
6.375 Final Project Report Daniel Southern, Olivier Huber

Implementation of a Genetic Algorithm on an FPGA

to Discover E�cient Sorting Networks

May 13th 2010

1 Background

Sorting sets of numbers is usually considered in the context of a software algorithm. However, when
sorting functionality needs to be implemented in hardware, adapting a known sorting algorithm into
hardware (i.e. quicksort, mergesort, etc.) may not be the most e�cient or straightforward method.
This is especially true when sorting relatively small sets of numbers, for example sets with 32 or
fewer items. The alternative to an iterative or recursive algorithmic approach is to develop a static
sorting network for the speci�c size of the set of numbers to be sorted.

1.1 Static Sorting Networks

A static sorting network can be represented as a list of comparisons, which specify two positions in
the set to compare. Using a functional form, we can de�ne a comparison function as C(i, j). The
behavior of the function is to swap the ith and jth items if the value of item j is less than the value
of item i. By applying a list of comparison functions in a speci�c order, sorting networks can be
formed which will result in a correctly sorted set of items given an arbitrary input con�guration.

Optimal sorting networks are well known for very small problem sizes with fewer than 16 inputs.
However, for 16, 32, and 64 input networks, it is not known whether more e�cient networks can be
developed. As recently as 1995, the best-known size of a 13-input sorting network was reduced from
46 comparisons to 45 comparisons using a software implementation of a genetic algorithm [1]. The
possibility exists to develop novel, more e�cient, sorting networks for larger input sizes.

Figure 1: Visualization method for sorting networks. Image courtesy [2]

Figure 1 represents a visualization method for sorting networks. Each comparison is represented
with a vertical line between the two positions being compared. Comparisons are applied in order
from left to right, and positions are numbered with the �rst position at the top of the �gure. It is
possible for sets of comparisons to be performed simultaneously. This gives rise to two metrics for
determining the performance of static sorting networks. First, the number of comparisons should
be minimized, as each comparator represents extra hardware. Second, the number of parallel steps
can determine the latency for receiving output from a sorting network in pipelined applications; the
number of parallel steps should be also be minimized.

1

Figure 2: Visualization for a 16-input sorting network with 60 comparisons in 10 parallel steps.
Image courtesy [1]

Figure 2 represents one optimized solution for a 16-input sorting network.

1.2 Genetic Algorithms

Genetic algorithms are employed to stochastically search through large solution spaces using the
idea of �tness as a heuristic to guide the search. One way to frame a genetic algorithm is as follows:

In each iteration of the algorithm, a set of imperfect solutions, also called the population of solutions,
is evaluated to determine how well each solution solves the problem at hand. Each member of the
population is assigned a �tness via this process. After each member of the population is evaluated,
individuals are chosen from the population stochastically, with the probability of being chosen tied
to their relative �tness values such that more �t members have a higher probability of propagating
from generation to generation. As members are copied from one generation to the next, random
mutations are also added to some of the members in order to further explore the solution space.
Mutations may be minor, which represents local search in the state space, or they can be radical to
search the state space more broadly. The frequency and type of mutations can be modulated based
on the overall progress of the algorithm.

1.3 Genetic Algorithms Implementations on FPGAs

By phrasing a search for e�cient sorting networks in a genetic algorithm context, the problem
appears in a form which lends itself to parallel optimization. Genetic algorithms are already intrin-
sically parallelizable due to their structure as a population of similar items which are each processed
independently using the same functions. By implementing these functions in hardware multiple
times, a speedup over software implementations can be immediately realized. Furthermore, the
functions themselves may bene�t from further parallelization.

Fortunately, a genetic algorithm designed to evolve e�cient sorting networks bene�ts from both
of these properties. Calculating the �tness of a particular sorting network involves checking its
performance against many possible inputs, which immediately lends itself to parallelization.

1.4 Project Goals

By designing computational structures speci�cally for the sorting networks, it should be possible to
realize huge speed increases versus software implementations which are delayed by non-specialized
hardware, cache misses, etc. These overall speed increases may make it feasible to search larger
problem spaces more e�ectively than was previously possible. The goal of this project will be to
�rst reproduce optimal results for small problem sizes, and to ultimately tackle larger and larger
problems in an attempt to discover novel sorting networks with more than 16 inputs.

