Massachusetts Institute of Technology

6.375 Complex Digital Systems

2010 Spring

Advanced Processor Design

Group lll

Michael Eskowitz

James Haupt

Advisor: Muralidaran Vijayaraghavan

Eskowitz, Haupt Page |1

Table of Contents

O Y o] o o= Tox USRS 3
P [0 o Yo [T £ o Yo RS 4
T = T 1Y (ol O o U I Ty 1= o PP PUPPPPPPPPPPR 4
4. Advanced Processor Implementation......ccccoccuiiieeiei i e e e 6
L (=T o TP PR ST TSR RPN 8
L | 4151 4 @ T8 =T PO OPI 8
4.3, BranCh PrediCtor ..o ittt ettt st st sa bt e s bt e e it e e sab e s abeesbaeesareesbee s 9
S 0 1T olo o [PPSR 13
A5, SCOMEDOAITiitietietie ittt ettt sb e s bt b e s bt ettt et e bt e bt bt e b e b e e s beesheesaeenareea en 14
B.6. EXEC ittt s s e e nrees 15
4.7. BEXEC .ttt e e et ettt et e et e e e e e e e e e e e e et aaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaan senererenane 17
4.8. IVIEXEC ..ttt ettt ettt ettt et e e e et e e e et et et et eeaeaaaaaaaaaaaaaaaaaaaeaaaaaeaeesesesesesesasasasasasaaaaaaaannsnenenenene 18
S N 611U 14| =T ¢ O TSROSO R OR OO PR PO PPPPPPPPPPR 18
4.10.] o T Lol Q) - V=SSR 19
4.11. Multi-Write Register File Implementation.........cccueeiiiiii e 20
D RBSUIES ettt e s e e s b et e s et e s r e e s r e e s ree eeesreeeaneeenns 21
L T @o] [ol [V T o O TP PP VST UP PSPPIt 23
T FURUIRE WOTK ettt ettt et e st e e b e e sab e e st e e e beeesaeeesabeesabeesaneeesmbeesabeeens senneanns 24
7.1. Scheduling Algorithm Details.....c..ciiiiiiiiiiiiiie e e sree e s aae e e e 24
7.2. Scheduling Algorithm ANGIYSISuuiiiiiiie e e et e e e bre e e e erae e e e atee e e eaees 27
7.3. Application of Scheduling System for 3 EXeC MOdUIESeeeeeiiieieciiie ettt 28
7.4, Hardware Details......c.ceooeiiiiieiiie et 30

T 11 o] [ToT={ - T o] o 1V UUPU RN 32

Eskowitz, Haupt Page |2

Table of Figures
FIUIE 3-1 Lab’5 SIMIPS PrOCESSON .. .uuiiiiieiieeciiitieee e e e eietttteee e e e e ssbtaeeeeeessssaastaeeeeesssansstaneaeeeessansstnneeessesnnrrannnes 5
Figure 3-2 Lab 5 Performance IMEIIICS.cocuiii e eecieee ettt e e sttt e ettt e e e e te e e e bt e e e e abaeeeeabaeeeennteeeeenseneeennses 5
Figure 4-1 Superscalar Processor Implementation.........coocuieeeiiiier e 6
Figure 4-2 Branch INStruction LIfE-CYCIEcooiiiiiiiiieie ettt et e et e e e e 10
Figure 4-3 1-bit Branch Predictor ACCUNACYcccuiiiiciiee et cetee et ette e e e tte e e etae e e e aae e e e ebae e e ennraeesennees 10
Figure 4-4 1-bit Branch Predictor State Transition Diagram.........cccoccveeiiiiieeescieee e e 11
Figure 4-5 2-bit Branch Predictor State Transition Diagram........ccccoccveeiiiiieeeiiiiee e e 11
Figure 4-6 2-bit Branch Predictor ACCUTACYuuiii i cciiiieee ettt e ettt e e e e e e s tnra e e e e e e e e nbraae e e e e e e nnnraees 12
Figure 4-7 Tournament 2-bit Branch Predictor State Transition Diagram........cccccceeecciiveeee e eccciiieeee e, 12
Figure 4-8 Tournament 2-bit Branch Predictor ACCUIaCty ... iiiieie ettt e e eectree e e e e e e 13
Figure 4-9 Conceptual Representation of Decode Permutation Stage.........ccceecvveeeiciieeecciiee e 13
Figure 4-10 Intra-Module Result Sharing Archit@CtUre.......oii i 14
Figure 5-1 Summary of BENCHMAIK IPCS.......cooiiiiieiiieee ettt tee e et e e et e e e evae e s e bae e e e ntaeeeeanes 21
Figure 5-2 Comparison between issuing 2 or 1 instructions at a timecccceecveeiiiiiee e 22
=V T B Yo TU] ol U 1] 2 | To o USSP 22
Figure 7-1 Expanding EXECULION NETWOIK.......ccccuiiiiiiiiie ittt e e tee e e e e e sbae e e s e e e e 25
Figure 7-2 Probability of being able to schedule an instruction with two registers current in system...... 27
Figure 7-3 Potential Future DeSiZN REVISION.......cceiiiiiiiiiiiie ettt e e e e trre e e e e e e e brae e e e e e e e annraees 30

Figure 7-4 Long-Term Architectural GOal...........cooi it et e e e e e 31

Eskowitz, Haupt Page |3

1. Abstract

In this project, we designed and implemented an in-order superscalar SMIPSv2 processor on a Xilinx
Virtex-5 FPGA using Bluespec System Verilog. The somewhat novel approach we used to improve
performance over a traditional superscalar processor is to include a Forward Map Buffer. This approach
allows us to bypass the write-back stage entirely given instructions that depend on the previous
instructions’ results. By using the previous arithmetic instruction’s result for the current instruction, we
were able to show an improvement in performance over a traditional superscalar processor by over
20%.

Eskowitz, Haupt Page |4

2. Introduction

Microprocessors are the fundamental building block of our digital age. These processing systems are
found in everything from cars to televisions to, certainly, our home computer. Today’s high-end
processors are capable of achieving a throughput of billions of operations per second (GOPS), a massive
improvement over the systems available even as little as 5 years in the past. Despite the performance
gains that are regularly obtained through the evolution of the microprocessor industry there are still
many tasks which stress the processor to its limit and can even exceed the available system resources.

