
6.375 Ray Tracing Hardware Accelerator

Chun Fai Cheung, Sabrina Neuman, Michael Poon

May 13, 2010

Abstract

This report describes the design and implementation of a hardware accelerator for software
ray tracing using Bluespec System Verilog compiled onto an FPGA. The hardware accelerator is
substituted for the intersection test function in a ray tracing software program called POV-Ray.
Sce-Mi, written in C++, is used to interface the POV-Ray software with the FPGA hardware
accelerator. Scenes with multiple shapes and multiple types of shapes were successfully ren-
dered, and performance estimates from preliminary testing results indicated that the hardware
accelerator could indeed accomplish its task faster than the purely software implementation.

1 Background

In real life, rays of light start at a light source and refract or reflect off of objects in their path. Some
of these rays eventually terminate at the eyes of a viewer, whose image of the scene is assembled
from those rays. Recreating this phenomena to render a virtual image is very inefficient, because
many ray paths do not return to the viewer at all. The much more efficient solution is a backwards
approach, known as ray tracing.

Ray tracing is a technique in image rendering where the path of individual rays of light are traced,
starting from the viewer, to each pixel in the scene, refracting or reflecting off of objects in the
image and terminating at the light source. Although this yields very high quality photorealistic
images, ray tracing is not currently in widespread use for real-time rendering applications such as
modeling software and video games because it is computationally intensive when written in soft-
ware, and frames will not render quickly enough at high resolutions.

2 Project Objective

Our goal is to implement a hardware accelerator on an FPGA to work in conjunction with ray
tracing software, to speed up the computation necessary for ray traced rendering of images. We
use an open source software ray tracing program, called POV-Ray, and an FPGA to implement
our hardware accelerator for the software.

There are several benefits to using an FPGA for this application. First, the ease-of-use that work-
ing with an FPGA affords makes hardware design, development, and prototyping fast and low-risk.
Second, the FPGA’s performance is a conservative performance indicator when compared to cus-
tom hardware. A hardware accelerator design implemented on an FPGA that meets the necessary
timing specifications for high performance ray tracing procedures will likely demonstrate signifi-
cantly more impressive performance when implemented in custom hardware.

We want a single hardware accelerator to alleviate the computational burden of the software ray
tracing algorithm, and successfully interface it with the software so that images render correctly.
We chose to accelerate ray-shape intersections because they are the bulk of computations performed
and because they lend themselves better to be implemented in hardware compared with another
computationally expensive operation, bounding box calculations.

Once we had a basic implementation of our main goal, we made several refinements to our hardware
accelerator for higher performance. One performance refinement was to pipeline the ray intersection
detection test module, to achieve a higher clock speed and greater throughput. Another perfor-
mance refinement was to add an additional hardware module that loaded the scene objects to be
rendered onto the FPGA. By doing this, we save the communication burden of having the software
constantly sending all of the objects as well as all of the rays to be tested to the hardware. Now
instead, the objects in a scene are sent to the FPGA only once, where they are loaded into memory
storage. The objects are then iterated through on the hardware end, and the software is only
responsible for sending rays to be tested to the hardware.

Figure 1: The ray tracing algorithm builds an image by extending rays into a scene

3 High Level Hardware Design

Our basic hardware accelerator is an implementation of intersection testing. The intersection hard-
ware accelerator takes as input rays and objects provided by the software, and returns intersection
results, including the point of intersection and the depth along the ray where the point is found.
In cases where a single ray intersects multiple objects, the intersection for the object with the
minimum depth along the ray is returned.

The high level design of our intersection hardware accelerator is two main blocks– one that performs
intersection tests between rays and objects in a scene, and one that iterates through the objects
to be tested for intersections. The object iteration block loads all of the objects in a scene from
the software once at the beginning of rendering, and then iterates through the stored objects and
feeds them to the intersect test block for testing. This block also receives the intersection data
output from the intersect test block, and keeps track of the current minimum depth intersection
for every ray, in order to return that as a result to the software. The intersect test block receives
the rays and objects to test as input, and then checks for intersections. It outputs whether there
was an intersection or not, the calculated point of intersection, the depth along the ray that the
intersection occurs, and a tag signifying what type of shape was intersected.

4 Microarchitecture Description

The hardware accelerator has three main parts: the software-hardware interface layers, the shape
loading and iteration hardware block, and the hardware intersect test block. The following sections
are an in depth look into the designs of each of these parts.

4.1 Software-Hardware Interface Layers

The software-hardware interface consists of three distinct parts, the POV-Ray software, a testbench
layer and the Sce-Mi bridge. The POV-Ray software’s ray-shape intersection function was modified
to off-load the ray-shape intersection tests to our hardware accelerator through pipes. A request
pipe is used to send the ray-shape intersection test request messages and shape messages to the
C++ testbench and a response pipe is used to receive the ray-shape intersection result message
from the C++ testbench.