2

2 Design Overview

High-level view

World

Fitness calculator Mutator

Solutions in BRAM New Solutions in BRAM

Random numbers

Figure 3: High-level design

The ellipse represents data and the rectangles represent modules.
In this architecture we have two important modules which are the Fitness Calculator module

and the Mutator module. The �rst one takes as input sorting networks and random numbers to
sort. It outputs a �tness value for the network.

The second one takes previous networks and produces new networks.
The central part is the World module that does all the necessary logical glue between each of

the components. It should not be a time or resources consuming module.

We use LFSR (linear feedback shift register) as random number generator.
We spend most of our time and e�orts in the Fitness Calculator and Mutator modules in

order to make them as fast as possible and as small as possible.

2.1 Data Structures

In this design there are 2 primary data types, a data type to store the �tness of a network and the
network itself.

2.1.1 Fitness

In order to maximize congruency with our C++ reference implementation, we chose to represent
the �tness values as decimal numbers in the range [0.0, 1.0]. In hardware, we chose a FixedPoint
representation with 2 bits for the integer component and 30-bits for the �oat component. This design
decision ensures that range of values we want to capture are inside the range of values which can be
represented, and choosing a standard 32-bit data width minimized confusion when transferring the
�tness values via SceMi. The �tness type has the following Bluespec de�nition:

1 typedef FixedPoint#(2, 30) FitnessType;

2.1.2 Network

Choosing a representation for the network data type proved more challenging. We quickly realized
that the number of bits in the network representation would preclude passing around monolithic
network representations. Therefore, a network chunk data type was de�ned which held a small
number of comparisons (i.e. between 1 and 5 comparisons). The number of comparisons in each

3

chunk was left parameterized in our Bluespec code as a variable which we would investigate to
optimize performance. The network chunks have the following Bluespec de�nition:

1 typedef struct{
2 Vector#(chunkSize, Maybe#(Comparison#(netSize))) comparisons;
3 Bool lastChunk;
4 } NetworkChunk#(numeric type netSize, numeric type chunkSize) deriving (Bits, Eq);

Choosing the chunk size can dramatically in�uence the design as it a�ects the data path widths
between modules as well as the number of memory accesses required to read or write a network.
Ultimately we found it preferable to specify a small chunk size of 2 and optimize the rest of the
hardware to minimize dead cycles, compile time, and combinatorial path lengths.

2.2 Fitness Calculator Module

In a high level overview, the Fitness Calculator accepts a candidate network as input and produces
a FixedPoint decimal value between 0 and 1 as an output which represents the �tness of the network.
The �tness is calculated by applying every possible input to the sorting network and then determining
the proportion of inputs for which the network correctly computes the sorted output. The Fitness
Calculator module contains a bank of Solver submodules which complete the work of checking
whether a particular input is correctly sorted by a network.

Fitness =
Number of inputs correctly sorted

Number of possible inputs

Fortunately, Knuth provides a lemma which simpli�es the problem of applying every possible
input to the sorting network, known as the 0-1 principle [3]. The principle states that a sorting
network which can correctly sort every possible input of 0's and 1's will be able to sort any arbitrary
input. This greatly reduces the input space that we must evaluate, giving exactly 2n possible
inputs for a sorting network of size n. Furthermore, these problems lend themselves perfectly to
representation as the set of unsigned binary numbers in the range [0, (2n − 1)].

For small sorting networks, the number of inputs is relatively small, and this approach allows
fast evaluation. However, for larger networks, even this input space grows quickly, and we planned
to move towards sampling just a subset of the possible inputs, or even simultaneously evolving
populations of sorting networks and network inputs. We were unable to progress to sorting networks
large enough to necessitate these changes.

