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Abstract

Digital audio mixing is really hard for everyday musicians with normal
systems for one reason: the individual voices that make up a performance
want to be processed in parallel, but current systems handle them mostly
in serial. To address these concerns we’ve created Pygar, a system on the
FPGA to process audio like a software mixer, but using a dedicated pro-
cessor for each voice. Each processor leads its own transformation program
which can be written in a high level language like C. This easy paralleliza-
tion works because voices don’t interact with each other. Our system is
extensible and even in its current implementation can handle 16 sepa-
rate voices — something which normally requires expensive (~$10,000)
hardware acceleration.

The Problem
Say that you want to record your band’s music in a high quality digital for-
mat: One thing you could try is to put a single microphone in the center of
the stage and hope for the best. This is bound to cause disappointment, be-
cause everyone ends up too far away from the recording device, reducing the
quality of the recording. Also each player’s volume will be determined by their
distance from the microphone, while the ideal is to have each players volume
normalized with respect to the overall performance. A much better alterna-
tive to the single-microphone approach is to give each player a microphone that
is only a few inches from their instrument and then combine all the separate
recordings (voices) into a single stream. Some instruments, such as drums, may
even receive up to six microphones! Lots of microphones, each very close to
the instrument they are recording, solves the problem of attaining good quality
audio. But, each voice still needs to be processed a little so that they will all
sound good together. The most common type of correction is just changing
the volume so that every instrument sounds correct with regard to the total
performance, but sometimes other corrections such as re-verb or slight timing
alterations are also required. The process of fixing the voices to sound good
together and then combining them all into a single track is called mixing.

Hardware mixers with hardware effects racks were the original solution to
the challenges of audio and until recently, remained the common means for
implementation. However, above more than 12 or 16 mono voices the price of
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a hardware mixer gets exceedingly high. For effects, the audio is sent off board
to another large hardware processing unit. This requires lots of cabling and
the quickly claims all the physical input output ports on the mixer. Software
emulation of the hardware is quickly replacing hardware for unified processing
and mixing. Software emulation is still challenged. Even with today’s high speed
computers, a handful of tracks with moderate numbers of effects will strain the
average user’s processor. Today mixing is done with software, but even the
best software is limited in the number of voices it can handle without clipping
(loss of audio data). Clipping is very noticeable and completely unacceptable
for audio processing. Software solutions to the audio mixing problem are all
limited by the serial nature of the computer, which in the end just jumps from
voice to voice as fast as it can in an attempt to handle everything at once.
The best software today on laptop systems can’t handle more than about 10
voices at once. For portable options using an embedded environment, few low
end micro-processors can achieve more than a few voices and more than very
basic processing. This is a real problem, because bands and other groups like
T.V. shows can easily top 25+ voices, or even 100 voices if synthetic digital
instruments or sound effects are used. How do T.V. shows, movies, and huge
bands do all this processing? The current state-of-the-art is extremely expensive
hardware acceleration for the best software mixers. Such systems tend to start
at around $10,000. We want to keep the good parts of software mixers, namely
the ability to easily describe algorithms to manipulate voices in software, while
respecting the nature of the problem, which is parallel operations on almost
independent voices with real-time timing constraints.

To make a good replacement for a mixer, you first have to understand how
software mixers work.

Anatomy of a Mixer
The easiest way to understand what a mixer does it to look at one. Figure
1 shows a reasonably simple mixer setup in ProTools. ProTools is generally
considered the most powerful audio editing software available with one of the
best mixers. It will help demonstrate how the mixer works and what it does.
First, the screen shot includes three audio inputs, two sub-mixes, and the master
mix (bottom line). The three audio inputs are two mono inputs, two stereo
inputs (note two line level displays) where two mono audio streams are linked
together, and two instrument tracks (to clarify track vs. stream, a mono track
has one audio stream and a stereo track has two). Unlike normal audio inputs
that are essentially straight data feeds, instrument tracks are a set of instructions
that either trigger virtual instruments based on processed samples or control
completely synthetic sound generation. Next consider the I/O tab. This consists
of input options and output options. Generally input is either a pre-recorded
audio stream or a live feed from hardware. In the case of an instrument track it
is a sequence of instructions intended for the synthetic instrument. The output
option directs where the audio output goes. Most tracks will go to the master
fader (volume control) unless specifically directed elsewhere. Routing output
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Figure 1: Screenshot of ProTools in action. ProTools is one of the best programs
for mixing audio.