In order to rise and meet the challenge of these advanced computing tasks microprocessor designers
employ a variety of methods and architectures to boost system performance. One particular technique
that is often employed is known as a superscalar architecture. In superscalar processors, the central
processing unit attempts to accelerate program execution by issuing multiple instructions
simultaneously. It is the goal of this project to implement a basic superscalar processor which
implements the SMIPS instruction set.

This paper will be organized as follows: We will describe basic processor design and functionality as
related to the pipelined SMIPS processor that was implemented in lab 5 of this course. Having
established a foundation for understanding microprocessor architecture, we will then present our
advanced implementation of a superscalar SMIPS processor. This architecture will first be described at a
high level in order to illustrate the functional role of the basic system components implemented during
the course of this project. Once a high level understanding of superscalar system design is accomplished
we will attempt to achieve a low-level understanding of the implementation details related to each
module and functional unit within the system. We will then present our results and conclude with a
summary of the future direction of this work.

3. Basic CPU Design

At the very basic level, microprocessors perform three simple steps in order operate. The
microprocessor must first request an instruction from system memory (Fetch) in order to be assigned a
task to perform. Once the instruction has been received, the processor will execute the desired
operation using available data values (Decode/Execute). The results of this operation will then be
written to local registers or system memory for future use (Writeback). There are many variations on
this basic architecture, but all processors contain some implementation of this simple functionality.

The diagram below shows the pipelined SMIPS processor that was developed in lab 5 of this course.
This processor architecture consists of three separate hardware blocks (“rules” in Bluespec System
Verilog) that execute independent of one another. The FIFOs pcQ and wbQ located between the
processor stages allow a decoupling of the stages and enable simultaneous firing of each stage. The
stage pcGen is responsible for fetching the next instruction to be executed; the exec stage is responsible
for decoding and executing the instruction that is received; and, finally, the writeback stage performs
the expected functionality of committing execution results to memory.

Eskowitz, Haupt

RFile

A

= Searchable
SFIFQ

’= -

pcl

instRe 0 instResp

!

datal D dataRespQ

|

\] ‘
mkICacheBlocking

| |
mkDCacheBlecking

Figure 3-1 Lab5 SMIPS Processor

Page |5

In order to test the processer, lab5 contained a set of benchmarks each of which performed a different

task and exercising a subset of the processor’s instruction set.

The table below summarizes the

instruction per cycle (IPC) metrics that were achieved for each of these benchmarks in both the original

un-pipelined version and the modified, pipelined version. The initial version achieved an average IPC of

approximately 0.65 while the pipelined version achieved an average IPC of approximately 0.79. It is the
goal of this project to improve upon this design by implementing a super-scalar SMIPS processor.

0.9

0.8

0.7

0.6

0.5

IPC

0.4

0.3

0.2

0.1

M Initial

L Pipelined

Median Multiply

QSort Towers

VVAdd

Figure 3-2 Lab 5 Performance Metrics

Eskowitz, Haupt Page |6

4. Advanced Processor Implementation

A superscalar processor attempts to achieve higher performance levels by issuing multiple instructions
per clock cycle. The processor accomplishes this task by having redundant functional units that can each
execute simultaneously. As we will see, the amount of performance increase depends largely upon the
degree of instruction level parallelism within the code. This section of the report will provide a high-
level overview of the functional implementation of our superscalar architecture which is shown in the
diagram below.

—¥—

Branch

Predictor

Register
File

Scoreboard

pcGen

v

instReqQ

Decode

x

instRespQ

writeback

dataReqQ

X

dataRespQ

mklCacheBlocking *mkDCacheBIockiJ

Figure 4-1 Superscalar Processor Implementation

This diagram is very similar in functionality to that of the pipelined SMIPS architecture discussed
previously. Our implementation now consists of four pipeline stages: pcgen, decode, execute and
writeback. The difference being that decode and execute have been separated with execute becoming a
series of modules designed to handle the different instruction types. Additionally a number of
supporting functional units have been developed in order to support the infrastructure necessary to
accomplish superscalar execution.

The program counter implemented in our design is responsible for determining the flow of execution
through a given code. Our module accomplished this by requesting a single address from memory. The

Eskowitz, Haupt Page |7

specific address that is requested is determined by the program counter (PC) register which tracks the
most recently executed instruction address. Although pcgen requests only a single address we have
modified the interface to cache memory such that it returns a total of two addresses in a single clock
cycle which is necessary for our processor to execute multiple instructions per cycle. Pcgen must then
employ a branch predictor in order to determine if either instruction is a branch and if it is taken.

The branch predictor in this system plays a crucial role in maintaining system performance. Should the
processor fail to identify branches before executing them, it will need to invalidate all memory requests
that are pending and fetch the correct address again. The latency between memory request and
memory response can be quite lengthy and as such any faulty requests represent an unacceptable hit to
system performance.

Once a memory request has been issued, the pcgen module will provide a record of the requested
address as well as branch status (if any) to the decode rule. This rule is responsible for determining the
instruction types as well as if the instructions can fire. The criteria for determining the allowability of an
instruction is related to the number and type of instructions as well as if instruction source and
destinations conflict. The decode rule will consult the system scoreboard in order to determine if the
data required by the system is available. Any instructions that are not fired will be stored for future
execution. Those that are fired, however, will be directed to the appropriate execution module: BExec,
MExec, Execl or Exec2.

The processing system designed in the course of this project contains separate branch and memory
execution units. The benefit for maintaining a separate branch unit is that it restricts the number of
locations at which the program counter is changed. Further, a single memory execution unit exists as
we are provided with a single interface to system memory. By separating these two from the main
arithmetic execution modules it permits simultaneous branch and memory instructions to execute
within the system.

Once execution has been completed, the writeback stage is responsible for performing any commits to
the register file. The writeback stage connects to a multi-write register file which allows for the commit
of multiple results in a single cycle. As these commits occur, the register addresses will be removed
from the scoreboard in order to permit further execution using those addresses. This multi-write
register file was necessary for superscalar execution.

As we have seen, at a high level, there are many components necessary for the correct functioning of a
superscalar processor. The following sections will discuss the low level implementation details of each
of the modules and rules as implemented in our design. Further we will discuss all performance
enhancements that were made in order to optimize system performance as well as any pitfalls
encountered along the way.

