Lab 2: Fast Fourier Transforms - Extending the Audio
Pipeline

6.375 Laboratory 2
Assigned: February 12, 2010
Due: February 19, 2010

1 Introduction

In this lab you will build on the work you did in Labl, and augment your audio pipeline with an
FFT (Fast Fourier Transform) and an IFFT (Inverse FFT). The FFT transforms the signal from
the time domain to the frequency domain, and the IFFT transforms it in the opposite direction.
While you won’t be asked to further modify the audio stream at this point, the FFT is an important
component of any signal processor and we will make full use of it in the next lab.

We provide code for a combinational FFT microarchitecture. You will be asked to pipeline
the microarchitecture using a linear pipeline and then a circular pipeline. We then ask you to
parameterize the circular pipeline by the number of points in the FFT and the data type of the
samples.

1.1 Background: Fourier Transform

The .pcm files we use in this lab represent sound using PCM (Pulse-code Modulation). PCM is a
digital representation of an analog signal created by sampling the analog signal at regular intervals
(44 KHz, in our case), and storing those values as a series of signed integers. We refer to this format
as being in the “time domain”, since we are describing how the amplitude of the signal changes
over time. Waveforms can also be represented as a summation of sinusoids of different frequencies,
called a Fourier Series. We refer to this representation as being in the “frequency domain”, since
our encoding need only record the magnitude for each sinusoid frequency.

Often, the algorithms required to implement a particular audio manipulation on signals in the
time domain are very complex, while the corresponding algorithms implementing the same manip-
ulations in the frequency domain are far simpler. For example, consider distinguishing between
pitches in a song: In the time domain, a cross-correlation between the input signal and a set of
known pitch templates would be required. Computationally this is quite expensive; at the very least
a linear comparison with each template is required. When implemented in hardware, it might also
require a substantial amount of memory. If the waveform is converted into its frequency representa-
tion, a constant time comparison can be performed to detect a particular pitch. To decide in which
domain to perform the audio manipulation, we must consider not only the cost of the audio manip-
ulations, but also the cost of transforming between representations. For the audio manipulations
you will implement in Lab 3, transforming to the frequency domain is almost certainly appropriate.
Consequently, this lab focuses on designing an efficient means of converting signals to the frequency
domain.

The Discrete Fourier Transform converts the time domain representation into the frequency
domain. The DFT is best described as a basis transform. Recall from linear algebra that vectors in
space may be represented by a linear combination of a set of orthogonal bases. We convert a vector
to a different base by way of a matrix multiplication with a matrix of the new basis expressed in
terms of the old basis. In the case of the DFT we simply use sinusoids of different frequencies as the
basis matrix. This multiplication can be expressed by the well-known formula shown in Figure

The representation in Figure [1| is commonly presented in introductory signal processing texts.
It should be clear that the complexity of this formula and the corresponding matrix multiplication
is O(n?). This complexity can be reduced by noticing that many terms in the matrix may be
represented by various combinations of other terms in the same matrix. This observation leads to
the construction of the Fast Fourier Transform, an algorithm with a time complexity of O(nlog(n)).

N—1
Xe=Y ze®™v k=0,...,N—-1.

n=>0

Figure 1: Common DFT Form

Due to the commutativity of addition and multiplication, the terms of the matrix may be combined in
many ways, leading to several important variations on the FFT. In this lab we will explore the Pease
FFT, an algorithm which exhibits good parallelism, while having a relatively simple construction.
To allow for finer granularity in choosing the number of points for the FFT, we use a “radix 2”
implementation instead of the “radix 4” implementation discussed in the lectures, but otherwise
the implementation is the same as what you have already seen.

The Pease transform shown in Figure [2| permutes the signal at each step in order to coalesce
values which need to be multiplied. In software, this permutation is not cheap, though in hardware,
the permutation is represented as a simple rewiring of the circuit, making it essentially free to
implement, except for the routing complexity of the wires.

input from de-marshaller
to marshaller

Figure 2: Dataflow of Pease transform (packets flow from left to right)

1.2 The New Pipeline

Lab 2 will build on Lab 1, so if you need to reference any material on the high-level Audio pipeline,
the Lab 1 handout is still valid. We have augmented the pipeline to include an FFT, and as such
are required to add a few additional modules to provide infrastructural support.