Figure 2: The request flow from POV-Ray to Sce-Mi bridge

The C++ testbench acts as a translation layer that converts the message data sent from POV-Ray
into data bits understood by the Sce-Mi bridge. The testbench is able to handle two types of
messages, shape messages and ray messages. The shape messages are used to load the objects into
the FPGA, and the ray messages are used to request the intersection result for the ray provided
in the ray message. When appropriate, the message data parsed from the POV-Ray request pipe
is converted into floating point numeric types through the use of Boost’s lexical_cast function.
The translation layer converts the floating point data into fixed point and then bit packs into bits
that can be sent over the Sce-Mi bridge. If the message is a shape message, the bit message would
be sent to the shape port, or if it was a ray message, it would be sent to the request port.

Figure 3: Detailed request flow from the testbench code

Figure 4: Detailed response flow from the testbench code

After sending a request to the FPGA, the testbench blocks and waits until a response is received.
When the bit response from the Sce-Mi bridge arrives, the response is converted into C++ string
types and numeric type data is converted from bits to fixed point and then converted to strings to
be sent back the POV-Ray through the response pipe.

When POV-Ray receives the intersection result from the response pipe, the appropriate shape
intersection result object is constructed and returned from the FindIntersection function. The
sphere and the plane intersection result objects are supported in our design. If additional shapes
are to be added, the POV-Ray intersection result objects must be created for these before POV-Ray
can properly render an image. These intersection result objects must be used because in addition
to the intersection coordinates and depth, they also contain important flags that POV-Ray depends
upon for other stages of the rendering process.

4.2 Intersection Accelerator Block

Figure 5: Block diagram of the intersection accelerator

The intersection accelerator block directly interacts with Sce-Mi by loading shapes and then iter-
ating through them. The function of this block is to receive all objects in a scene, and take all
requests for ray-shape intersection testing. The block delegates the testing to the intersect test
block and returns an intersection result back to the software through Sce-Mi.

First, SceMi must send all objects in the scene and the block loads them all into an object cache.
This cache stores all of the objects in a register file (currently it stores up to 256 objects, but this
is flexible). Once all of the objects are loaded into the cache, the block can call on the cache to
send an object. Every time the block calls getNextObject, the cache internally updates an index,
so that next time getNextObject is called, a new object is returned. The object cache also has a
reset method, where the internal index is reset so that getNextObject will return the first object
in the cache.

Once the object cache is fully initialized, the Sce-Mi can now send a ray to the block for testing.
The block receives this ray, calls getNextObject and sends both to the intersect test block. Since
the intersect test block is multicycle, the intersection accelerator block enqueues the object’s ID in
a FIFO, to be later retrieved when the intersect test block returns a result. This allows the inter-
section accelerator block to decouple its stages and achieve some more performance from pipelining.

When the intersect test block returns a result, it is matched up with its ID and compared against a
register state that keeps a copy of the current best result (defined as the intersection result that has
the least amount of depth). If the result is better than the best result, the register is updated with
the new one. Once we’ve exhausted all of the objects to check from the object cache, we return the
best result back to Sce-Mi.

4.3 Intersect Test Block

The intersect test block takes as input a ray and an object, and returns intersection data including
whether there was an intersection or not, the coordinates of the intersection point, and the depth
along the ray that the intersection occurs at. Our implementation of the intersect test block sup-
ports two object types, planes and spheres, but is highly modularized such that it can be easily
expanded to support many more shape types. The geometric intersection test algorithms used for
planes and spheres are adapted from pseudo-code algorithms described in Chapter 5.3 of Ericson’s
Real-Time Collision Detection [1].

For the ray-plane test, the input information is the ray origin point and unit direction vector, and
the plane unit normal vector and scalar distance from the origin.

Figure 6: Ray and plane

Given this information, the ray-plane intersection can be tested with the following algorithm:

Input: Ray origin = Ray.O

Ray unit direction vector = Ray.D

Plane unit normal vector = Plane.N

Plane distance from origin = Plane.D

Output: t =
Plane.D − Plane.N • Ray.O

Plane.N • Ray.D
if t < 0:

return MISS

else:

pt = Ray.O + t(Ray.D)

return HIT, t, pt

A block diagram of the algorithm, emphasizing the computational blocks necessary, is shown below:

Figure 7: Block diagram of ray-plane test algorithm

For the ray-sphere test, the input information is the ray origin point and unit direction vector, and
the sphere center point and scalar radius.