Eskowitz, Haupt Page | 8

4.1. PCGen

As we have seen, a microprocessor operates by obtaining instructions from system memory, performing
the specified operation and storing the results in system registers. The functional block which specifies
the instruction addresses to be retrieved from memory is the module PCGen in our system. This module
tracks the current address and essentially performs an educated guesses at what the next instruction
will be. This module is accessed by BExec, Execl and Exec2 when the program counter needs to be
changed. In order to accomplish this task the module provides a setPC() interface which allows the
caller to override the program counter value being used for request in the current clock cycle. The
complete interface definition for the PCGen module is shown below.

interface PCGen;

method Action setPC(Addr newPC);

method Bit#(TagSz) getEpoch;

method Action incEpoch;

method PCQData getPCQ;

method Action decPC;

interface Get#(MemReg#(AddrSz,TagSz,0)) getInstReq;
endinterface

The program counter is used in multiple locations. It is fed into the decode rule by means of a PCQData
structure that is read out of the getPCQ() method and stored in a FIFO internal to the processor.
Additionally, the PCGen module provides an interface to the instruction memory cache to request future
instructions.

In addition to maintaining the program counter the PCGen module is responsible for maintaining an
epoch register that is used to kill out-of-date instructions that occur when the program branches. The
PCGen module provides a getEpoch() method to retrieve the current epoch as well as an incEpoch()
method to increment the epoch register in the event of a branch.

4.2. InstCounter

In addition to using the epoch register to kill instructions that are no longer valid we employ an
instruction counter to track the proper ordering of instructions within the system. The instruction
counter module provides the method get() to obtain the current instruction count as well as the
methods incr(), to increment the count, and reset(), to reset the counter to 0. Further, the module
provides the methods oldValue() and oldValue2() which return the value prior to reset and the value
before that (which is only available during the cycle when reset() is called). The complete interface
definition is summarized below.

Eskowitz, Haupt Page |9

interface InstCounter;
method Bit#(32) get();
method Action incr();
method Action reset (Bit#(32) old);
method Bit#(32) oldvalue();
method Bit#(32) oldValue2();
endinterface

4.3. Branch Predictor

The “educated” part of the “educated guess” that PCGen performs involves predicting if one of the next
addresses corresponds with a branch instruction. The branch predictor module allows the system to
more accurately determine when branches happen and adjust the program counter accordingly. In
order to accomplish this feat the branch predictor module provides the methods search1() and search2()
which allows the system to query two addresses in order to determine if they are known branches. In
the event that a new branch is discovered, in the normal course of program operation, it can be added
to the records that the branch predictor maintains using the update() method. Further, a falsely
predicted branch can be removed from the branch predictor’s records using the remove() method. A
complete summary of the branch predictor’s interface is presented below.

interface BPredict;
method Action update(Addr srcAddr, Addr destAddr, Bool taken);
method Action remove (Addr srcAddr);
method Maybe#(Addr) searchl(Addr srcAddr);
method Maybe#(Addr) search2(Addr srcAddr);
endinterface

The processor developed in lab 5 implemented what is known as a branch target buffer. These buffers
typically are indexed by the lower few bits of the program counter (PC) address and maintain a small
record of both branch addresses and the result of executing that branch (the address of the next PC). In
our pipelined implementation this buffer is accessed in the pcgen module before the instruction is
decoded or even received from memory. By accessing the buffer early in the pipeline we attempt to
identify and handle branches as soon as possible. ldentification occurs by determining if the instruction
is in the buffer. If a matching PC is found in the buffer then the address is likely a branch. In the event
of a branch, a memory request is immediately made for the predicted address contained in the buffer
and the PC is updated with that address. If, however, a matching address is not found then we assume
that the instruction is not a branch and we proceed with the normal flow of execution; the PC is
incremented in the standard manner and all memory requests are issued according to this value. The
following diagram, modified from [1] shows the mapping of this algorithm to the stages of the lab 5
processor. It should be noted that this diagram neglects a path by which incorrectly predicted branches
are removed from the system.

Eskowitz, Haupt Page | 10

pcgen

Normal
instruction
execution

exec

Figure 4-2 Branch Instruction Life-cycle

In evaluating our current branch predictor it is important to determine its hit rate. The following chart
summarizes the percentage of correct branch predictions for the benchmarks used in lab 5.

100 98.03
88.62

90
30 75.43

70 162.06 64:2

60 -

50 -

40 -

30 A

20 A

10 -

0 - T T T T

Median Multiply QSort Towers VVAdd

Figure 4-3 1-bit Branch Predictor Accuracy

Eskowitz, Haupt Page |11

We see from these numbers that the average prediction accuracy for our implementation is 77.6%. In
order to access this performance we must rank it against other branch prediction algorithms. A search
of the literature reveals [2] which contains a summary of branch predictor performance levels.
According to this paper the Always Taken algorithm has a prediction accuracy of 62.5%, Last-Time
achieves 89% and Two-Level Adaptive schemes can achieve from 90 to 95% accuracy depending upon
the implementation type. Our implementation is a last-time algorithm and, as such, we can conclude
that the performance metrics achieved in benchmarking agree with the numbers from this paper.

Although Two-Level Adaptive schemes offer the potential of up to 10% greater prediction accuracy we
do not feel that it is feasible to implement such a scheme during the course of this project. In order to
achieve greater branch prediction performance we will evaluate two potential modifications to our
branch predictor. The first change possibility is to modify our implementation such that it is a 2-bit
prediction scheme. The second option is to follow both paths at a branch and speculatively execute the
resulting instructions until the true path is identified.

The branch predictor implemented in lab is a one-bit predictor, which is to say that we only know the
state of its last execution. This attribute has profound implications for loop execution. In code that
loops upon itself we expect to branch repeatedly until the execution path finally diverges. This
implementation only remembers the last execution result for this branch which will always be a
divergence. As a result, we expect that the branch predictor will always mispredict the first iteration
through a loop. The transition diagram for this type of branch predictor is shown below.

Predict taken Predict not taken

Figure 4-4 1-bit Branch Predictor State Transition Diagram

We can fix this prediction error by implementing a simple threshold which will change the prediction
result only when the path has been followed twice in a row. The following diagram from [1] shows the
states in a two-bit branch predictor. According to [3], a two-bit branch target buffer will have an
average accuracy of 87%; a small gain for minimal effort.