It is too expensive to compute the coefficients over the entire stream and not worth it since the
additional work only captures frequencies that are too low for us to care about. Instead, we can get
away with breaking the temporal stream into a series of short-term sequences, or “audio frames” (a
process known as de-marshalling), and perform an FFT on each of the blocks individually. Once
back in the time domain, we can reassemble, or marshall, these frames into a serial stream. Some
of the infrastructure we have added in this lab is to support this de-marshalling and marshalling.

Because we assemble the serial stream into audio frames, there is always the danger that the
number of PCM packets in the stream is not an exact multiple of the frame size. To handle this
case, we may need to pad the stream with null tokens to fill out the last frame, and remove these

tokens once the frame has been marshalled. The new pipeline also contains modules to perform this
work.

The Logical structure of our new pipeline is shown in Figure [3] The FIR filter you constructed
in Lab 1 operates on a serialized stream, after which it passes through the padding module, into
the de-marshaller where the audio frames are assembled. The FFT then transforms each frame
separately into the frequency domain as discussed in Section In this lab, we will transform the
stream immediately back into the time domain, marshall the frames, and remove buffered tokens
where they have been added. There are many interesting transformations which can occur in the
frequency domain, some of which we will implement in Lab 3.

Pad || FIR |«—— pcminput

-]] >

= | | > B
%‘) —> > > =
2 > »] <
s |, FFT e IFFT o] @
o] > =

R | > B

—> | > ||
un-
pcm output «¢—| pad

Figure 3: Lab 2 Logical Pipeline

While implementing the pipeline in Figure [3| would be ideal, the FPGA we use starting in Lab 4
may not be large enough to accommodate two FFT blocks. Luckily the exact same function which
transforms the frames form the time to the frequency domain can be used to transform frames in
the opposite direction. We can exploit this fact to multiplex the use of a single FFT module to
perform both transformations. This gives the circular pipeline shown in Figure One MUX and
one de-MUX take far less area than one FFT block, which should allow us to fit this design on the
FPGA in the later lab.

Bluespec code for the pipeline in Figure [is provided with the lab2 harness, with the exception
of the FIR filter, which we will take from labl.

1. Extract the code from the lab2 harness and add it to your subversion repository. Just as we
did for labl, you will need to add the 6.375 course locker and source the setup.csh script.
Navigate to the directory which contains the labl folder and run

% tar -xzvf /mit/6.375/lab-harnesses/lab2-harness.tar.gz
% svn add lab2

This will create a directory called 1ab2/ with some new Bluespec code added to the common/
directory as well as an £ft/ directory containing the combinational FFT implementation.

2. Copy your multfir filter from labl to fir/FIRFilter.bsv, renaming the module mkFIRFilter.
You can do this all with the following commands.

% cd lab2
lab2y, cat ../labl/multfir/AudioPipeline.bsv | \
sed -e ’s=mkAudioPipeline=mkFIRFilter=’ > fir/FIRFilter.bsv

-

first?
L1
> Foed
Pad T
E [-l =
% . [=
I 5} &2
s [— @
g > —» | > = un-
FIR > |, I Pad
>] | o ™
X - T
2 FRTIFFT |] 2 i
N —» — X |,
= — —» - L 5
a — —» > > %—
£ —» - o
£ — - IS
S [}
Q > > o
. | .
— |

Figure 4: Lab2 Hardware Pipeline

Add your FIR filter into subversion too.
lab2% svn add fir/FIRFilter.bsv
3. Check the code into subversion. From the lab2 directory run
lab2y, svn ci . -m "Lab2 Initial Checkin"

Take a moment to familiarize yourself with the general organization of the code handed out. The
top level audio pipeline is implemented in a module called mkAudioPipeline in the file common/AudioPipeline.bsv.

2 The Original FFT

Now that you have an overview of what this lab’s audio pipeline looks like, we can concentrate on
the module which you will be modifying, namely the FFT. Once again, we have provided you with
the complete code which you will need to understand and then modify. The microarchitecture of
the FFT we will begin with is shown in Figure [2| and is implemented by the module mkFFT in file
fft/FFT.bsv. Read and understand the FFT code.