to an aux track instead of the master allows a track to be pre-mixed with
additional tracks and effects before arriving at the master mix. For instance, if
five microphones are recording a drum kit, the aux track can be used to set the
drum volume using only one fader. Alternatively a track can be directed to a
specific hardware port. One last routing option found above i/o is the send. The
send is similar to main i/o in that it allows the audio to be passed somewhere
like an aux track, except that the primary track output still exists. Essentially
it allows routing one stream to many places, while i/o directs to only a single
destination.

Above the sends are the inserts. These are any affect algorithms that should
be run on the audio stream. Such algorithms could be delay, reverb, mod-
ulation, analysis tools, etc. These can often be exceedingly computationally
intensive. Virtual Instruments are included as an insert as the sound genera-
tion, whether sample based or not, will require processing and access memory
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differently. Professional audio software systems typically run these Inserts on
external DSPs using hardware assistance to route the substantial simultaneous
memory requests and a hardware mixer to combine resulting audio streams.
The example Insert menu shown demonstrates the difference ways of handling
stereo. Stereo (and other multi-voice formats like Dolby) can be treated as
multiple separate audio tracks (multi-mono) or as a single unit (multichannel).
Multichannel algorithms like reverb usually will alter one audio stream’s output
based on another audio stream within the track. Lastly, all audio tracks will
have pan (which basically sets relative volumes on the different sides of a stereo
track, or mono track routed as a stereo track) and volume. The master track
sums everything together, supports processing (like compression) on the final
audio stream and sends it to the correct audio out.

Mixers in the Real World
A typical recording session might involve recording and or playing multiple
voices simultaneously. A standard 4 piece band might take 6 microphones for
the drum, two microphones for each guitar, one microphone for the singer and,
two more microphones for bleed and ambiance. As you wouldn’t want the same
audio filters applied to the vocals as the bass guitar, each microphone voice is
shaped individually for optimal sound on that voice before being added to the
whole which is what you hear as the listener. Another example centered on play-
back might be instrument emulation. If you want to emulate the playing and
sound of a harp electronically using a different interface, the system might play
back a separate sample or synthesis for each of the possible 46 struck strings
which is individually shaped based on the trigger style and timing and with
all the notes then summed to generate the single instrument audio. Electronic
production is usually done processing a number of pre-recorded voices and gen-
erative audio sources (sampler or synthesizers) and summing together again.
The common aspect in all these, from live recording to pre-recorded playback
is that each audio voice starts out as a separate stream requiring independent
processing ideal for parallel computation. Audio is also a steady sample rate
of at least 44.1kHz and if being performed live, must not suffer from substan-
tial latency. Each voice involves a steady data flow. Therefore, audio playback
must source large quantities from memory or, in the case of live recording, must
digitize the multiple analog sources and must pass that data along. Taking the
four piece band with 12 voices, using a minimal recording standard of 44.1kHz
and a bit-depth (sample size) of 16 bits, this ends up being 8Mb/s. This may
seem reasonable except that audio is fairly error intolerant. It is not consid-
ered acceptable to easily drop a sample or re-send it because a timing deadline
was missed. That 8Mb/s service must be guaranteed. This 8Mb/s rate is for
a simple 4 piece band recording at minimal data rates. Take the example of
a movie with an orchestral sound track and a busy scene with lots of foley
(sound effects). This might involve 100 voices at 96kHz and 24 bits per sam-
ple necessitating a consistent over 200Mbs data rate. Once the data is in the
system, mathematical processing of an audio stream for effects or synthesis is
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commonly computationally intensive. Audio effects frequently involve Fourier
Transforms and other serious math. Again, due to the timing deadlines, process-
ing algorithms must complete within one sample clock. Don’t forget that these
additional audio processes will add further memory bandwidth requirements.
The last probably most straight forward part of the audio system, is the mixer.
At its most simple, the mixer takes each individual voice, balances it with the
other voices by scalar multiplication and then sums all the voices together to
achieve the whole. Normally there is actually some smart math done here. The
mixer is not typically a straight addition, otherwise adding 16 voices and not
overwhelming the output would require an unacceptably low input volume per
voice. Lowering the volume effectively reduces bit-depth and loss of informa-
tion. More complicated mixers allow routing of audio between and to different
voices. For instance, the drums are composed of six individual voices which are
convenient to sum to a new voice so that the beat has a single volume control or
blended reverb. Grouping voices before the final mixer is really the closest the
audio streams come to interacting with each other and still follows the concept
of independent parallelizable voices unless side-channeling is allowed. This is
where an audio file is used as an input control to an effect on another stream.
An example of this is called gating. If the bass guitar is doing a continuous
bass line, the intermittent bass drum might get lost or muddy. A good means
to clean this up and retain the bass drum punch is to use the bass drum as a
gating input on the bass guitar line so that each time the bass drum is hit, the
guitar’s volume is temporarily reduced and as it is not a two way dependence,
does not negatively impact the parallel nature of the audio flow.