Not taken

Predict taken
11

Predict taken
10

Not taken
—

Taken

Not taken

Predict not taken
01

Predict not taken
00

| [}
\ Nottaken /

N

Figure 4-5 2-bit Branch Predictor State Transition Diagram

Eskowitz, Haupt

Page |12

Our implementation of the 2-bit branch predictor achieved the following accuracy metrics. We see that

these results are a slight improvement upon the 1-bit design discussed previously

100
90
80
70
60
50
40
30
20
10

98.03

90.12

7279
65.74 66.5 |

Median Multiply QSort Towers VVAdd

Figure 4-6 2-bit Branch Predictor Accuracy

In order to conduct a thorough survey of prediction algorithms for our design exploration phase we also

considered a tournament predictor. The state diagram for a tournament predictor is shown below. This

implementation achieved slightly lower average prediction accuracy than the 2-bit predictor. As a result

of the lower performance metrics our final implementation contained a 2-bit predictor.

Use predictor 1

Figure 4-7 Tournament 2-bit Branch Predictor State Transition Diagram

Eskowitz, Haupt Page |13

98.03
100 90.21
90

80 74.11
70 66.85

60 -
50 -
40 -
30 A
20 +

O i T T T T
Median Multiply QSort Towers VVAdd

Figure 4-8 Tournament 2-bit Branch Predictor Accuracy

4.4. Decode

Receiving instructions from memory, the Decode stage performs the crucial operation of determining
which instructions can be issued, and which modules should receive those instructions. This is
accomplished through a series of three stages, which we refer to as Permutation, Blocking, and
Issuance.

In the first stage, we examine first a set two registers that contain instructions we were not able to fire
from the last cycle, as well as the two instructions we receive from the Instruction Memory Cache. We
pick two of these instructions in order, with preference given to the held instructions, to send to the
next stage. The distribution of these instructions is shown in the figure below.

From Registers

| instl | —>
| inst2 |
L
FromFIFO
' instl ‘
| inst2 |

Figure 4-9 Conceptual Representation of Decode Permutation Stage

In the second stage, “Blocking”, we determine if we can issue both instructions, or only the first, through
a series of checks. We block an instruction if one of the registers it is attempting to read has an
outstanding write as determined by the scoreboard, which could happen on either instruction. Next, we
check to make sure that the second instruction is not reading the same register the first writes to, or
they are both writing to the same location, in which case we would let the first instruction be issued,
and hold the second. Lastly, we check for double-memory or double-branch instructions, in which case

Eskowitz, Haupt Page |14

we have to hold the second since we can only handle one memory and one branch instruction at a time.
A blocked first instruction also blocks the second instruction, maintaining the in-order execution of our

processor

Given a blocked instruction, we allow exceptions to occur by using a “Forward Map Buffer”, which keeps
track of the previous instructions issued to the two arithmetic execution units: Execl and Exec2. Each of
the execution units have a register which contains the result of the previous cycle’s execution of an
arithmetic instruction, and permit reading of that register by the other modules. This allows utilize the
evaluation of a previous cycle’s instruction, without having to wait for the result to be written back to
the register file, thus providing a form of bypass. The diagram below illustrates the data movement
between the modules.

execl

exec2

Figure 4-10 Intra-Module Result Sharing Architecture

Lastly, in the final stage, we issue the instructions to their respective modules. So a branch instruction
would go to BExec, memory instruction to MExec, and an arithmetic instruction to one of the Exec
modules. It is possible to issue two of any combination of 1 branch instruction, 1 memory instruction,
and 2 arithmetic instructions.

4.5. Scoreboard

The processor that we have designed is capable of executing multiple instructions simultaneously. As
we have seen, there are numerous ramifications from having such an architecture as it is possible to
execute instructions that conflict with each other in parallel or use addresses that contain values that
are no longer current. Issues involving stale data are known as data hazards and a common method of
resolving them is through the use of a scoreboard.

The scoreboard implemented in our design provides several methods for tracking the number of writes
outstanding for a given register. The inc() method is used in decode to increment the count stored in

Eskowitz, Haupt Page |15

the scoreboard indicating if the register is valid or not. Further, the interface contains a total of 4 read
methods (rd1() through rd4()) which are used to query the availability of a total of 4 different registers.
Similarly, there are an additional 4 decrement methods (decl() through dec4()) which are used to
remove registers from the scoreboard when write back occurs. The complete interface definition of the
scoreboard is shown below.

interface SB;
method Action inc
method Action dec
method Action decl(Rindx rindx);
method Action dec2(Rindx rindx

(Rindx rindx1l, Rindx rindx2);
(
(
(
method Action dec3(Rindx rindx
(
(
(
(

Rindx rindx);

method Bit#(4 Rindx rindx

method Bit#(Rindx rindx

method Bit#/(Rindx rindx

method Bit#(Rindx rindx
endinterface

~=

—_ — — — ~— ~—

)
)
) rd3
)

4.6. Exec

The Execution modules in our processor are simple blocks that perform a single operation that is
determined by the instruction that is passed to it through its put() method. This method stores the
incoming instruction of type EMData in an internal FIFO until it is ready to be processed. Each module
contains a process rule which reads from this FIFO, executes the first enqueued instruction and stores
the result in a FIFO associated with its output method. The interface definition associated with the Exec
module is shown below. The get() and deq() methods return the calculated result and dequeue the
output FIFO respectively.

interface Exec;

method Action put(EMData datalnstIn);
method Data getLastResult();
method MResult get();
method Action deq();
endinterface

Among the elements contained within the EMData type is an Instruction Count (IC) associated with the
operation to be performed and either the data to be processed or a flag to let the module know that it is
to use data from a neighboring processor (and which neighbor’s data to use). The idea behind this
concept is to allow each execution module to send the results of the most recent operation to its
neighbors without requiring a write to the RFile first. The result of the instruction and the instruction’s
IC are extracted from the module by a rule within the processor which is responsible for writing to the
register file.