We have provided a Bluespec Workstation project file, fft/fft.bspec, which is set up to run
the full pipeline using the FFT code provided.

Problem 1: Compile, link, and simulate the pipeline using the fft/fft.bspec project.
1. cd to £t/ and open up fft.bspec using bluespec.
. Select Build->Compile to build the project.
. Select Build->Link to link the project.

2
3
4. Copy the sample PCM file in data/foo.pcm to £ft/in.pcm.
5. Select Build->Simulate in the Bluespec Workstation.

6

. Verify the pipeline output the expected out.pcm by comparing that to data/foo_f£t8.pcm.

3 Modifying the FFT

One major problem with the original FF'T microarchitecture is the length of its critical path. In
order to increase the throughput of this design, we need to shorten these wires so we can run it at
higher frequencies. In this section of the lab, we will look at two different ways of optimizing the
design.

The first microarchitectural modification, shown in Figure [5] will shorten the critical path sub-
stantially through the use of pipeline registers.

S ° S ° & °
& & & S & &
A\ X <& XY X
X =)) =)
& 3 & 3 & I3 &
& s &° K &° s &°
< Ay Q Q < S <
e O 0O =1

E O O

<

[4

[

£ 5
z 3
o ©
5 G
Q ®©
= S
3 o
= e
£

Figure 5: Linear Pipelined FFT

Problem 2: Create a new FFT module based on the original FFT module, changing the microar-
chitecture shown in Figure [2| to that shown in Figure Simulate the new model and verify the
output is correct.

1. From within the 1lab2/ directory create the directory 1pfft/.
2. Copy the original FF'T Module file and Bluespec Workstation project to the directory 1pfft/
3. Modify the BSV code in 1pfft/FFT.bsv to reflect the microarchitecture shown in Figure

4. Compile and Simulate the new FFT code using the 1pfft/fft.bspec project. Remember to
copy the data/foo.pcnm file to 1pfft/in.pcm before simulating.

5. Verify the output 1pfft/out.pcm matches data/foo_fft8.pcm.

FFTLinearPipeline.bsv has a far greater throughput than the original microarchitecture, but
the pipeline registers we added are quite expensive in terms of area. Figure [6] shows an alternative
which will run at similar frequencies, but require far less area due to the reduced number of registers.

Problem 3: Create a new FFT module based on the original FFT module, changing the microar-
chitecture shown in Figure 2] to that shown in Figure [(] Simulate the new model and verify the
output is correct.

Follow the instructions used to create the linear pipeline to create a new circular pipeline. Put
the circular pipeline in the directory cpfft.

|

l\l %“m v

O [=1
NOSS A s

Figure 6: Circular Pipelined FFT

to marshaller

dynamic butterfly selector

00390995

VY YYYOYYy oy

4 Parameterizing the FFT Circular Pipeline

The FFT code we wrote describes an 8 point FFT that operates on Complex#(FixedPoint#(16,
16)) samples. We may wish to use a 16 point FFT, or operate on some other kind of samples. It
would be nice if we did not have to completely reimplement the FFT whenever we want to use a
different number of points or sample type.

Our FFT code is already written somewhat parametrically because we use the macro NUM_POINTS
and have a typedef for the FFT_DATA type. We can do better by changing the FFT interface to take
type parameters and changing the mkFFT to use those type parameters rather than refer to some
global definition. This will allow us to instantiate multiple FFT modules in our design simultaneously
with different parameters all from the same source code.

Our new FFT interface looks like

interface FFT#(numeric type points, type data);
method Action fftInput(Vector#(points, data) inVector);
method ActionValue#(Vector#(points, data)) fftOutput();
endinterface

It takes two type parameters. The parameter points is a numeric type indicating the number of
points the FFT uses, and the parameter data is the type of the sample data the FFT works with.
To instantiate the FFT module now we might say

FFT#(8, Complex#(FixedPoint#(16, 16))) fft <- mkFFT();
If we wanted a 16 point FFT we could change that to
FFT#(16, Complex#(FixedPoint#(16, 16))) fft <- mkFFT();

Our mkFFT module definition also changes to accept the new interface.

module mkFFT (FFT#(points,Complex#(cmplxd)))
provisos(Log#(points, log_points),
Add#(2, _, points),
Arith#(cmplxd),
ReallLiteral#(cmplxd),
Bits#(cmplxd,cmplxd_sz)) ;

This says our mkFFT module implements an FFT parameterized by the number of points, and
using Complex data of some sort. The type variable points is a numeric type describing the number
of points to instantiate which we can refer to in our implementation, and cmplxd is a type variable
which tells us what type of Complex data to use.