2.2.1 Fitness Calculator Operation Overview

The top-level state machine keeps track of the current state of the system. When the system
enters the calculate �tness state, a rule in the main module generates the appropriate requests for
the population of networks to be streamed out of the BRAM Memory and into the Fitness
Calculator module. As a network enters the Fitness Calculator, it is sent to each Solver in the
bank of Solver modules. The number of Solver modules is a design parameter, as is maximized
to best utilize the resources available on the FPGA. Each Solver module is assigned a possible
input for the sorting network, which it sorts according the network being streamed through it. If
the number of Solver modules inside the Fitness Calculator module is smaller than the number
of possible inputs, then each network must be streamed through the Fitness Calculator multiple
times. After each pass of the network through the Fitness calculator, the solvers are queried to
accumulate a count of the number of correctly sorted results a particular network generates.

4

2.2.2 Solver Operation Overview

The Solver module is initialized with a n-bit binary input problem. It is then ready to accept a
network stream which it will apply to the input problem. While the Solver applies the sorting
network to the input, it simultaneously computes the expected sorted output. After the network
has been streamed through the module, a 1-bit binary output is produced which indicates whether
the network's output matched the expected sorted output. The Solver module is instantiated many
times, and therefore warrants optimization in terms of both performance maximization and FPGA
area usage minimization.

For example, as the Solver module applies the comparisons in each network chunk the input
problem, we have a choice for how many should be applied in each clock cycle. Of course we attempt
to apply as many as possible with the constraint that the chain of comparisons should not be the
critical path in the design. The Solver operates by repeatedly applying comparisons to the input
problem until the network chunk has been completed. When all of the comparisons in the �nal
chunk of a network have been applied, the network's output is compared against the correctly sorted
output to generate either a binary true or false output.

In our initial design proposal, we anticipated that the number of comparators applied serially per
cycle in the Solver module would be a key factor in the system's performance, as well as the number
of Solvers. We performed a design exploration to investigate the optimal number of comparators
per Solver and the optimal number of Solvers and discovered that implementing a network chunk
size of 2, along with 2 comparators per Solver gave the best performance. This is probably due to
the fact that a network chunk can be processed in a single cycle in all modules, and data path widths
are minimized, which helps maximize the number of Solver modules which can be instantiated on
the FPGA. Ultimately we were able to instantiate 256 solvers, which utilized 95% of the LUTs on
the FPGA. This demonstrates that parameterizing our design allowed us to e�ectively utilize all of
the resources on the FPGA to maximize the performance of our design.

2.2.3 Sorter

When choosing which members of the population to copy into the next generation, we'd like to have
a sorted list of the networks, with the networks with high �tnesses at the top of the list. Then
we could draw randomly from the list, with a bias towards the networks with higher �tnesses. For
example, if we ask the sorter for the 0th element, it should return the index in the population of the
network with the highest �tness.

Therefore, a sorting module was designed which accepts a �tness tagged with a population index
for every member of the population; the �tnesses are stored and sorted. This facilitates biasing the
reproduction step towards networks with higher �tnesses. When the next generation of networks is
being computed, the top n �tnesses are drawn from the sorter to be propagated directly into the

next generation both unaltered as well as through the Mutator, making up
2n

PopulationSize
of the

next generation. The rest of the next generation is created by mutating elements selected randomly
from the current generation, with a bias towards higher �tness networks.

Implementation The sorter is implemented as a realtime insertion sort over the �tness values
tagged with population indices. Since the �tness values are produced only occasionally by the
Fitness Calculator, we can take advantage of the cycles in between by sorting each input as it
arrives. The sorter is designed to only accept a new input when the current set of data in the sorter
is already sorted. This allows the use of a binary search to locate the insertion point for the new
element, which takes O(log(S)) time for a population size of S. Next, elements in the array must
be shifted down to accommodate the new element, which takes O(S) time, with an upper bound of
S cycles. As long as the Fitness Calculator requires more than S cycles to evaluate the �tness
of a network, the sorter will not be a bottleneck to the system's performance. While this is not

5

necessarily true for smaller problem sizes and larger populations (i.e. problem size of 8, population
size of 2000), it is de�nitely true for networks of size 16 with population sizes up to 5000, and poses
less and less of a problem with larger network sizes.