Eskowitz, Haupt Page | 16

The interface to the Exec module is responsible for handling two separate data types: the EQData and
MResult structures. The EQData structure contains all information necessary to track and Kkill
instructions within the processor (epoch and instruction count) as well as the instruction opcode, all
associated data and the destination address. The instruction definition of EQData is shown below
below.

typedef struct {
Bit#(TagSz) epoch;

Bit#(32) icount;
Bit#(6) opcode;
ExecData datl;
ExecData dat2;
Rindx rdst;

} EQData deriving(Bits, Eq);

We see that this data structure has elements of the type ExecData, which is a tagged union containing
the elements listed below. As described in previous sections of this report we accomplish bypassing
from writeback to decode through the Exec modules themselves. By tracking the destinations being
written to by previous instructions we are able to use the old results in future instructions. The tag
“Mine” instructs the Exec module to use the value it has stored in its register. If, however, the tag
“Current” is passed in, the module knows to extract the data present in the structure. Further, the tags
“North” and “South” direct the module to take the data value from a specific adjacent module.

typedef union tagged {
Data Current;
void Mine;
void North;
void South;
} ExecData deriving (Eq, Bits);

The result of execution of all three processing modules (Exec, BExec and MExec) is the MResult type.
This data structure encapsulates all information necessary to track and kill instructions within the
writeback stage as well as the result of executing the operation.

typedef struct {
Bit#(TagSz) epoch;
Bit#(32) icount;
WBResult result;

} MResult deriving(Bits, Eq);

Eskowitz, Haupt Page |17

4.7. BExec

In addition to the execution module, previously described, we have split off all functionality relating to
branch and jump instructions into a separate module. The benefit of localizing these instructions into a
single block is that the control logic required to track and change the program counter is minimized. As
with all processing modules in the system, BExec receives instructions via a put() method and its output
is accessed via get() and deq() methods. The interface definition for the BEXec module is listed below.

interface BExec;

method Action put(BQData branchInstIn);
method MResult get();
method Action deq();
method Bool no2ndInstruction();
method Bool nextInstBad();
method Bool regInstBad();
endinteface;

The methods no2ndInstruction(), nextinstBad() and reginstBad() are used in the decode rule in order to
appropriately schedule execution. For all mispredicted branches, either taken or not, the method
nextinstBad() will return True. In this case, if the instruction is also the first in the set of instructions to
be executed then the method no2ndInstruction() will return True. In the case where the first instruction
is a branch and it is taken reglnstBad() will return True in order to cause the system to kill the next
instruction in the sequence.

The branch execution module is the only component in the system to receive the BQData type. Similar
to the EQData type, this structure encapsulates all the information necessary to identify and kill the
instruction during processing. Additionally, this type includes the program counter, the predicted next
value for this counter as well as a sequence number indicating the position of the branch within the set
of instructions presently being considered. The remainder of the structure includes the actual
instruction being issued as well as all required data words.

typedef struct {

Addr pc;

Bit#(TagSz) epoch;

Addr nextpc;

Bool branched;

Bool inst2isabranch;
Bit#(2) instCount;
Bit#(32) icount;

Instr inst;

ExecData datl;

ExecData dat2;

} BQData deriving(Bits,Eq);

Eskowitz, Haupt Page | 18

4.8. MExec

The final module in our collection of execution blocks is the memory execution module, MExec. This
module is responsible for handling all load word, store word and MTC/MFC instructions. This module
follows the standard put(), get() and deq() interface set forth within our design. Further, the
cp0_tohost, cp0_fromhost and cpO_statsEn registers that are implemented within the processor have
been encapsulated into this module. All writes to these registers are through the put() method and all
reads are done using the get_cpO_tohost(), get_cp0_fromhost() or get_cpO_statsEn() accessor methods.
The MExec module interface is shown below.

interface MExec;
method Action put(MQData memInstIn);
method MResult get();
method DataReq getMemReq() ;
method Action deq();
method Action degMemReq() ;
method Bit#(32) get cpO tohost();
method Bit#(32) get cpO fromhost();
method Bool get cpO statsEn()
endinterface

’

The MExec module receives an input of type MQData which contains tracking information, in the form
of the epoch and instruction count, as well as the instruction and associated data values. The complete
type definition is shown below.

typedef struct {

Addr pc;
Bit#(TagSz) epoch;
Addr nextpc;
Bit#(32) icount;
Instr inst;
Data datl;
Data dat2;

} MQData deriving(Bits,Eq);

4,9, Counter4

The implementation of the Counter4 module is relatively simple in comparison to the other modules in
the system. Each of its increment methods is called by a separate module whenever an instruction is
executed. The effect of calling one of these methods is to set a PulseWire as active in order to indicate
that the method has been performed. Internal to the module is a single rule that fires on each clock
cycle when enabled. This rule counts the number of PulseWires that have been set as active and adds
that value to the running count of instruction that have been performed. The following code snipet
illustrates how this is performed.

Eskowitz, Haupt Page |19

module mkCounter4(Counterd#(t_type))
provisos (Bits#(t type,asz),Arith#(t_type),Literal#(t_type));

rule update(go count);

t type inc 1 = (inc_numinst[0]) ? 1 0;
t type inc 2 = (inc_numinst[1]) ? 1 0;
t type inc 3 = (inc_numinst[2]) ? 1 0;
t type inc 4 = (inc_numinst[3]) ? 1 : 0;
t type temp val= counter val + inc 1 + inc 2 + inc_3 + inc_4;
count val <= temp val;
endrule

endmodule

The Counterd4 module is designed to track the number of instructions being executed simultaneously.
The module contains four inc#() methods which are accessed by the four system modules responsible
for executing instructions: BExec, MExec, Execl and Exec2. The number of modules executing
instructions at one time can be obtained using the method getValue(). Further, execution tracking can
be enabled or disabled using the enable() method. The module interface is shown below.

interface Counterd#(type t type);

method Action incO;

method Action incl;

method Action inc2;

method Action inc3;

method Action enable(Bool onoff);

method t type getValue;
endinterface

4.10. Writeback Stage

The writeback stage of our processor has changed slightly compared to the one from Lab 5. In lab 5, we
only needed to support 1 Exec module, however, for our superscalar architecture, we must support
parallel writes to the register file. In order to achieve this functionality, we implemented a series of rules
that are similar to the one used in lab 5. Each of these rules handle the particular writeback for each
module.