Our Ideal System
Now that we know the problems faced by mixer systems in the real world, it
is clear what a replacement system should be able to do. Our system operates
on two guiding principles: parallel audio processing and programmable audio
processing. To this end our ideal architecture uses a string of configurable
processors for each voice as follows:

The first component is a control module. This has knowledge of the overall
routing scheme. It uses this knowledge to issues instructions on which streams
to play and when (DMA), and passes controls onto other modules such as the
processing units and mixer. Example controls might be volume scalars for the
different voices sent to the mixer or the delay length in a processor running
a delay algorithm. The second module is a memory fetch module that, given
instructions from the control module, coordinates requests to main memory or
accepts input from A/Ds. The memory module must be able to provide one
sample per live voice every sample clock cycle in order to maintain sample rate
integrity. The third modules are the processing cores. These take the sample
streams and run a dynamically loadable algorithm on the sample stream. They
also take instructions from the control module on any effect controls. In Figure
2, the soft-cores are essentially implementations of a plugin. Lastly, everything
collects in the mixer module for scaling and summation.
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When the processing starts, the DMA reads in each voice and sends the
audio data (“samples”) off to a chain of soft-cores. The DMA knows to which
chain the samples should be forwarded by looking up the samples’ voice in a
hash table read at startup. Once the samples enter the soft-core chain, the first
soft-core in line takes the samples and performs some sort of audio operation,
producing modified audio samples. These samples feed into the next soft-core
which performs a different algorithm. As condition for functional correctness,
we require the algorithm that each soft-core contains to be able to produce audio
samples at the desired 44khz rate, but we allow an arbitrary setup time for the
soft-core to get ready. That way, a pipelined processor can take its time and fill
up its pipeline completely with no worries. Once the soft-core starts producing
samples, it must produce them at a rate of at least 44khz forever. If every
soft-core in the chain obeys this timing condition, then the whole chain will as
well, so the entire chain of soft-cores can be treated as a single big soft-core
for timing purposes. Our soft-cores are just Lab 5 processors preloaded with
specific audio processing algorithms.

Eventually, the samples make their way to the end of the chain of soft-
cores. Every chain of soft-cores ends in a FIFO. Each of the FIFOs leads to the
mixer, which only begins operation once all the FIFOs are full. Because of the
timing constraints we impose on our soft-cores, once every FIFO has at least
one sample, all of them will forever more be able to supply samples at 44khz.
The mixer therefore waits until all the FIFOs have elements and then reads
samples from all FIFOS at a rate of 44khz. The mixer combines the samples
through simple addition and scaling, creating a single stream of sample data,
which is sent back from the FPGA to the host computer where we play the
stream and/or save it to a file. The mixer ensures that it outputs samples at
a rate of 44khz by running everything through its own internal buffer FIFO
clocked at 44khz.