We implemented a 2-port BRAM to store the sorted values. This allows us to e�ciently shift
elements down the array by reading and writing simultaneously at adjacent positions in the RAM.
Once the �tnesses for all members of the population have been inserted into the Sorter, we can bias
a random selection of members of the population by choosing indices in the sorter biased towards
the highest ranked �tnesses.

2.2.4 Fitness Calculator Design

BRAM

World

Memory
Arbiter

Fitness
Calculator Network

Read Port

Network
Write Port

SCEMI
Port

Network
Chunk

(Fitness, Population Index)

SCEMI
Link

Fitness
Port

Solver 1 Solver 2 Solver N...
Test

Bench

Sorter

Solver Result (Boolean)

Network Chunk

Figure 4: Fitness Calculator

2.2.5 Pseudo-Code of Fitness Calculator

The algorithms which de�ne the operation of the Fitness Calculator are described below in psuedo-
code.

Algorithm 1 Fitness Calculator

Require: N a pseudo sorting network
Ensure: Two comparisons are swapped
f <- 0
for p = 0 to (2size(N) − 1) do
p′ = ApplyNetwork(N, p)
p∗ = CalculateExpectedSolution(p)
if p′ == p∗ then
f <- f + 1

end if

end for

return
f

2size(N)

2.3 Mutator Module

The Mutator module takes a sorting network as an input and produces another sorting network
which may be slightly di�erent from the original network through some transformation. This trans-
formation is called a mutation, and the Mutator module will be capable of performing a variety of

6

Algorithm 2 ApplyNetwork

Require: N a pseudo sorting network
Require: p is a bit vector of length(N)
Ensure: Bit vector p is sorted according to N
for i = 0 to length(N) do
bit1 = p&(N.comp[i].c1)
bit2 = p&(N.comp[i].c2)
if N.comp[i].c1 > N.comp[i].c2 and bit2 == 1 and bit1 == 0 then
p <- p− (1 << N.comp[i].c2)
p <- p+ (1 << N.comp[i].c1)

end if

if N.comp[i].c2 > N.comp[i].c1 and bit1 == 1 and bit2 == 0 then
p <- p− (1 << N.comp[i].c1)
p <- p+ (1 << N.comp[i].c2)

end if

end for

return p

Algorithm 3 CalculateExpectedSolution

Require: p is a bit vector of length(N)
Ensure: The correct expected sorted output is calculated
ones <- size(N) - 1
p∗ <- 0
for i = 0 to size(N) do
if p&(1 << i) then
ones <- ones - 1
p∗ <- p∗ + (1 � ones)

end if

end for

return p∗

7

mutations. In the context of sorting networks, a reasonable mutation may be to change the order
of two comparisons, or to change one or both of the positions in a comparisons. Of course there are
many more possible comparisons, and they can be composed to create even more complex mutations.

One interesting aspect of theMutator module is that, as the mutations are supposed to random,
it will require access to a pseudo-random source of numbers. This is represented in the design as
a module from which we can simply request the next random number. For debugging purposes
(in order to make our program's execution match up with the corresponding C++ program), this
may be implemented as simply a list of pre-generated random numbers that we choose in order to
emulate drawing random numbers in a deterministic, reproducible way.

TheMutator module provides a function interface which takes a Sorting Network. The module
will then being processing the sorting network. A few cycles later, a new mutated Sorting Network
will be available through another function at the output. The Control Logic references the Random
Number Generator in order to select a Mutation to use. The Control Logic also takes a random
number to pass to the Mutator which the Mutator will then use to perform the mutation.