Figure 8: Ray and Sphere

Given this information, the ray-sphere intersection can be tested with the following algorithm:

Input: Ray origin = Ray.O

Ray unit direction vector = Ray.D

Sphere center = Sphere.C

Sphere radius = Sphere.R

Output: m = Ray.O - Sphere.C

b = m • Ray.D
c = (m • m)(Sphere.R • Sphere.R)
d = b2 - c

if (c > 0 && b > 0) || d < 0:

return MISS

else:

t = -b -
√
d

pt = Ray.O + t(Ray.D)

return HIT, t, pt

A block diagram of the algorithm, emphasizing the computational blocks necessary, is shown below:

Figure 9: Block Diagram of Ray-Sphere Test Algorithm

To implement these test algorithms in hardware, a five-stage pipeline was created, with stages
separated by multi-cycle computational blocks, such as dot products, dividers, and square root
calculations. The pipeline has two main paths through it, one for the ray-plane algorithm and one
for the ray-sphere algorithm. These paths branch in two when it is determined whether the test
will return a hit or a miss. The possible paths for a single ray-object test to travel through the
pipeline are pictured below.

Figure 10: Five stage intersect test pipeline
Figure 11: Intersect test pipeline with multiple
simulatenous ray-object tests

Because the pipeline stages are isolated from one another by FIFO buffers, five different tests can
be progressing through the pipeline at the same time, one inhabiting each stage. These tests can
be for either object. The critical path through the intersect test block (and for the entire hardware
accelerator) is currently in the ray-sphere path, in the third stage of the pipeline, where there are a
number of computationally intensive operations that all need to happen. Splitting that third stage
into two pipeline stages would be wise, if further work on this project were to be done.

5 Implementation Evaluation and Performance

The design was synthesized on a Xilinx Virtex 5 FPGA. Three distinct implementations were syn-
thesized. The extensive use of dot products in our algorithms required the careful design of the
architecture to effectively use the limited multipliers on the FPGA. Our implementation focused
on increasing frequency performance while remaining below the multiplier resource limitation. The
original näıve functionally correct implementation would not synthesize on the FPGA because all
64 multipliers were instantiated and the place and route engine could not achieve timing closure
with these resources being exhausted. The second implementation was re-architected to re-use more
of the multiplier resources by sharing multipliers between the shape tests since only one shape test
was active at one time. This implementation was reported by the synthesis report to operate at
a maximum frequency of 60MHz and used 32 multipliers. The third implementation introduced a
deeper pipeline and the ability to handle two distinct shape intersection tests in parallel and this
was successfully synthesized operated at 64MHz and used 44 multipliers.

The Intel Pentium D 2.8GHz on the cs02.mit.edu machine using POV-Ray to render a 320x240
scene with a plane and a sphere required 0.149 seconds to perform 280,916 intersection tests, which
evaluates to an average of 525 ns per intersection test spent in hardware. The same scene was
calculated to have spent 363 ns per intersection test in the FPGA. The cycles per intersection
test in simulation was multiplied with the maximum frequency reported by the synthesis results to
obtain this number.

6 Design Exploration

Although we’ve successfully implemented an accelerator and hooked it into a widely used software
ray tracer, many more options exist to expand upon this work. A few considerations limited our
performance: Sce-Mi and fixed point arithmetic. Ideally, an FPGA can use the full bandwidth
offered by its I/O bus, but by using Sce-Mi (since we did not have enough time to implement a
new, more lean interface) we lowered our PCIe bus performance to under 5% of it’s maximum
bandwidth capacity. Given more time to develop quicker interfacing between the test bench and
the FPGA, we could see huge I/O performance gains. Secondly, we were limited by Bluespec’s
lack of floating point arithmetic. Because we neither had it readily availalbe as a Bluespec library,
nor decided it would be a good idea to drop in a Verilog module after Bluespec compilation, our
implementation was forced to use fixed point arithmetic for all of its calculations. This heavily
limited our precision, and looking at the scenes we output, almost all of the errors generated (lack
of smooth edges, dots, etc) were due to fixed point precision errors.

Further work could be done by implementing a spatial tree structure for storing the nodes, which
would give a good speedup for scenes with a lot of images. Of course, more shapes can be imple-
mented in the hardware, along with possible specialized support for advanced ray tracing features
such as radiosity calculations. Another promising area of improvement is moving all of the pri-
mary ray generation onto the FPGA. This way we can minimize I/O operations to just a constant
cost of sending in scene data. Once sending in the scene data, all necessary calculations are done
completely on hardware, possibly leading to great performance improvements.

7 Acknowledgements

The authors gratefully acknowledge Richard Stephen Uhler and Abhinav Agarwal for their help,
advice, and support in the course of this project. The authors also acknowledge Professor Arvind
for his guidance, and the Bluespec Inc. for allowing use of their software package.

8 References

[1] C Erickson. Real-time Collision Detection. Morgan Kaufmann, 2005.

[2] A Keller, F Slomka. Fixed Point Hardware Ray Tracing. Universität Ulm, 2007.

[3] M Pharr, G Humphreys. Physically based rendering: From theory to implementation.
Morgan Kaufmann, 2004.