Our Actual System
Due to time limitations, we went for a more simplified architecture than our
proposed ideal system. First, we are not doing any dynamic control passing, so
there is no need for a control module. Rather than a memory request system, we
used existing tools to implement sample passing between the host and the FPGA
which is host driven. This alleviated the need to setup a sample clock within our
present design. This was a good short term design simplification that also made
for easy coordination between the host system and FPGA since the host only
sends when the FPGA is ready, which implicitly guarantees that no samples
from memory are missed. We presently have opted for a one-deep parallel set
of SMIPS soft-cores to provide processing capabilities (Figure 3). That is, each
voice is still processed in parallel, but only passes through one processor. The
mixer functionally is the same as the general architecture except that there is no
synchronization to a sample clock. Instead, the FPGA sends the mixed signal
back to the host for writing to a file. The implementation of our architecture was
done within AWB (Architect’s Workbench). This let us use the Intel ScratchPad

6



Figure 2: The audio data samples start in the memory, but are soon pulled
into action by the DMA (direct memory access). The DMA sends the samples
to a chain of 0 or more soft-cores, where they are transformed according to the
soft-cores’ algorithms. After running the gauntlet of soft-cores, the samples flow
first to a buffering FIFO, and finally to a mixer, which sends the samples off to
be played by speakers or stored in a file.
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Figure 3: Our Current Implementation is a reduced version of our Ideal Imple-
mentation. Instead of a configurable grid of processors, we use a one-deep set
of processors. Songs are taken strictly from host memory via RRR and are fed
back to the host to be written to a file.

caching system and RRR. ScratchPad is for loading programs into the soft-cores,
while RRR enables fast loading of music samples from host memory. RRR has
a higher bandwidth than SCEMI which will be helpful for properly testing large
multi-voiced systems and despite some initial hitches ScratchPad has proved to
be very effective for servicing soft-core memory needs. Each soft-core gets its
own ScratchPad, simplifying our memory interactions nicely.

A big part of our present architecture was code reuse. Early labs in class
and in the 6.375 AWB package demonstrated how to stream audio from the
host, through the host-FPGA interface, and route it to an FFT for processing.
We are not presently using the FFT, but are reusing much modified streaming
code in both C++ and bluespec. The soft-core is the soft-core implemented
in lab 5 with modifications to use the RRR abstraction, an added interface for
audio samples, and additional instruction set response to pass the samples to
the SMIPS code on the core. In summary, our system was implemented with
minimal bluespec and three main re-used components: RRR, ScratchPad, and
Lab 5 SMIPS processors.

Bluespec Implementation
Bluespec implementation was split into code modules. This first is the primary
audio pipeline module audioCorePipeline.bsv. It is responsible for creating
the cores and creating the links between audio in, cores, and the mixer and
supports passing debug information back to the host. Since the DMA portion
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of the generalized architecture was abandoned for a fairly direct pipe-in, this
module not only handles connections, it also handles the remaining memory
functions. The left over functions are largely the immediate interface protocols
to get and retrieve samples through the RRR and correctly route them to the
right core. One more interesting aspect of the main pipeline module is the
synchronization of the audio samples. It is necessary to make sure that the
sample from voice 1 sent at time T is the voice 1 sample added to the sample
from voice 2 sent at time T. Software must resort to time stamping to make
sure that sample order and synchronicity is achieved. A benefit of hardware
is that as long as the samples start in order, they are guaranteed to flow in
order and we can wait for the relevant mixer FIFOs to receive a sample before
mixing. For files of different length, this approach adds a bit of complexity. If
the hardware waits for the sample from each voice before firing and one of the
voices is no longer sending, the FPGA will be hung. This is addressed by the
input handling sending Invalids once an end of file is reached and the file stops
sending. This required modifying the interfaces used by the audio stream to the
cores and the mixer along with both understanding how to correctly continue
the pass thru of the Invalids. For instance, the core shouldn’t immediately start
forwarding Invalids to the mixer when an EOF is reached. The core may still be
processing valid samples and to keep order, Invalids should not forward until the
core completes sample processing. A last nicety of the pipeline bluespec code
structure is that it is well parametrized for scaling up to 26 cores. Changing
one define from 1 to 16 and a recompile is all that is required to add 15 cores.