Eskowitz, Haupt Page |20

4.11. Multi-Write Register File Implementation

The register file used in lab 5 was a wrapper around Bluespec’s built in register file. The limitation with
this particular design, however, is that it supports only a single write per clock cycle. Given that the goal
of this project is to issue multiple instructions per cycle it is a requirement that our processor be able to
write back multiple results at a time. This requirement necessitated that we develop our own multi-
write register file. The task of developing a multi-write register file was accomplished by constructing a
module containing a vector of registers.

The interface to our register file, shown below, contains multiple read and write methods. It is
important to note that the hardware cannot write to the same register multiple times during a single
clock cycle. The possibility of this event occurring is eliminated by the scheduling algorithm
implemented in the decode stage. Two instructions containing the same destination register address
are never issued simultaneously.

interface RegFileMw;

method Action wr@(Rindx addr, Bit#(32) d);
method Action wrl(Rindx addr, Bit#(32) d);
method Action wr2(Rindx addr, Bit#(32) d);
method Action wr3(Rindx addr, Bit#(32) d);

~ o~~~ o~~~ o~

method Bit#(32) rdl1(Rindx addr);
method Bit#(32) rd2 (Rindx addr);
method Bit#(32) rd3(Rindx addr);
method Bit#(32) rd4 (Rindx addr);

endinterface

Eskowitz, Haupt Page |21

5. Results

During the course of this project we successfully implemented a superscalar version of the SMIPS
processor used in lab 5. One of the resources provided with that lab which we have used extensively
was a set of benchmarks. These benchmarks tested the functional correctness of our processor by
performing a number of simple algorithms to exercise all elements of the available instruction set.
Furthermore, as our implementation was a superscalar design, these benchmarks served to exercise all
permutations of instruction issuance and delay as described in the prior sections.

The chart below summarizes the instruction per cycle (IPC) results for the execution of each of the
benchmark programs. The table contains these results for 4 different implementations of our processor:
the original SISD non-pipelined SMIPS processor, the SISD pipelined processor, our superscalar
implementation without feedback between modules and the final superscalar architecture with
feedback between modules. What we see from this chart is that on average we achieved a performance
increase of 37% over the IPC of pipelined processor.

1.8
1.6
1.4
1.2
1 H Unpipelined
H Pipelined
0.8
i No Feedback
0.6
M Superscalar
0.4 with feedback
0.2
0
Median Multiply QSort Towers VVAdd

Figure 5-1 Summary of Benchmark IPCs

Looking at these results, however, it quickly becomes clear that the degree of acceleration is not
constant but rather depends on the instruction level parallelism inherent within the code. This becomes
even more readily apparent from the next chart which shows the number of times only 1 instruction is
fired versus when 2 instructions are fired for each benchmark. The huge gain seen in the multiply
benchmark is due to the fact that the system is able to issue 2 instructions simultaneously for the vast
majority of the program.

Eskowitz, Haupt Page |22

12000

H 1 Instruction Fired

10000
M 2 Instructions Fired

8000

6000

4000

2000

Median Multiply QSort Towers VVAdd

Figure 5-2 Comparison between issuing 2 or 1 instructions at a time

These performance gains are not without consequences, however, as the FPGA resource utilization has
more than doubled from the implementations in lab 5. The table below summarizes the registers and
LUTs required to implement the superscalar processor with feedback between modules. The additional
resource requirements were largely due to the expanded decode stage as well as the addition of a
scoreboard and additional writeback rules to read from each of the processing modules.

25000
20000
15000 o
H Unpipelined
10000 i Pipelined
i Superscalar
5000 with feedback
0 -
Registers LUTs

Figure 5-3 Resource Utilization

Eskowitz, Haupt Page |23

6. Conclusion

In the course of this 6-week project we successfully implemented a superscalar version of the SMIPS
processor architecture. In order to accomplish this feat we modularized our original processor design by
breaking off the logic to handle different instruction types into specialized modules. Branch and jump
instructions all went to a BExec module in order to restrict the number of locations where the program
counter could be changed. Memory load and store instructions were directed to a single MExec module
which connected to our single memory interface. All arithmatic instructions were directed to two
execution modules: Execl and Exec2. By having a redundant, segmented architecture we were able
execute multiple instructions per clock cycle.

In addition to the various processing modules described here-in we accelerated our design through the
use of a forward map buffer implemented in the decode stage of our processor. This buffer tracked the
destination register of any issued instruction that required a register write upon completion. This table
allowed us to associate the register with a specific execution unit within the system and allowed us to
bypass writeback in some cases by exchanging values within and between the modules. The various
stages involved in our implementation showed that the there was a great deal of performance
improvement to be gained by handling operating in this manner.

Further, we have seen that the degree of acceleration achieved by the implementation of a superscalar
architecture is largely dependent upon the instruction level parallelism inherent in the code being
executed. We saw enormous gains in the Multiply benchmark as that code had very few conflicts
between instructions. The tables presented in our results section show that this benchmark issued 2
instructions approximately 80% of the time in order to effect a near doubling of IPC. It is clear from
these results that inherent code parallelism and efficient compiler optimizations are just as important in
high performance computing as efficient hardware design. The accelerations we achieved would not be
possible with poorly written code that had a low degree of parallelism.

Eskowitz, Haupt Page |24

7. Future Work

In the course of this project we implemented a superscalar architecture containing a total of two
execution units. The long term goal of these development efforts is to construct a scalable framework in
order to implement a dynamically reconfigurable data path processor. Towards this end we will need to
extend our implementation such that it can include arbitrary number of execution modules. This
process will involve developing a network infrastructure as well as extending our design to
accommodate instruction reordering. The following pages will detail the algorithmic details of our
intended implementation as well as all hardware revisions that will be necessary.

7.1. Scheduling Algorithm Details

To date we have implemented a method for efficiently parallelizing a serial instruction stream and
demonstrated the benefit of module level bypassing. The scheduling algorithm implemented relied on
the execution of at most two instructions. In order to make effective use of the interconnection
between execution units in our processing system we will employ a forward write buffer to assist in
scheduling instructions in the processing fabric. Each execution unit in the system will have a slot in the
table. The table contains the destination register of the most recently executed instruction. Each
execution unit is assigned a unique orthogonal id. Orthogonality is guaranteed through the use of one
hot encoding. For instance, the ID assignments for a 3 execution unit system would be

Execution Unit | Execution ID
el 001
e2 010
e3 100

The benefit of having orthogonality at this level is that we can easily apply set operations with simple
binary arithmetic. For instance, if we are given a set of processing resources

P={el, e2, e5}

we can represent this configuration by ORing the execution IDs of each of the set members.

