] <= r[0];
r[2] <= r[1];
r[3] <= r[2];
r[4] <= r[3];
r[5] <= r[4];
r[6] <= r[5];
r[7] <= r[6];

Discussion questions 1 and 2 at the end of this lab handout ask you to compare the firstfir
filter with and without using Vectors and for loops. Go answer them now.

4.4 Using a Better Multiplier

In our first FIR filter we used the * operator for multiplication. This generates a combinational
multiplier in hardware. Because multiplication is a complex operation, the combinational multiplier
potentially limits the frequency we can run our FIR filter at. We can improve the frequency by
using a pipelined multiplier, breaking the multiplication across multiple cycles.

In the common directory we provide you with a special implementation of a multiplier to improve
the performance of the hardware. Well, the senior grad students claim they will implement a good
multiplier, but not until your architecture is setup to use it. They give you the following interface
for the multiplier.

interface Multiplier;
method Action putOperands(FixedPoint#(16, 16) coeff, Int#(16) samp);
method ActionValue#(FixedPoint#(16, 16)) getResult();

endinterface

To multiply two operands with the multiplier you first call the putOperands method with the
operands. Some number of cycles later (the implementers have not decided how many cycles later
is best yet), the result can be taken using the getResult method. The multiplier is pipelined, so
you can do multiple calls to putOperand before getting results. The results will come in the order
they were put in.

We can instantiate the multiplier in our mkAudioPipeline module in the same way we instanti-
ated registers.

Multiplier multiplier <- mkMultiplier();

Change your FIR filter implementation to use 9 instances of the special multiplier instead of the
* operator. You will need to import the multiplier at the top of your bluespec code. You might wish
to use a vector to make it less tedious to instantiate 9 multipliers.

Because the multiplier takes multiple cycles to perform a multiplication, you can no longer
perform the entire thing in a single rule. You will need to break apart the single rule into multiple
rules. One rule should initiate each of the 9 multiplication operations you need to perform for a

7

new sample by calling the putOperands method on each of the 9 multiplier instances. A second rule
should be used to collect the results of each multiplication and perform the sum of those.

Make sure you process all the input samples before outputting the end of file sample. There are
multiple different ways to do this, many of which require additional state elements in your design.

Figure 5 shows the new architecture, again limited to 4 taps here so it fits on the page; your
filter should remain an 8 tap filter.

Write this version of the FIR filter in multfir/AudioPipeline.bsv.

C0 C1 C2 C3 C4

R0 R1 R2 R3

+

M0 M1 M2 M3 M4

Figure 5: Fir Filter with Special Multiplier

5 Discussion Questions

1. Modify the firfirst Bluespec code to use a vector of registers and for loops. You will need to
import the Vector package to use vectors. Generate Verilog code for the FIR filter both with
and without for loops. Compare the different Verilog code, and comment based on what you
see about how using for loops in Bluespec changes the hardware generated.

2. How many lines of code would you have to change in the original firstfir filter description if
we wanted to turn it into a 16 tap FIR filter? How many lines of code have to change in the
version with the for loop you implemented for question 1? A 256 tap FIR filter? Comment on
how for loops can be used to write source code which is more generic and easily reusable in
different situations.

3. Describe how you ensured in your multfir design that all the input samples were processed
before outputting the end of file sample.

4. After switching your filter to use the special pipelined multiplier in place of the Verilog *
operator, the builders of the multiplier discover an enhancement they can make to their im-
plementation of the multiplier. How does your implementation of the filter have to change
to accommodate the new implementation of the multiplier assuming the multiplier interface
stays the same?

5.1 What to Turn In

When you have completed the lab you should check in a final version via subversion. This should
include the Bluespec implementation of the firstfir and multfir filters. It should also include your
answers to the discussion questions in a file called answers in the top level lab directory.

Make sure to add your new files before checking them in if you have not already done so. For
example, you could run:

8

lab1% svn add --parents firstfir/*.{bsv,bspec}
lab1% svn add --parents multfir/*.{bsv,bspec}
lab1% svn add answers.pdf
lab1% svn ci -m "Submission"

9

	Introduction
	Lab Organization

	Getting Started
	Compiling and Simulating with the Bluespec Workbench
	Writing FIR Filters in Bluespec
	Background
	First FIR Filter
	Bluespec and Static Elaboration
	Using a Better Multiplier

	Discussion Questions
	What to Turn In