Mixer
The mixer is fairly simple. Since we are not implementing dynamic controls
presently, it takes as an argument a set of mixer voice scalars which it uses to
scale each voice appropriately. The scalars are set at number 0-255. The mixer
multiplies the sample by the voice streams scalar and then returns it to the
same absolute scale by dividing by 256. This is a simple efficient right shift.
It is normal mixers scale down the volume of voices while combining them. A
stream is assumed to be at full volume when raw. Scaling it above it’s original
size is considered more like running through a specific amplifier which is a plug-
in, not a mixer function. The algorithm for summing voices is similar in nature.
It uses a larger bit space to add the 16 bit samples together raw and then bit
shifts the result back into the original 16 bit base. There are definitely better
options than this. As previously mentioned, sample order is preserved by the
axiom that each voice goes in order so once all voices have supplied a sample,
the output is ready to start. The mixer also tracks voice completion through
End of Files and returns the final process ending EOF.

ScratchPad
The most substantial code reuse in Pygar was Intel’s ScratchPad. This system
solves the problem of dynamically loading C programs into the memory of each
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Figure 4: When a soft-core processor tries to read its program, it cache-misses
all the way up to host memory. Subsequent memory requests are fast since the
cache is initialized. Each processor operates in its own memory space which is
completely independent from all other processors.
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soft-core processor. A ScratchPad is a cache hierarchy which extends all the way
from the FPGA soft-core to the hard-disk of the host machine. We easily select
different C programs to be executed by the soft core by pointing the hard-
disk level of the cache to our program. Then, when the Processor begins to
access its local memory on BRAM, the cache misses all the way up to the hard-
disk and reads the target C program. Subsequent memory accesses are much
faster since the cache is initialized after the first miss. As long as the entire
program fits into the FPGA’s on-board DRAM, our timing constraints will be
satisfied. Each processor receives its own ScratchPad, but each ScratchPad
shares a common cache in DRAM and all higher levels. This gives us efficiently
implemented separate memory spaces for each processor. To switch programs,
we simply point the ScratchPad Cache hard-disk level base to a different location
in memory, and the cache takes care of flushing old data automatically.

Transformation Programs
We have written a handful of very simple SMIPS programs as a proof of concept.
They are thru or identity which simply returns the original sample, louder,
softer, and bit-shifter. Louder acts as an amplifier such as mentioned in the
mixer discussion. It is coded to mimic clipping as scaling a sample above the
playable analog volume results in clipping rather than letting the number cycle
over to something even more unhelpful. Softer is self explanatory. Bit shift does
a bit reduction of the song from 16 bits to 8. Go Nintendo.

Lab 5 Processors
The core consists of two modules: Core (audioCore.bsv) and Processor (Processor.bsv).
The Core wraps the Processor, and is virtually the same as the Lab 5 core except
that it makes memory connections with the ScratchPad instead of through the
host. Keeping the ScratchPad in the core also means that non-soft-cores can eas-
ily be substituted for a core at the pipeline generation stage. Otherwise, the core
passes the audio samples on to its processor. The Processor (Processor.bsv) is
derived from the Lab 5 processor as stated. The decision to use this particular
processor was influenced by the fact that it was familiar code, it achieves the
objective, and there are simple tools for successfully using it. Due to a bug in
Xilinx’s elaboration tools, we were forced to make several trivial modifications,
but the only additional functionality we added to the processor was the ability
to pass audio samples between the SMIPS program and the core. We achieved
this by adding two new sub-instructions to the MTC0 and MFC0 op-codes. See-
ing as the MTC0 and MFC0 are designed for this type of special register passing,
this seemed like a far more logical solution than adding a new opcode. On
the SMIPS-to-core side (MFC0), the first sub-instruction relates whether End of
File has been hit (this automatically clears for effective state reset) while the
second sub-instruction passes the valid sample. Right now, these requests are
not serviced if no valid data (24 bit samples) enter the processor. Bad samples
only occur from bad behavior by the ScratchPad C program, so while the cur-
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rent stalling is reasonable, it might be better still to add an error flag in this
situation. The two MTC0 instructions exist to store a sample manipulated by C,
and to flag the completion of the C program, signaling the processor to signal
End Of File. The ’complete’ flag is relevant because it ensures that every voice
will make it through the entire system. Since the mixer will only signal comple-
tion after it has itself received EOF’s from each processor, each C program has
the ability to stall the entire system until it has fully completed its processing,
guaranteeing functional correctness. Instead of an explicit EOF flag, it may be
better to maintain a count of the total samples remaining in the mixer itself,
and decrement that counter for each sample received. This setup would loosen
the requirements for the C programs running on each processor, but requires
knowledge of the total length of the voices beforehand. Since we don’t need
timestamps on samples due to the monotonicity of our hardware sample pro-
cessing, the present delay for an EOF is fine. The contract with the SMIPS code
is that it must check for EOF before fetching a sample and should not request
sample information afterward. If this contract is broken, the C program may
not complete. The SMIPS C interface includes a function Boole getSample(int*
data) which will automatically know to check for EOF and return false if the
EOF has been reached and there is no valid data. Sending the sample back to
hardware is straightforward with no restrictions. Lastly, the SMIPS C program
must flag when it is complete and the last sample has passed or else the entire
process will fail to terminate.