The way our mkFFT module is implemented we must impose additional restrictions on the type
parameters that are allowed. For example, we use the * and / operators on the complex data type,
so we can only support data types which have those arithmetic operations implemented for them.
We specify this using the Arith proviso, which asserts that cmplxd belongs to the Arith type class.

Another type of proviso is for specifying type relationships. We will want to refer to the log of
the number of points in our implementation. The Log proviso gives us a convenient way to define
log points as the log of points. We also require the number of points to be greater than 2, so we
use the Add proviso, which requires the first two arguments sum to the third. In this case we use
the wildcard _ as the second argument to indicate we do not care how much greater points is than
2, just so long as there exists some nonnegative numeric type which summed with 2 is points.

The RealLiteral proviso means we can convert real literals in Bluespec to the type cmplxd.
The Bits proviso asserts the cmplxd type can be stored in a state element using cmplxd_sz bits,
which Bluespec will set for us based on the specifc type for cmplxd used.

Problem 4: Parameterize the FFT interface and module for the circular pipeline in cpfft/FFT.bsv
1. Change the FFT interface to the parametric version shown above.

2. Change the mkFFT module to use the parametric FFT interface and add provisos as shown
above.

3. Remove the ‘define and typedef of NUM_POINTS, LOG_NUM_POINTS, COMPLEX DATA and FFT_DATA,
and replace their uses in the mkFFT module using the new type variables provided from the
provisos and mkFFT interface specification.

Section [4.1] on working with numeric types may be helpful to you in this process.

4. Try running your new pipeline with different numbers of points and verify they still work. You
can specify the number of points by changine the ‘define FFT_POINTS in common/AudioPipeline.bsv.
We have provided the expected output for 4, 8, and 16 points at data/foo_fft4.pcm, data/foo_fft8.pcm
and data/foo_fft16.pcm respectively.

4.1 Working with Numeric Types

Working with numeric types in Bluespec can be a little confusing. A numeric type is a type in
Bluespec, not an Integer. This means we can not use a numeric type where an Integer is expected
without an explicit conversion. The valueof function will make that conversion for us.

For example, if we have a for loop iterating over an Integer value, we will need the valueof
function to compare that Integer to the numeric type.

for (Integer i = 0; i < valueof(points); i = i+1)

Remember also that we can not put an Integer in a register in Bluespec, because Integers are
unbounded. Instead we may want to use a Bit#(n) or int. Just as before, a Bit#(8) in Bluespec
has a different type from Integer, so we need an explicit conversion to use an Integer where an
Bit#(8) is expected. That conversion is done with the fromInteger function.

Integer n = 4;
Bit#(8) asbits = fromInteger(n);
int asint = fromInteger(n);

An interesting consequence of this is what happens when you want to convert a numeric type to
bits. You must first call the valueof function to convert to an Integer, then call the fromInteger
function to convert to the bits.

numeric type n = 4;
Bit#(8) asbits = fromInteger(valueof(n));

If you forget to make the conversion, the Bluespec compiler might give an error such as

Unbound variable ‘n’

because n is not a variable, it’s a type.

5 What to Turn In

When you have finished you need to check your code into your subversion repository. The code should
include the original £ft/FFT.bsv and fft/fft.bspec which runs successfully using your FIR filter
from labl. The FIR filter from labl should be checked in at fir/FIRFilter.bsv. You should also
include the linear pipeline 1pfft/FFT.bsv, and the parametric circular pipeline cpfft/FFT.bsv.
This can be accomplished from the 1ab2/ directory by running

lab2), svn add --parents fir/FIRFilter.bsv {lp,cp}fft/*.{bsv,bspec}
lab2) svn ci -m "Lab2 final submission"

	Introduction
	Background: Fourier Transform
	The New Pipeline

	The Original FFT
	Modifying the FFT
	Parameterizing the FFT Circular Pipeline
	Working with Numeric Types

	What to Turn In