BRAM
Memory
ArbiterMutator

Network
Read Port

Network
Write Port

SCEMI
Port

Network Chunk

SCEMI
Link

Fitness
Port

Mutation 1 Mutation 2 Mutation N...
Test

Bench

(Network Chunk, Population Index)

 (Network Chunk, Population Index)

Sorter
Index

Generator

Request

Network Chunk

Index

Figure 5: Mutator

2.3.1 Pseudo-code of mutations

Algorithm 4 Mutation 1

Require: N a pseudo sorting network
Ensure: Two comparisons are swapped
RN1 <- RNG()
RN2 <- RNG()
N.comp[RN1] <- N.comp[RN2]
N.comp[RN2] <- N.comp[RN1]
return N

8

Algorithm 5 Mutation 2

Require: N a pseudo sorting network
Ensure: An index if one comparison is changed
RN1 <- RNG()
RNBIN <- Binary_RNG()
if RBIN == 0 then
N.comp[RN1].c1 <- RN1

else

N.comp[RN1].c2 <- RN1
end if

return N

Algorithm 6 Mutation 3

Require: N a pseudo sorting network
Ensure: A comparison is randomly changed
RN1 <- RNG()
RN2 <- RNG()
RN3 <- RNG()
N.comp[RN1].c1 <- N.comp[RN2]
N.comp[RN1].c2 <- N.comp[RN3]
return N

Algorithm 7 Mutation 3

Require: N a pseudo sorting network
Ensure: A comparison is randomly changed
RN1 <- RNG()
RN2 <- RNG()
RN3 <- RNG()
N.comp[RN1].c1 <- N.comp[RN2]
N.comp[RN1].c2 <- N.comp[RN3]
return N

Algorithm 8 Mutation 5

Require: N a pseudo sorting network
Ensure: Two comparison are swapped
RN1 <- RNG()
RN2 <- RNG()
N.comp[RN1] <- N.comp[RN2]
N.comp[RN2] <- N.comp[RN1]
return N

9

2.3.2 Reproduction

Our initial designs chose networks uniformly randomly from the population to be propagated into
the next population. This was accomplished via a LFSR which produces values in the range of the
size of the population.

In order to bias network selection during reproduction, we created a module which would generate
indices to be inserted into the sorter module described above. Based on the design of the sorter, the
problem is reduced to generating indices in the range of the size of the population biased towards
zero. We chose a polynomial probability density function p(x, S) for the probability of selecting the
xth best element in a population of size S + 1, given by:

p(x, S) =
3

S3
(S − x)2

The coe�cient
3

S3
is a scaling factor to make the integral

∫ S

x=0

p(x, S) = 1. The distribution is

shown below for S = 500.

Figure 6: Probability of propagating the xth best element into the next generation for a population
size of 500

2.4 Memory Arbiter

A memory arbiter module was created to handle memory requests from three di�erent sources. The
memory arbiter handles marshalling and unmarshalling of the Fitness and Network Chunk data
types. However, in our design we have kept this process simple by making sure each of these data
types is less than 64-bits and can be read or written in a single memory access. This is not an issue
since the rest of our design must be aware of the Network Chunk data-type as well, and we don't
want our data paths to grow beyond 64-bits for performance reasons anyway.

The arbiter design is relatively simple. Read requests and write requests are enqueued in FIFOs
as they arrive on the three di�erent read/write ports. This means there are 6 total FIFOs which may
contain access requests for the memory. We handle the read and write requests separately, keeping
of track of whether the last memory access was a read or write and giving priority to the type of
access which has happened least recently. This is also the strategy we use to mediate access between
the three ports. The port which accessed the memory least recently is given highest priority access,
and the port which accessed the memory most recently is given the lowest priority access.

Although this design may not be the most e�cient, as it could be bene�cial to prioritize certain
types of memory access, it is a simple way to ensure that the system does not deadlock. We plan to
aggressively optimize this component of the system, as dead cycles while we're waiting for memory

10

access has already been identi�ed as one of the largest performance problems in the current system
design.

2.5 SceMiLayer

We are using SceMi to interact with the FPGA. We use it to transmit and receive information from
the board.

We receive these informations from the board:

• The current best �tness

• The current number of cycles, iterations, number of cycles spend in each state

• We check if we have found a sorting network.

• If this is the case, we are getting this network, in order to visualise it.

We use SceMi to give some informations to the board:

• We are uploading the seeds for the LFSR.

• We are uploading the values of the CDF for the IndexGenerator module.