Contributions
We have demonstrated the ability to implement the original goal of 12 plus voices
with processing mixed together. The system has run successfully on the ACP
platform with two SMIPS cores executing a simple pass thru SMIPS program
that returns the original sample. We have also executed in sim using 16 voices
and audio files of different lengths. The one successful FPGA compilation took
180 minutes while we’ve also seen four hours pass without the FPGA compilation
finishing. This has definitely been problematic as the live work environment has
not been tolerant to waiting for hours to verify the compilation works and not
using the ACP host, courage in that time. Unfortunately, the one working build
that successfully passed our short test set was accidentally reset before we had
the chance to run proper meaningful audio through it. Things have gone well
in sim though. In sim we can process different length audio files on up to 16
cores. Although the test bench code for both setting up the benchmarks and for
host C++ code is fully automated and although the link between the between
the host world and the FPGA isn’t quite finished, both test bench and bluespec
code are parametric making reconfiguring cores numbers easy. Thanks to the
scratchpad, changing SMIPS programs is simple and fast too, not requiring any
rebuild of bluespec. The drawback of being chained to sim is that running a
meaningful test is exceedingly slow. Running a two voice test with 500 samples
usually takes a couple minutes. We do have debug commentaries on but a 1
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Algorithm 1 C interface for sample handling in SMIPS.
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Figure 5:

second sample is 44,100 samples. The time for a useful test does not scale well
on sim. That said, if it works for 500 samples, it should work for 44,000. The
other part of this is that we do have a handful of very simple SMIPS programs.
They are thru or identity which simply returns the original sample, louder,
softer, and bit-shifter. Louder acts as an amplifier such as mentioned in the
mixer discussion. It is coded to mimic clipping as scaling a sample above the
playable analog volume results in clipping rather than letting the number cycle
over to something even more unhelpful. Softer is self explanatory. Bit shift does
a bit reduction of the song from 16 bits to 8. Go Nintendo.

Synthesis Data
The slow part of the entire structure is the Mixer, which is slow because we
naively used bluespec’s sign extend function which is apparently very inefficient.
Nevertheless, the entire system can operate fast enough to produce 44.1kH audio
in real time. The HTG FPGA should support around 6 cores maximum. The
ACP should be able to support around 20 cores. We don’t have more data for
the ACP because of the substantial time it takes to compile for that device (>
9 hours).

Further Investigations

New Processor Architectures
Our efforts so far have focused primarily on basic operation and demonstration
of principle. We have yet to get to the truly interesting architectures but we
have achieved the foundation for implementing them. More powerful capabil-
ities can be easily added. The first set of additional capabilities is to add full
hardware processing with FFTs. This can be quickly implemented using the
code from labs 1-4. As previously mentioned, the interfaces for the audio sam-
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Figure 6: This dense processor grid is simple to reprogram. If a particular voice
only needs a few processors, the extra processors can be loaded with “identity”
programs which do nothing at all. To save space, only those processors which are
actually needed should be stamped out on the FPGA. Also, hardware processing
units such as FFTs can be easily interfaced with our system.