P = 00001 || 00010 || 10000 = 10011

The resulting 5-bit word uniquely identifies a set containing only the execution units e1, e2 and e5. From
this we see that the union (U) of orthogonal set elements is the binary OR operation. It easily follows
that the intersection (N) is the binary AND.

As we have seen, the long term goal of this design path is a system which can contain an arbitrary
number of execution units. The diagram below abstracts away the majority of interconnects required for
book keeping and shows the primary data path through the system. The interconnection between
execution units is of central importance to this design.

Eskowitz, Haupt Page |25

el

discard discard
decode decode
pcGen *
& &
paralielize parallelize

Figure 7-1 Expanding Execution Network

With a potentially increasing number of execution units the task of routing feeds from a bypass register
file to each unit becomes increasingly cumbersome. An FPGA contains a finite number of layers and, as
such, we foresee the interconnection between execution units and the register file to eventually
become unrouteable. This obstacle is overcome by bypassing the register file within the execution
module itself. Our execution modules will exchange results between their neighbors as well as maintain
the results of the previous execution. It is the goal of our scheduling algorithm to exploit this bypass as
effectively as possible.

As we have shown, we can uniquely identify an execution resource with a multi-bit orthogonal
identification number. This number can also be taken to represent the location of data within system.
The following pseudo code illustrates the process by which we can locate two registers (rl and r2)
within the system by checking the write history table.

rlloc = ((writehistory[l] == rl) && 3'b001)
|| ((writehistory[2] == rl) && 3'b010)
|| ((writehistory[3] == rl) && 3'b100);
r2loc = ((writehistory[l] == 1r2) && 3'b001)
|| ((writehistory[2] == r2) && 3'b010)
|| ((writehistory[3] == 1r2) && 3'b100);

The result of these operations will be unique identifiers showing the location of these registers. If the
result is the binary sequence “000” we can conclude that the specific register is not in process
anywhere.

Our current system does not simultaneously execute multiple instructions that write to the same
destination register. As a result, the binary sequence contained in rlloc or r2loc will be orthogonal to
each other each representing a single execution unit. Given an instruction (i1) containing two source

Eskowitz, Haupt Page | 26

registers (rl and r2) we are not yet be able to schedule this instruction within the pool of resources as
the intersection of rlloc and r2loc will be uniquely equal to “000”.

In order to use binary set operations to locate an instruction within the pool of resources we must
instead consider the location of the register on the following clock cycle. As each execution unit has a
unique orthogonal ID we can compute the subsequent locations of data as the union of adjacent IDs.
The following table summarizes the results of this process for the 3 execution unit case.

Current Register Locations | Register Locations Next Cycle
001 011
010 111
100 110

Given two source registers (rl1 and r2) we can now locate them in the system on the following clock

cycle using the pseudo code

rlloc = ((writehistory*1l+ == rl) && 3'b011)
|| ((writehistory*2+ == rl) && 3'b111)
|| ((writehistory*3+ == rl) && 3'b110);
r2loc = ((writehistory*1+ == r2) && 3'b011)
[| ((writehistory*2+ == r2) && 3'b111l)
[| ((writehistory*3+ == r2) && 3'b110);

Again, the resultant sequence “000” indicates that the register is not in process.

We can now consider the case of an instruction (il) containing two registers (r1 and r2) that may or may
not both be in process within the system. A set of allowable execution units containing valid results for
rl1 and r2 can be obtains through the intersection of the results from the above equation.

illoc = ((rlloc == 3'b000O) ? 3'blll : rlloc) &&
((r2loc == 3'b00O) ? 3'b1l1ll : r2loc);

The ternary operation is included in the above expression because a “000” sequence indicates that the
specific register is not in process within the system and thus it can be scheduled without restriction. The
only restrictions in that case would be for the other non-zero register location.

The result from this operation will be some combination of execution units for which the instruction is
permitted. In the case we have been considering, a network of three execution units with connections
between adjacent neighbors, the result will never be “000” as the center execution unit will contain all
results for the previous set of instructions.

Eskowitz, Haupt Page |27

7.2. Scheduling Algorithm Analysis

Given a single instruction that has two source registers that are both within the system currently, our
ability to locate and use them both in a single execution unit during the next clock cycle depends
entirely upon their location within the processor fabric. In the current topology, our execution units only
receive the results of adjacent processing elements. This interconnection scheme has the obvious
consequence that the further apart the registers are physically, the less likely they are to be available.
The maximum distance between execution units is a direct function of the number of units available and
thus we expect the probability of scheduling an instruction to decrease with the number of execution
units.

The plot below shows the results of combinatorial analysis to determine the probability of scheduling a
single instruction in the processor fabric. Issuance of multiple instructions will obviously lead to
scenarios where issuance is only permitted to conflicting resources. Look ahead scheduling of instruction
locations could be used to maximize the probability of issuance.

100

90

80

70

Probability

50

40|

30 1 | | 1 | 1 1
2 3 4 5 6 7 § 9 10

Number of exacution units

Figure 7-2 Probability of being able to schedule an instruction with two registers current in system

Eskowitz, Haupt Page |28

7.3. Application of Scheduling System for 3 Exec Modules

As we saw in the graph above, the system with three execute modules has a topology such that all
modules will share register values at play in the system (which also holds true for the 2 module case).
The three module configuration is the simplest and most compact configuration and, as such, we will
delve into the process of scheduling instructions in this system.