3 Debugging Strategy

We have 3 modules to test : the Fitness Calculator module, theMutator module and theWorld

module.
We used at the beginning a C++ program to search networks.
We managed to get a �rst working version pretty fast. In order to debug our design, we have

use many $display command to be able to analyse what was going on during the simulation.
After we managed to get the �rst design working, we implement new features in bluespec, then

check in simulation if everything is working �ne immediately after we synthesize it on the FPGA
and run tests on small networks to check if every is �ne. Then we begin the cycle again.

4 Design Explorations

4.1 DDR Memory

In our preliminary design, the data structure we devised to represent a sorting network was one
monolithic unit containing a vector of comparisons as well as a FixedPoint number representing
the network's �tness. We were also storing the population of networks in a vector of registers. For
extremely small networks (i.e. with 4, 5, or 6 inputs and 5, 9, 12 comparisons respectively), this data
structure remained a manageable size, i.e. less than 128 bits. As we progressed to larger networks,
two problems were introduced.

• Storage The number of registers required to store a su�ciently large population of networks
grew too quickly. This led to both extremely long compile times, and usage of a large area of
the FPGA.

• Data Path Width The width of the data paths was also a major concern. Sending the entire
network at once between the modules in our design increases the complexity of the routing the
compiler must perform.

11

In order to address these problems, we undertook major architectural changes to make our
design less sensitive to the size of the sorting network. This involved splitting up the network data
structure into smaller chunks. Rather than storing all of the comparisons in a single data structure,
we introduced a parameterized data structure which holds a small number of comparisons (i.e. 1 -
5). We also decided to store the �tness value separately, as the data paths for the �tness values are
separate from the comparisons in many parts of the design. The biggest change, however, was to
move storage of all information from registers on the FPGA into the DDR2 memory of the FPGA.

This required the introduction of a memory arbiter module which presents separate memory
access interfaces to 3 separate types of interactions with the memory.

• SCEMI A port was created to give SCEMI read-only access to the memory. This allows our
TestBench C++ program to query the �tness values of the population to calculate statistics
such as maximum �tness, average �tness, etc.

• Network Chunk Access The Fitness Calculator and Mutator modules never operate
simultaneously, so a single network chunk interface su�ced. This interface allows both reading
and writing of network chunks.

• Fitness Write Access The Fitness Calculator module writes the �tness of each network
into the DDR2 memory for SCEMI to read.

As the Fitness Calculator module computes the �tness of a network, the network is streamed
into the module in chunks. The chunks are requested ahead of time to maximize throughput in
the face of the memory delay. Furthermore, each network must be streamed from memory into the
Fitness Calculator several times, as we are not able to apply the network to every possible input
in a single pass.

TheMutatormodule only needs each network to be streamed in once. However, the networks are
not necessarily read in order of the memory, as during reproduction one network may be included
in the next generation more than once, while another network may not be included at all. The
Mutator module receives all of the chunks from a network in order, and eventually emits all of
the chunks of the new (mutated) network, but not necessarily in order, as the amount of state the
Mutator module needs to maintain was minimized, but the Mutator may need to perform an
action such as swapping comparisons in the �rst and last chunks of a network. The intermediate
chunks will be emitted form theMutator unaltered, but the �rst and last chunks cannot be emitted
until the entire network has been streamed in.

When we moved to the DDR2 storage, we faced a major regression in performance. Since we
were requesting only one chunk at a time from the DDR2, and we were only able to write one chunk
every 4 cycles. After digging into the module and interface with the DDR2, it appears that we
could try to cache the data that we requested in order to circumvent the latency in come cases,
but ultimately DDR2 would still be the bottleneck in the performance of our design without more
serious architectural changes. Furthermore, we wanted to concentrate our design e�orts on the
components which were more speci�c to the project rather than designing around the characteristics
of the memory.

Through further consideration about the amount of storage space we would need to store net-
works as we moved to larger networks, we approximated that 1MB of storage would an upper limit
throughout this work. The FPGA we're using has approximately 3MB of BRAM available. Further-
more, the BRAM memory provides single cycle delay for read and write, and provides an interface
which is simpler than the DDR2 burst interface. The calculations to estimate memory usage are
reproduced below:

Memory Requirements For a network of size n with c comparisons and a population size of S,
we calculate the memory requirements:

12

- Network Indices: Must represent numbers [0, n - 1]. Size is TLog#(n).