ple passing was derived from the FFT labs and is thus, easily adaptable. The
only required change is to deal with the Invalids sent to fill pipes after EOF.
Once this is complete, any of the existing FFTs can be plugged into the present
pipeline system as a replacement for a soft-core. A second easily implementable
interesting new capability is to build a soft-core with hardware acceleration of an
audio FFT. This combines the benefits of the soft-core with the hardware FFT.
This could be implemented by wrapping one of the present soft-cores in an FFT
wrapper. Again, apart from the Invalids, the interfaces remain the same and
again, we have the labs with code to compute the FFT. Yet another easy new
implementation which is definitely targeted is to implement a matrix of cores.
This enables the goal of running a single stream through multiple algorithms.
If a stream does not need all the soft-cores in its path, those can be loaded with
the existing pass-thru SMIPS code. It is less efficient but highly flexible and
easy to code in BSV. Lastly there is the goal architecture where each pipeline
has only the soft-cores (or FFTs) it needs. While this is extremely efficient, it is
harder yet still reasonable to code. A definite goal in this implementation is an
easy way to outline what the desired architecture is which the compilation code
and then parse into the correct structures. We actually already have a routing
table that would do a reasonable job of it, but we don’t yet have the bluespec
code the read the routing table and implement it.
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Figure 7: This is on courage.csail.mit.edu, with no other substantial programs
running during the length of the compile.

Optimization
We haven’t actually done any optimizations of the system yet. This is an ob-
vious place for improvement. For instance, the mixer is presently the slowest
stage as it is not at all internally pipelined. Splitting some of the math into sep-
arate pipeline stages would improve the performance speed. A good candidate
would be separating the scalar multiplications from the other math. The pro-
cessor itself can be further optimized with better branch prediction and other
improvements. Some quick passes through the synthesis reports should highlight
areas to target.

Development Issues
While our project was conceptually simple, many trivial things conspired to
make it much more difficult than it ideally should have been. Some notes on
creating a better system for designing hardware include:

• Better documentation for AWB.

• Less indirection within the AWB environment.

• Explicit licensing status. Failure to obtain a license should be a very
noticeable error instead of the current tragedy of simply failing silently
with no error message. You will fail any attempt to run a test after
12:00AM.

• More deterministic compilation. Figure 7 should not be possible.

Fun Bugs that we experienced:

• Some very simple rules will cause Bluespec to get stuck forever in a com-
pilation loop unless (* conservative_implicit_conditions *) is on.
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• Sending too much data to RRR will block it and cause unrelated sections
of code also using RRR to fail.

• ScratchPad was ’updated’ during the project, breaking our existing code.

• Xilinx does not assign the correct type of RAM blocks without extensive
workarounds.

Getting closer to the target design
Three more significant places for improvement are implementing the clocking
need for real-time live use of Pygar, switching the memory module over to
being request based and specifically clocked along with the target of enabling
dynamic control. Clocking the memory is a big step towards enabling live use of
the design. Live audio flows at a specific sample rate and if it is to be read or the
mixer is to drive real audio, any AD for audio in or DA for audio out will need to
be clocked and thus send/receive one sample each clock. This type of functioning
also impacts the desired memory design. With tighter timing deadlines, it makes
more sense to request data rather than wait for it. This enforces the sample
source to meet timing deadlines and failure to do so is easily identified. A
typical problem in audio processing we have not yet discussed in detail is some
of the peculiarities of reading multiple voices that thwart traditional memory
access optimizations and cache schemes. Putting more memory fetch logic into
a more true DMA module provides the opportunity to address some of these
issues. It also means that the audio core can run largely independent of the
need for any external processor. It makes it far more self-contained. The last
big win of reasonable complexity is the addition of dynamic control. Right now
we only support static settings. An SMIPs algorithm starts with a specified set
of control settings and there is not yet a way to update these. The mixer also
receives it’s multiplication scalars through static elaboration. Clearly, being able
to change the volume of song play back or re-balance voices is an important real
use function. A possible architecture for the is to add a specialized control core
that can pipe a control stream to each soft-core and mixer. Using a soft-core
for this retains the flexibility to swap out plugins and update control software
for this new plugin. Looking at what software can do, there are obviously still
more way to add and improve functionality.

Our system right now represents only a fraction of the styles of Audio Pro-
cessing enabled on FPGAs, but already it can outperform pure software systems.
There are many other issues that need to be addressed, but already our system
is useful.

Special Thanks to Eliott Fleming for his extensive help without which we
would have not had gotten as far as we did.
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