As we saw previously, the location of a register within the system can be found using simple binary

arithmetic:
rlloc = ((writehistory[l] == rl) && 3'b011)
|| ((writehistory[2] == rl) && 3'b11l)
|| ((writehistory[3] == rl) && 3'b110);
r2loc = ((writehistory[1l] == r2) && 3'b011)
|| ((writehistory[2] == r2) && 3'b111)
|| ((writehistory[3] == r2) && 3'b110);

These registers may not be present and as such we can account for that in the following manner:

illoc _temp = ((rlloc == 3'b00O) ? 3'b1l1ll : rlloc)
&& ((r2loc == 3'b000O) ? 3'b111l : r2loc);

This will tell us the locations at which an execute instruction can be scheduled within the system. For the
case where we wish to execute three instructions we will have a total of three of these values

illoc_temp = ((rlloc == 3'b06GO) ? 3'b1lll : rlloc)
&& ((r2loc == 3'b000O) ? 3'b1l1l1l : r2loc);
i2loc_temp = ((r3loc == 3'b00O) ? 3'b1l1l1l : r3loc)
&& ((rd4loc == 3'b000O) ? 3'blll : r4loc);
i3loc_temp = ((r5loc == 3'b00O) ? 3'b1l1ll : r51loc)
&& ((réloc == 3'b00O) ? 3'b1l1ll : r6loc);

Our processor is of heterogeneous design with both execution, branch and memory modules. It is likely
that the above instructions will not be targeted for execution. In that case, we will need an additional
layer of logic to account for the possibility. To account for this possibility we have created functions
which look at the opcode in the instruction in order to determine its type.

el = isExecInstr(instrl);
e2 = isExecInstr(instr2);
e3 = isExecInstr(instr3);

Things are further complicated in that sequential instructions may be dependent upon one another. For
instance, in the case where the result of instrl is used as an argument in instr2 we are not allowed to
execute in parallel. To account for this we have defined the functions conflictFree2 and conflictFree3.

Eskowitz, Haupt Page |29

The function conflictFree2 checks to ensure that instrl.rdst is contained no where within instr2.
Similarly, the function conflictFree3 checks to ensure that instrl.rdst and instr2.rdst are contained no
where within instr3. For our purposes we always give priority to instrl and as such we do not check to
see if it is allowed at this point.

validl = True;
valid2 = conflictFree2(instrl, instr2);
valid3 = conflictFree3(instrl, instr2, instr3);

We can apply these results to our scheduling algorithm as follows:

illoc = (validl && el) ? 3'b1l1ll : illoc_ temp;
i2loc = (validl && el) ? 3'b1l1ll : illoc_ temp;
i3loc = (validl & el) ? 3'b111 : illoc_temp;

As before, the binary sequence “111” is employed to allow for scheduling without restriction. Once all
this logic is evaluated we can schedule instructions as follows:

if ((illoc[®] == 1'bl) && (i2loc[1l] == 1'bl) && (i3loc[2] == 1’'bl))
execl.put(instrl); exec2.put(instr2); exec3.put(instr3);

else if ((illoc[0] == 1'bl) && (i3loc[1l] == 1'bl) && (i2loc[2] == 1'bl))
execl.put(instrl); exec3.put(instr2); exec2.put(instr3);

else if ((i2loc[@] == 1'bl) && (illoc[1l] == 1’bl) && (i3loc[2] == 1'bl))
exec2.put(instrl); execl.put(instr2); exec3.put(instr3);

else if ((i2loc[0] == 1'bl) && (i3loc[1l] == 1'bl) && (illoc[2] == 1'bl))
exec2.put(instrl); exec3.put(instr2); execl.put(instr3);

else if ((i3loc[@] == 1'bl) && (illoc[1l] == 1'bl) && (i2loc[2] == 1'bl))
exec3.put(instrl); execl.put(instr2); exec2.put(instr3);

else if ((i3loc[@] == 1'bl) && (i2loc[1l] == 1’bl) && (illoc[2] == 1'bl))
exec3.put(instrl); exec2.put(instr2); execl.put(instr3);

else if ((illoc[0] == 1'bl) && (i2loc[1l] == 1'bl))

. // omitted for brevity

This portion of the issuance stage is essentially a rote enumeration of all possible combinations. There is
likely a more efficient way to schedule the instructions within the processor fabric, but we have yet to
devise such a solution. The scheduling task is quite tedious to implement with single cycle operations in
combinatorial logic. Additionally, we expect that the vast majority of FPGA resources utilized by our
processor will be in the scheduling stage and that the resource requirements will grow substantially with
the number of execution units in use. (It is worth noting that this logic almost entirely evaporates for the
two execution unit case or any topology where each exec unit is connected to all other exec units within
the fabric.)

Eskowitz, Haupt Page |30

7.4. Hardware Details

The following diagram is an abstraction of our design as it does not show the scoreboard that we have
implemented. Further, this diagram is an enhancement our implementation as the decode and
parallelize stage feed into a network of processing elements. These processing elements are responsible
for routing the results of the computation out of the network to the write back stage.

y N [3
PE PE ﬁ- FE
t A t A % t >
discard, [] A i b
docde M rE PE (¢ PE
parallalize_J) J L
writeback t ~, t ~ t -
-w
wha FE PE “ PE
T l) r . A
* miklCacheBlocking

T

mkDCacheBlocking
Figure 7-3 Potential Future Design Revision

We can extend this implementation by sharing the network of resources among multiple processor
elements. The diagram below shows an abstraction of our redesigned processor which contains
multiple processing elements (ALUs) that are fed instructions from an Execution Control Hub (XCH or
ECH). This control unit will be responsible for fetching instructions from a Memory Management Hub
(MMH) and relaying them to a Process Control Hub (PCH). As we have seen, the PCH will distribute the
instructions to a network of compute resources which are effectively abstracted away from the ECH.
This abstraction provides an opportunity for design exploration as well as a mechanism for potentially
scaling the processor to an arbitrary degree.

Eskowitz, Haupt Page |31

Execution
Control
Hub

Process
Control

Process
Control

Hub

Process
Contral
Hub

Figure 7-4 Long-Term Architectural Goal

Eskowitz, Haupt Page |32

8. Bibliography

1. Hennessy, John L., Patterson, David A. Computer Architecture: A Quantitative Approach Third Edition.
San Francisco : Morgan Kaufmann Publishers, 2003.

2. Alternative Implementations of Two-Level Adaptive Branch Prediction. Yeh, Tse-Yu and Patt, Yale N.
s.l. : The 19th Annual International Symposium on Computer Architecture, 1992.

3. Lam, Normal, Si-En Chang, et al. Evaluating the Performance of Dynamic Branch Prediction Schemes
with BPSim. [Online] [Cited: 4 9, 2010.]
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9302&rep=rep1&type=pdf.