- Comparator: A comparison consists of two Network Indices, which has size 2 · TLog#(n)

- Network: A network consists of c comparisons, which has size 2c· TLog#(n)

- Population: The population consists of S networks, and is instantiated twice to allow copying
elements from one generation to the next. This has size (2S) · (2c)·TLog#(n).

- Population Fitness: Each �tness is size 32-bits, and we must store S �tnesses.

The total size in bits is then approximated by:

4ScTLog#(n) + 32S

For a network of size 16 and a population of size 10,000, we calculate needing approximately
1.2MB of storage.

4.1.1 Miscellaneous Optimizations

When our code was correct, we then tried to decrease the average time for evaluating the �tness of
a network.

One important element are dead cycles, which can easily happened with FIFOs.
Since we have already some big combinatorial paths in your design, which prevent us from

running it at 100 MHz, we tried to use BypassFIFOs to decrease the number of dead cycles.

5 FPGA usage

We compiled for the fpga for up to size 16.

Size Comparisons Population Size Mean Iterations Mean Time (s)

8 19 1000 893 8

9 25 1000 4170 24

10 29 1000 101209 596

11 35 1500 37127 566

Table 1: FPGA Results

Size Comparisons Slice Register Utilization (%) Slice LUTs Utilization (%)

8 19 25 66

9 25 28 74

10 29 29 75

11 35 30 77

12 39 31 80

13 45 31 86

14 51 32 89

15 56 33 92

16 60 34 95

Table 2: FPGA Utilization for designs with 256 solvers

13

5 10 15 20 25 30 35 40

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

FPGA Usage vs. Network Size

 %Slice Registers
% Slice LUTS
% Slice Register Large
Network
% Slice LUTS Large
Network
% Korenek Utilization

Network Size

F
P

G
A

 U
sa

g
e

 (
%

)

Figure 7: Comparison of FPGA Utilization vs. Network Size in Several Parameterizations in Blue-
spec and in the Work of Korenek [4]

Module Slices Slices Register Utilization Slices LUTs

Bridge 6920/36353 1376/26488 7174/61928

NetworkFinder 698/27042 938/18950 1631/51860

FitnessCalculator 760/25073 43/16284 1099/47775

Solver 51/92 63/63 110/180

Comparator 41 0 70

Mutator 150/725 6/1120 257/1329

Mutation1 163 331 309

Mutation2 143 233 250

Mutation3 14 26 28

Mutation5 106 213 109

Sorter 259 215 555

Scemi 1359 2780 2078

Table 3: Area Utilisation for a network of size 16 with 256 solvers

If we compare our result against Koronek works and our C++, we have this results :

Network Size Us Korenek C++ program

8 5 µs 5 µs 71 µs

12 15 µs 81 µs 4300 µs

Table 4: Evaluation time of one network

6 Conclusion

In this work we successfully created a parameterized Bluespec module to evolve e�cient sorting
networks. We have demonstrated that our design is relatively �exible and allowed us to perform
some design exploration to maximize performance in the parameter space. Furthermore, the biggest
advantage of this design is that we can leverage all of the resources on the FPGA to maximize

14

the speed of the genetic algorithm. We have demonstrated that our design evaluates the �tness of
individual networks up to 10 times more quickly than previous similar work on an FPGA.

Unfortunately, despite the ability of our design to evaluate networks more quickly than Korenek,
we failed to produce sorting networks as large as Korenek was able to produce. We attribute this
to the limitations of our implementation of the genetic algorithm. Speci�cally, we feel that a more
sophisticated reproduction mechanism which maintains higher genetic diversity would be desirable,
along with a better mechanism to modulate the rate of mutation according to the progress of the
algorithm.

6.1 Lessons Learned

If we were to undertake a similar project in the future, we would choose to spend more time thinking
about the problem abstractly rather than spending the majority of our time maximizing performance
on the FPGA. Although we were able to achieve satisfactory performance, our algorithm ultimately
failed to produce the interesting results we were hoping for. It appears to be the case that a more
sophisticated algorithm can a�ord increases in search speed much larger than we were able to achieve
by even doubling the speed on the FPGA.

15

For reference, the results from [4] are reproduced below.

Table 3. Sort ing networks evolved in FPGA

N V RC size # Per fect A ver age num . of St andar d Evaluat ion t ime
lengt h (element s) solut ions gener at ions dev iat ion of one candidat e

4 2x8 80 94 2.55556 512 ns
6 3x16 80 458 31.44444 1.28 us
8 4x16 80 2217 24.66667 5.12 us
10 5x32 80 6378 65.66667 20.48 us
12 6x32 76 8673 666.88889 81.92 us
14 7x32 75 11322 718.55556 327.67 us
16 8x32 66 19467 477.44444 1.31 ms
18 9x64 20 25306 3732.77778 5.24 ms
20 10x64 17 31344 150.00000 20.97 ms

Table 4. Large sort ing networks evolved in FPGA

N V RC size N umber of Evaluat ion t ime Tot al t ime
lengt h (element s) gener at ion of one candidat e of evolut ion

22 11x64 4044 83.89 ms 5.6 min
24 12x64 4804 335.54 ms 26.9 min
26 13x64 10027 1.342 s 3.7 h
28 14x64 13483 5.368 s 20.1 h

Figure 8: FPGA results

16

XC2V-3000 FPGA ut ilizat ion for

different VCR and N

N V RC Sl ices Chip
lengt h Elem ent s U t i l izat ion

10 5x30 1731 12 %
12 6x36 2262 15 %
14 7x42 2735 19 %
16 8x48 3207 22 %
18 9x54 3795 26 %
20 10x60 4431 30 %
22 11x66 5675 39 %
24 12x72 6412 44 %
26 13x78 7314 51 %
28 14x84 8173 57 %
30 15x90 9232 64 %
32 16x96 10223 71 %
36 18x108 12468 86 %

Figure 9: Chip utilisation

References

[1] H. Juillé, �Evolution of non-deterministic incremental algorithms as a new approach for search in
state spaces,� in Proceedings of the 6th International Conference on Genetic Algorithms, pp. 351�
358, Citeseer, 1995.

[2] O. Sigvardsson, �Simple sorting network full operation.� Wikipedia. http://upload.

wikimedia.org/wikipedia/en/thumb/9/9b/SimpleSortingNetworkFullOperation.svg/

1000px-SimpleSortingNetworkFullOperation.svg.png.

[3] D. Knuth, The Art of Computer Programming, vol. 3 - Sorting and Searching. Addison-Wesley,
1973.

[4] J. Korenek and L. Sekanina, �Intrinsic evolution of sorting networks: a novel complete hardware
implementation for FPGAs,� in Evolvable Systems: from Biology to Hardware: 6th International

Conference, (Sitges Spain), p. 46, Springer Verlag, 2005.

17

http://upload.wikimedia.org/wikipedia/en/thumb/9/9b/SimpleSortingNetworkFullOperation.svg/1000px-SimpleSortingNetworkFullOperation.svg.png
http://upload.wikimedia.org/wikipedia/en/thumb/9/9b/SimpleSortingNetworkFullOperation.svg/1000px-SimpleSortingNetworkFullOperation.svg.png
http://upload.wikimedia.org/wikipedia/en/thumb/9/9b/SimpleSortingNetworkFullOperation.svg/1000px-SimpleSortingNetworkFullOperation.svg.png

	Background
	Static Sorting Networks
	Genetic Algorithms
	Genetic Algorithms Implementations on FPGAs
	Project Goals

	Design Overview
	Data Structures
	Fitness
	Network

	Fitness Calculator Module
	Fitness Calculator Operation Overview
	Solver Operation Overview
	Sorter
	Fitness Calculator Design
	Pseudo-Code of Fitness Calculator

	Mutator Module
	Pseudo-code of mutations
	Reproduction

	Memory Arbiter
	SceMiLayer

	Debugging Strategy
	Design Explorations
	DDR Memory
	Miscellaneous Optimizations

	FPGA usage
	Conclusion
	Lessons Learned

	References

